zyoscovits
commited on
Commit
•
05f5a62
1
Parent(s):
26bf4c6
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -3.29 +/- 1.24
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:231b70d4cdc398c9a4aceec526269ed30fd2f2e305faa25ce5286ea01bfbce54
|
3 |
+
size 108023
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f41e966b160>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f41e9661d80>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1677096410055401429,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAdS3TPkcwY7zDhQQ/dS3TPkcwY7zDhQQ/dS3TPkcwY7zDhQQ/dS3TPkcwY7zDhQQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA03TQv2LSHz/hbpU/O1jVv/Nozz+gj60/+YYvv/IymT+Lf5E/u1IZPk4/pr+YCmY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB1LdM+RzBjvMOFBD8uBY88pyEYOjxrHjx1LdM+RzBjvMOFBD8uBY88pyEYOjxrHjx1LdM+RzBjvMOFBD8uBY88pyEYOjxrHjx1LdM+RzBjvMOFBD8uBY88pyEYOjxrHjyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.41245618 -0.01386649 0.51766604]\n [ 0.41245618 -0.01386649 0.51766604]\n [ 0.41245618 -0.01386649 0.51766604]\n [ 0.41245618 -0.01386649 0.51766604]]",
|
60 |
+
"desired_goal": "[[-1.6285652 0.62430394 1.1674463 ]\n [-1.6667551 1.6203903 1.3559456 ]\n [-0.68565327 1.1968672 1.1367048 ]\n [ 0.14972965 -1.2988069 0.22464979]]",
|
61 |
+
"observation": "[[ 0.41245618 -0.01386649 0.51766604 0.01745852 0.00058034 0.00966912]\n [ 0.41245618 -0.01386649 0.51766604 0.01745852 0.00058034 0.00966912]\n [ 0.41245618 -0.01386649 0.51766604 0.01745852 0.00058034 0.