Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo_lunar_landar.zip +3 -0
- ppo_lunar_landar/_stable_baselines3_version +1 -0
- ppo_lunar_landar/data +95 -0
- ppo_lunar_landar/policy.optimizer.pth +3 -0
- ppo_lunar_landar/policy.pth +3 -0
- ppo_lunar_landar/pytorch_variables.pth +3 -0
- ppo_lunar_landar/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 271.52 +/- 8.97
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f89736b5af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f89736b5b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f89736b5c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f89736b5ca0>", "_build": "<function ActorCriticPolicy._build at 0x7f89736b5d30>", "forward": "<function ActorCriticPolicy.forward at 0x7f89736b5dc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f89736b5e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f89736b5ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f89736b5f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f89736b8040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f89736b80d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f89736b8160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f89736b65c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678250480051653327, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV3QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVS9ob21lL3p6L0RPRC9EZWVwUkwvZW52L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFUvaG9tZS96ei9ET0QvRGVlcFJML2Vudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZCLbwH24U/BuWjvF+fy77AYwo9yzQrPQAAAAAAAAAAGp+SvfaUFLqylWG64CXItdt8obmON4Q5AACAPwAAgD/NM4s8H0ePu/yisrrhRmg8HjLnvA2gSD0AAIA/AACAP7OiiL3aexI++hcEPgrMMb5xYwI76++4PQAAAAAAAAAAZrFJPXtCiLrKyUA5cSJSNHkwLTcQS1u4AACAPwAAgD9qD42+Ep4IP1OBVT7eOpe+8WRxvYZ8TbsAAAAAAAAAAE06ib2PbkG6k+t7OTxrlzTakJO42ziUuAAAgD8AAIA/zQMovZjTiz9q7Cu+5QPtvnhBJL0A1tW9AAAAAAAAAAANy6C9Ghy2Pwhwv76dZmi+QXyrvTwEEL4AAAAAAAAAAM37m73ttjQ/yodQvQUDt76Ppo29SRwBvAAAAAAAAAAAmqwZvSlATLpdgdi0kUPTr1wnpbqPyB40AACAPwAAgD/NHbY8KaBqujod1zn8oLA17jB1OW2d9LgAAIA/AACAPzOiBj5iKJM/eGGsPq++7L7//IQ+ZhgLPgAAAAAAAAAAmsXbO6e7lj6l7Ve+NAmgvrTaib3uPp+9AAAAAAAAAADNYj08Hy2UueBKCDwG2O61gFbquQs2+rQAAIA/AACAPzPnObz2yGG6tKQ2PCr1mTw3Wus6gbGFvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUwPN51xScECUhpRSlIwBbJRNZgGMAXSUR0CQ7uhgVoHtdX2UKGgGaAloD0MIKbSs+8cEb0CUhpRSlGgVTTQBaBZHQJDvATWXkYJ1fZQoaAZoCWgPQwiUowBRMARxQJSGlFKUaBVNjwFoFkdAkO8WvjfelHV9lChoBmgJaA9DCMfyrnoAiXBAlIaUUpRoFU0uAWgWR0CQ7zNG3F1kdX2UKGgGaAloD0MIBRcrarBgb0CUhpRSlGgVTVIBaBZHQJDvvvhIe5p1fZQoaAZoCWgPQwjBVZ5A2OdwQJSGlFKUaBVNBgFoFkdAkO/E1uR9w3V9lChoBmgJaA9DCHGsi9voVHFAlIaUUpRoFU1FAWgWR0CQ7+38GcFydX2UKGgGaAloD0MIJNBgUye2ckCUhpRSlGgVTe8CaBZHQJDwNDWsijd1fZQoaAZoCWgPQwhz8bc9QaRvQJSGlFKUaBVNPAFoFkdAkPCx5TqB3HV9lChoBmgJaA9DCDYEx2VcI2dAlIaUUpRoFU3oA2gWR0CQ8cWp6yB1dX2UKGgGaAloD0MInE8dq1QLcECUhpRSlGgVTZoBaBZHQJDx8ifQKKJ1fZQoaAZoCWgPQwhI36RpUM5vQJSGlFKUaBVNDwFoFkdAkPLIyCWeH3V9lChoBmgJaA9DCFYMVwdAOHJAlIaUUpRoFU24AWgWR0CQ80zTnaFmdX2UKGgGaAloD0MI3PEmvwXmcUCUhpRSlGgVTSIBaBZHQJD0VnOB19x1fZQoaAZoCWgPQwimDYelgcM2QJSGlFKUaBVL8GgWR0CQ9F+AmReUdX2UKGgGaAloD0MImZoEb0gmbkCUhpRSlGgVTRMBaBZHQJD1KLk0aZR1fZQoaAZoCWgPQwhcWg2J+/NwQJSGlFKUaBVNfwFoFkdAkPVPIsAeaXV9lChoBmgJaA9DCDvhJTi1ZHBAlIaUUpRoFU1OAWgWR0CRDYzSThYOdX2UKGgGaAloD0MITE9Y4oHJb0CUhpRSlGgVTYwBaBZHQJEPi8kD6nB1fZQoaAZoCWgPQwjg1t08VX9vQJSGlFKUaBVNnQFoFkdAkROL4vexfXV9lChoBmgJaA9DCLq8OVzrWXJAlIaUUpRoFU3fAWgWR0CRFBX4CZF5dX2UKGgGaAloD0MIRIoBEg0bcUCUhpRSlGgVTd8BaBZHQJEWLc580DV1fZQoaAZoCWgPQwgtJctJKDJuQJSGlFKUaBVNaAFoFkdAkRbVZkkKNXV9lChoBmgJaA9DCJTb9j1qQG5AlIaUUpRoFU1PAmgWR0CRFyldTo+wdX2UKGgGaAloD0MIbOun/6zQYkCUhpRSlGgVTegDaBZHQJEf/kcS5Ah1fZQoaAZoCWgPQwgtz4O7s6NtQJSGlFKUaBVNFAJoFkdAkSASnUDuB3V9lChoBmgJaA9DCAeWI2TgRnBAlIaUUpRoFU0UAWgWR0CRIIjnmq5tdX2UKGgGaAloD0MILh9JSU8ccECUhpRSlGgVTZEDaBZHQJEg9cv/R3N1fZQoaAZoCWgPQwgbnIh+bZRmQJSGlFKUaBVN6ANoFkdAkSPXUhFEzHV9lChoBmgJaA9DCM7GSswzkGdAlIaUUpRoFU3oA2gWR0CRJR+3H7xedX2UKGgGaAloD0MIRRMoYpHfcUCUhpRSlGgVTUsDaBZHQJEmsXAM2FZ1fZQoaAZoCWgPQwi8saAwaAlwQJSGlFKUaBVNGwJoFkdAkSj7x3FDOXV9lChoBmgJaA9DCMOAJVex2mNAlIaUUpRoFU3oA2gWR0CRKaUhmoR7dX2UKGgGaAloD0MI+x711yt7ZECUhpRSlGgVTegDaBZHQJEqV+6RQrN1fZQoaAZoCWgPQwgh6dMqOk1wQJSGlFKUaBVNIwNoFkdAkStMVpKzzHV9lChoBmgJaA9DCMh8QKAzVWJAlIaUUpRoFU3oA2gWR0CRK5zundftdX2UKGgGaAloD0MI8bkT7L8TbkCUhpRSlGgVTcUDaBZHQJErr7Kq4pd1fZQoaAZoCWgPQwgN424QbRBwQJSGlFKUaBVNoQFoFkdAkS3hOLzf8HV9lChoBmgJaA9DCPPoRliUjnBAlIaUUpRoFU1UA2gWR0CRQjFh5PdmdX2UKGgGaAloD0MI/tR46abqcUCUhpRSlGgVTVEBaBZHQJFCmknCwbF1fZQoaAZoCWgPQwgqx2RxfxpzQJSGlFKUaBVNIAJoFkdAkUMd3GGVRnV9lChoBmgJaA9DCAVvSKOC2W5AlIaUUpRoFU0+AWgWR0CRRAvs7dSEdX2UKGgGaAloD0MI8fEJ2fkacECUhpRSlGgVTckDaBZHQJFFIPWhAW11fZQoaAZoCWgPQwiVfy2vHNRwQJSGlFKUaBVNbgNoFkdAkUV9zXBgu3V9lChoBmgJaA9DCDs6rkZ2YHBAlIaUUpRoFU2bAmgWR0CRRq/wRXfZdX2UKGgGaAloD0MIKuYg6GiAcUCUhpRSlGgVTSMBaBZHQJFMG5d4Vyp1fZQoaAZoCWgPQwjvjLYqiSVwQJSGlFKUaBVN6wJoFkdAkUzkLDye7XV9lChoBmgJaA9DCOl8eJYgxHBAlIaUUpRoFU0JAmgWR0CRTV4UN8VpdX2UKGgGaAloD0MICtgORmw7b0CUhpRSlGgVTSABaBZHQJFQJlZowmF1fZQoaAZoCWgPQwjvcDs0LJxtQJSGlFKUaBVNUAFoFkdAkVBV+EytWHV9lChoBmgJaA9DCO7QsBg1JXFAlIaUUpRoFU08A2gWR0CRUJpo9LYgdX2UKGgGaAloD0MIRbsKKT9GcECUhpRSlGgVTXwCaBZHQJFQmkP+XJJ1fZQoaAZoCWgPQwjkh0ojZqdwQJSGlFKUaBVNjgFoFkdAkVCtnwob43V9lChoBmgJaA9DCNejcD3KMHJAlIaUUpRoFU3aAmgWR0CRUYp84PwvdX2UKGgGaAloD0MIOZhNgGGFZkCUhpRSlGgVTegDaBZHQJFR7IZIg/11fZQoaAZoCWgPQwgwEW+d/xtwQJSGlFKUaBVNqwJoFkdAkVIBDgIhQnV9lChoBmgJaA9DCC4DzlKyenBAlIaUUpRoFU2HAmgWR0CRUxwbVBlddX2UKGgGaAloD0MIZ2FPO3zccECUhpRSlGgVTU8CaBZHQJFUANz8xbl1fZQoaAZoCWgPQwg5fqg04tBxQJSGlFKUaBVNHwFoFkdAkVd9Zq20A3V9lChoBmgJaA9DCCBEMuSYFHNAlIaUUpRoFU28AWgWR0CRWJ8mrsBydX2UKGgGaAloD0MIyqSGNoB9b0CUhpRSlGgVTTwBaBZHQJFY6nFYMfB1fZQoaAZoCWgPQwg49BYP7wxyQJSGlFKUaBVNCAFoFkdAkVkZhBqsVHV9lChoBmgJaA9DCE9Xdyy282RAlIaUUpRoFU3oA2gWR0CRWWNYbKigdX2UKGgGaAloD0MInKOOjqtEcUCUhpRSlGgVTVIBaBZHQJFZkrTYukF1fZQoaAZoCWgPQwhpqFFIcsFwQJSGlFKUaBVNOQFoFkdAkVpsw1zhgnV9lChoBmgJaA9DCGRd3EaDUXBAlIaUUpRoFU3oAmgWR0CRWvKji4rjdX2UKGgGaAloD0MIahfTTPdUbkCUhpRSlGgVTVwDaBZHQJFbVS0jTrp1fZQoaAZoCWgPQwiRmnYxTflwQJSGlFKUaBVNAgJoFkdAkVuoLofSyHV9lChoBmgJaA9DCOJcwwwN6HBAlIaUUpRoFU1VAmgWR0CRXY1UEPlNdX2UKGgGaAloD0MIcqjfha22b0CUhpRSlGgVTd4BaBZHQJFvDWcz68B1fZQoaAZoCWgPQwiPxwxUxpZuQJSGlFKUaBVNBQFoFkdAkXDx1X/5tXV9lChoBmgJaA9DCCSaQBELdG5AlIaUUpRoFU0EAmgWR0CRcpA5aNdadX2UKGgGaAloD0MI9iaG5GSxb0CUhpRSlGgVTakCaBZHQJF0W/mDDj11fZQoaAZoCWgPQwhSD9HoDs1tQJSGlFKUaBVNigFoFkdAkXV0tqYZ23V9lChoBmgJaA9DCGXDmsoiBG9AlIaUUpRoFU0+AmgWR0CRdiDu0CzUdX2UKGgGaAloD0MIVHQkl3+IbkCUhpRSlGgVTdkBaBZHQJF3A8p1A7h1fZQoaAZoCWgPQwjAlezYiPhrQJSGlFKUaBVNEwNoFkdAkXh5iI+GGnV9lChoBmgJaA9DCAZJn1ZRbHFAlIaUUpRoFU2MAWgWR0CReSa2WpqAdX2UKGgGaAloD0MIyEPf3Yq2ckCUhpRSlGgVTSUBaBZHQJF5MnE2pAF1fZQoaAZoCWgPQwi3fCQlPWFsQJSGlFKUaBVN3QFoFkdAkXlXRXwLE3V9lChoBmgJaA9DCOz3xDqVyHBAlIaUUpRoFU30AWgWR0CReqiUxEfDdX2UKGgGaAloD0MIlG3gDlQlcUCUhpRSlGgVTVUCaBZHQJF79Xko4Mp1fZQoaAZoCWgPQwjheanY2KpyQJSGlFKUaBVNJAJoFkdAkXy2yLQ5WHV9lChoBmgJaA9DCOZd9YA57HBAlIaUUpRoFU2mAmgWR0CRfoX1rZandX2UKGgGaAloD0MIouwt5bzlckCUhpRSlGgVTQoBaBZHQJF+j5Kvmo11fZQoaAZoCWgPQwhhUnx8wjpxQJSGlFKUaBVNeAFoFkdAkX+gYpDu0HV9lChoBmgJaA9DCKK3eHiPHHFAlIaUUpRoFU0tAWgWR0CRgX5FgDzRdX2UKGgGaAloD0MIuwopP2necECUhpRSlGgVTREDaBZHQJGDhfQa73B1fZQoaAZoCWgPQwhIqBlSBTJzQJSGlFKUaBVNdAFoFkdAkYQNSl3yJHV9lChoBmgJaA9DCCCaeXINDnFAlIaUUpRoFU2lAWgWR0CRhNWweNkwdX2UKGgGaAloD0MIvymsVJDscECUhpRSlGgVS/9oFkdAkYaD5ftx/HV9lChoBmgJaA9DCMy3Pqw3aHFAlIaUUpRoFU3kAWgWR0CRh1Kg7HQydX2UKGgGaAloD0MIqOUHrjJycECUhpRSlGgVTZcBaBZHQJGIT/tIClt1fZQoaAZoCWgPQwh1IVZ/RDFxQJSGlFKUaBVNNQFoFkdAkYk6YNRWLnV9lChoBmgJaA9DCHUhVn9Ex3BAlIaUUpRoFU0sA2gWR0CRij5DJEH/dX2UKGgGaAloD0MISPlJtc80b0CUhpRSlGgVTa4BaBZHQJGLtmFrVON1fZQoaAZoCWgPQwhwXpz46s9yQJSGlFKUaBVNDwFoFkdAkYw1ajesP3V9lChoBmgJaA9DCEzBGmdT8mJAlIaUUpRoFU3oA2gWR0CRjM/e+Eh8dX2UKGgGaAloD0MIBvTCnQs8bkCUhpRSlGgVTWgCaBZHQJGM3vWpZOl1fZQoaAZoCWgPQwiM8zehkNZwQJSGlFKUaBVNGANoFkdAkY0ZmNBF/nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV3QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVS9ob21lL3p6L0RPRC9EZWVwUkwvZW52L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFUvaG9tZS96ei9ET0QvRGVlcFJML2Vudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.0-20-amd64-x86_64-with-glibc2.31 # 1 SMP Debian 5.10.158-2 (2022-12-13)", "Python": "3.9.14", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}
|
ppo_lunar_landar.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:751ef0f7fbae06870833cab868eba4634f7340264ab4c74ac83b32bea86e038f
|
3 |
+
size 147501
|
ppo_lunar_landar/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo_lunar_landar/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f89736b5af0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f89736b5b80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f89736b5c10>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f89736b5ca0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f89736b5d30>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f89736b5dc0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f89736b5e50>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f89736b5ee0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f89736b5f70>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f89736b8040>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f89736b80d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f89736b8160>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f89736b65c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1678250480051653327,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWV3QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVS9ob21lL3p6L0RPRC9EZWVwUkwvZW52L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFUvaG9tZS96ei9ET0QvRGVlcFJML2Vudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZCLbwH24U/BuWjvF+fy77AYwo9yzQrPQAAAAAAAAAAGp+SvfaUFLqylWG64CXItdt8obmON4Q5AACAPwAAgD/NM4s8H0ePu/yisrrhRmg8HjLnvA2gSD0AAIA/AACAP7OiiL3aexI++hcEPgrMMb5xYwI76++4PQAAAAAAAAAAZrFJPXtCiLrKyUA5cSJSNHkwLTcQS1u4AACAPwAAgD9qD42+Ep4IP1OBVT7eOpe+8WRxvYZ8TbsAAAAAAAAAAE06ib2PbkG6k+t7OTxrlzTakJO42ziUuAAAgD8AAIA/zQMovZjTiz9q7Cu+5QPtvnhBJL0A1tW9AAAAAAAAAAANy6C9Ghy2Pwhwv76dZmi+QXyrvTwEEL4AAAAAAAAAAM37m73ttjQ/yodQvQUDt76Ppo29SRwBvAAAAAAAAAAAmqwZvSlATLpdgdi0kUPTr1wnpbqPyB40AACAPwAAgD/NHbY8KaBqujod1zn8oLA17jB1OW2d9LgAAIA/AACAPzOiBj5iKJM/eGGsPq++7L7//IQ+ZhgLPgAAAAAAAAAAmsXbO6e7lj6l7Ve+NAmgvrTaib3uPp+9AAAAAAAAAADNYj08Hy2UueBKCDwG2O61gFbquQs2+rQAAIA/AACAPzPnObz2yGG6tKQ2PCr1mTw3Wus6gbGFvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUwPN51xScECUhpRSlIwBbJRNZgGMAXSUR0CQ7uhgVoHtdX2UKGgGaAloD0MIKbSs+8cEb0CUhpRSlGgVTTQBaBZHQJDvATWXkYJ1fZQoaAZoCWgPQwiUowBRMARxQJSGlFKUaBVNjwFoFkdAkO8WvjfelHV9lChoBmgJaA9DCMfyrnoAiXBAlIaUUpRoFU0uAWgWR0CQ7zNG3F1kdX2UKGgGaAloD0MIBRcrarBgb0CUhpRSlGgVTVIBaBZHQJDvvvhIe5p1fZQoaAZoCWgPQwjBVZ5A2OdwQJSGlFKUaBVNBgFoFkdAkO/E1uR9w3V9lChoBmgJaA9DCHGsi9voVHFAlIaUUpRoFU1FAWgWR0CQ7+38GcFydX2UKGgGaAloD0MIJNBgUye2ckCUhpRSlGgVTe8CaBZHQJDwNDWsijd1fZQoaAZoCWgPQwhz8bc9QaRvQJSGlFKUaBVNPAFoFkdAkPCx5TqB3HV9lChoBmgJaA9DCDYEx2VcI2dAlIaUUpRoFU3oA2gWR0CQ8cWp6yB1dX2UKGgGaAloD0MInE8dq1QLcECUhpRSlGgVTZoBaBZHQJDx8ifQKKJ1fZQoaAZoCWgPQwhI36RpUM5vQJSGlFKUaBVNDwFoFkdAkPLIyCWeH3V9lChoBmgJaA9DCFYMVwdAOHJAlIaUUpRoFU24AWgWR0CQ80zTnaFmdX2UKGgGaAloD0MI3PEmvwXmcUCUhpRSlGgVTSIBaBZHQJD0VnOB19x1fZQoaAZoCWgPQwimDYelgcM2QJSGlFKUaBVL8GgWR0CQ9F+AmReUdX2UKGgGaAloD0MImZoEb0gmbkCUhpRSlGgVTRMBaBZHQJD1KLk0aZR1fZQoaAZoCWgPQwhcWg2J+/NwQJSGlFKUaBVNfwFoFkdAkPVPIsAeaXV9lChoBmgJaA9DCDvhJTi1ZHBAlIaUUpRoFU1OAWgWR0CRDYzSThYOdX2UKGgGaAloD0MITE9Y4oHJb0CUhpRSlGgVTYwBaBZHQJEPi8kD6nB1fZQoaAZoCWgPQwjg1t08VX9vQJSGlFKUaBVNnQFoFkdAkROL4vexfXV9lChoBmgJaA9DCLq8OVzrWXJAlIaUUpRoFU3fAWgWR0CRFBX4CZF5dX2UKGgGaAloD0MIRIoBEg0bcUCUhpRSlGgVTd8BaBZHQJEWLc580DV1fZQoaAZoCWgPQwgtJctJKDJuQJSGlFKUaBVNaAFoFkdAkRbVZkkKNXV9lChoBmgJaA9DCJTb9j1qQG5AlIaUUpRoFU1PAmgWR0CRFyldTo+wdX2UKGgGaAloD0MIbOun/6zQYkCUhpRSlGgVTegDaBZHQJEf/kcS5Ah1fZQoaAZoCWgPQwgtz4O7s6NtQJSGlFKUaBVNFAJoFkdAkSASnUDuB3V9lChoBmgJaA9DCAeWI2TgRnBAlIaUUpRoFU0UAWgWR0CRIIjnmq5tdX2UKGgGaAloD0MILh9JSU8ccECUhpRSlGgVTZEDaBZHQJEg9cv/R3N1fZQoaAZoCWgPQwgbnIh+bZRmQJSGlFKUaBVN6ANoFkdAkSPXUhFEzHV9lChoBmgJaA9DCM7GSswzkGdAlIaUUpRoFU3oA2gWR0CRJR+3H7xedX2UKGgGaAloD0MIRRMoYpHfcUCUhpRSlGgVTUsDaBZHQJEmsXAM2FZ1fZQoaAZoCWgPQwi8saAwaAlwQJSGlFKUaBVNGwJoFkdAkSj7x3FDOXV9lChoBmgJaA9DCMOAJVex2mNAlIaUUpRoFU3oA2gWR0CRKaUhmoR7dX2UKGgGaAloD0MI+x711yt7ZECUhpRSlGgVTegDaBZHQJEqV+6RQrN1fZQoaAZoCWgPQwgh6dMqOk1wQJSGlFKUaBVNIwNoFkdAkStMVpKzzHV9lChoBmgJaA9DCMh8QKAzVWJAlIaUUpRoFU3oA2gWR0CRK5zundftdX2UKGgGaAloD0MI8bkT7L8TbkCUhpRSlGgVTcUDaBZHQJErr7Kq4pd1fZQoaAZoCWgPQwgN424QbRBwQJSGlFKUaBVNoQFoFkdAkS3hOLzf8HV9lChoBmgJaA9DCPPoRliUjnBAlIaUUpRoFU1UA2gWR0CRQjFh5PdmdX2UKGgGaAloD0MI/tR46abqcUCUhpRSlGgVTVEBaBZHQJFCmknCwbF1fZQoaAZoCWgPQwgqx2RxfxpzQJSGlFKUaBVNIAJoFkdAkUMd3GGVRnV9lChoBmgJaA9DCAVvSKOC2W5AlIaUUpRoFU0+AWgWR0CRRAvs7dSEdX2UKGgGaAloD0MI8fEJ2fkacECUhpRSlGgVTckDaBZHQJFFIPWhAW11fZQoaAZoCWgPQwiVfy2vHNRwQJSGlFKUaBVNbgNoFkdAkUV9zXBgu3V9lChoBmgJaA9DCDs6rkZ2YHBAlIaUUpRoFU2bAmgWR0CRRq/wRXfZdX2UKGgGaAloD0MIKuYg6GiAcUCUhpRSlGgVTSMBaBZHQJFMG5d4Vyp1fZQoaAZoCWgPQwjvjLYqiSVwQJSGlFKUaBVN6wJoFkdAkUzkLDye7XV9lChoBmgJaA9DCOl8eJYgxHBAlIaUUpRoFU0JAmgWR0CRTV4UN8VpdX2UKGgGaAloD0MICtgORmw7b0CUhpRSlGgVTSABaBZHQJFQJlZowmF1fZQoaAZoCWgPQwjvcDs0LJxtQJSGlFKUaBVNUAFoFkdAkVBV+EytWHV9lChoBmgJaA9DCO7QsBg1JXFAlIaUUpRoFU08A2gWR0CRUJpo9LYgdX2UKGgGaAloD0MIRbsKKT9GcECUhpRSlGgVTXwCaBZHQJFQmkP+XJJ1fZQoaAZoCWgPQwjkh0ojZqdwQJSGlFKUaBVNjgFoFkdAkVCtnwob43V9lChoBmgJaA9DCNejcD3KMHJAlIaUUpRoFU3aAmgWR0CRUYp84PwvdX2UKGgGaAloD0MIOZhNgGGFZkCUhpRSlGgVTegDaBZHQJFR7IZIg/11fZQoaAZoCWgPQwgwEW+d/xtwQJSGlFKUaBVNqwJoFkdAkVIBDgIhQnV9lChoBmgJaA9DCC4DzlKyenBAlIaUUpRoFU2HAmgWR0CRUxwbVBlddX2UKGgGaAloD0MIZ2FPO3zccECUhpRSlGgVTU8CaBZHQJFUANz8xbl1fZQoaAZoCWgPQwg5fqg04tBxQJSGlFKUaBVNHwFoFkdAkVd9Zq20A3V9lChoBmgJaA9DCCBEMuSYFHNAlIaUUpRoFU28AWgWR0CRWJ8mrsBydX2UKGgGaAloD0MIyqSGNoB9b0CUhpRSlGgVTTwBaBZHQJFY6nFYMfB1fZQoaAZoCWgPQwg49BYP7wxyQJSGlFKUaBVNCAFoFkdAkVkZhBqsVHV9lChoBmgJaA9DCE9Xdyy282RAlIaUUpRoFU3oA2gWR0CRWWNYbKigdX2UKGgGaAloD0MInKOOjqtEcUCUhpRSlGgVTVIBaBZHQJFZkrTYukF1fZQoaAZoCWgPQwhpqFFIcsFwQJSGlFKUaBVNOQFoFkdAkVpsw1zhgnV9lChoBmgJaA9DCGRd3EaDUXBAlIaUUpRoFU3oAmgWR0CRWvKji4rjdX2UKGgGaAloD0MIahfTTPdUbkCUhpRSlGgVTVwDaBZHQJFbVS0jTrp1fZQoaAZoCWgPQwiRmnYxTflwQJSGlFKUaBVNAgJoFkdAkVuoLofSyHV9lChoBmgJaA9DCOJcwwwN6HBAlIaUUpRoFU1VAmgWR0CRXY1UEPlNdX2UKGgGaAloD0MIcqjfha22b0CUhpRSlGgVTd4BaBZHQJFvDWcz68B1fZQoaAZoCWgPQwiPxwxUxpZuQJSGlFKUaBVNBQFoFkdAkXDx1X/5tXV9lChoBmgJaA9DCCSaQBELdG5AlIaUUpRoFU0EAmgWR0CRcpA5aNdadX2UKGgGaAloD0MI9iaG5GSxb0CUhpRSlGgVTakCaBZHQJF0W/mDDj11fZQoaAZoCWgPQwhSD9HoDs1tQJSGlFKUaBVNigFoFkdAkXV0tqYZ23V9lChoBmgJaA9DCGXDmsoiBG9AlIaUUpRoFU0+AmgWR0CRdiDu0CzUdX2UKGgGaAloD0MIVHQkl3+IbkCUhpRSlGgVTdkBaBZHQJF3A8p1A7h1fZQoaAZoCWgPQwjAlezYiPhrQJSGlFKUaBVNEwNoFkdAkXh5iI+GGnV9lChoBmgJaA9DCAZJn1ZRbHFAlIaUUpRoFU2MAWgWR0CReSa2WpqAdX2UKGgGaAloD0MIyEPf3Yq2ckCUhpRSlGgVTSUBaBZHQJF5MnE2pAF1fZQoaAZoCWgPQwi3fCQlPWFsQJSGlFKUaBVN3QFoFkdAkXlXRXwLE3V9lChoBmgJaA9DCOz3xDqVyHBAlIaUUpRoFU30AWgWR0CReqiUxEfDdX2UKGgGaAloD0MIlG3gDlQlcUCUhpRSlGgVTVUCaBZHQJF79Xko4Mp1fZQoaAZoCWgPQwjheanY2KpyQJSGlFKUaBVNJAJoFkdAkXy2yLQ5WHV9lChoBmgJaA9DCOZd9YA57HBAlIaUUpRoFU2mAmgWR0CRfoX1rZandX2UKGgGaAloD0MIouwt5bzlckCUhpRSlGgVTQoBaBZHQJF+j5Kvmo11fZQoaAZoCWgPQwhhUnx8wjpxQJSGlFKUaBVNeAFoFkdAkX+gYpDu0HV9lChoBmgJaA9DCKK3eHiPHHFAlIaUUpRoFU0tAWgWR0CRgX5FgDzRdX2UKGgGaAloD0MIuwopP2necECUhpRSlGgVTREDaBZHQJGDhfQa73B1fZQoaAZoCWgPQwhIqBlSBTJzQJSGlFKUaBVNdAFoFkdAkYQNSl3yJHV9lChoBmgJaA9DCCCaeXINDnFAlIaUUpRoFU2lAWgWR0CRhNWweNkwdX2UKGgGaAloD0MIvymsVJDscECUhpRSlGgVS/9oFkdAkYaD5ftx/HV9lChoBmgJaA9DCMy3Pqw3aHFAlIaUUpRoFU3kAWgWR0CRh1Kg7HQydX2UKGgGaAloD0MIqOUHrjJycECUhpRSlGgVTZcBaBZHQJGIT/tIClt1fZQoaAZoCWgPQwh1IVZ/RDFxQJSGlFKUaBVNNQFoFkdAkYk6YNRWLnV9lChoBmgJaA9DCHUhVn9Ex3BAlIaUUpRoFU0sA2gWR0CRij5DJEH/dX2UKGgGaAloD0MISPlJtc80b0CUhpRSlGgVTa4BaBZHQJGLtmFrVON1fZQoaAZoCWgPQwhwXpz46s9yQJSGlFKUaBVNDwFoFkdAkYw1ajesP3V9lChoBmgJaA9DCEzBGmdT8mJAlIaUUpRoFU3oA2gWR0CRjM/e+Eh8dX2UKGgGaAloD0MIBvTCnQs8bkCUhpRSlGgVTWgCaBZHQJGM3vWpZOl1fZQoaAZoCWgPQwiM8zehkNZwQJSGlFKUaBVNGANoFkdAkY0ZmNBF/nVlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWV3QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVS9ob21lL3p6L0RPRC9EZWVwUkwvZW52L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFUvaG9tZS96ei9ET0QvRGVlcFJML2Vudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo_lunar_landar/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1244dcdfcde298d41f17a1939b2f4085fadb3aaceef03233497415a339c29a1e
|
3 |
+
size 87929
|
ppo_lunar_landar/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8fb379940f3509e588806cc33f707bdf700582dc072eb05e8b72cb4076354cc8
|
3 |
+
size 43393
|
ppo_lunar_landar/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo_lunar_landar/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.0-20-amd64-x86_64-with-glibc2.31 # 1 SMP Debian 5.10.158-2 (2022-12-13)
|
2 |
+
- Python: 3.9.14
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.2
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (221 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 271.52188371290174, "std_reward": 8.966989806913247, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-08T15:58:56.095302"}
|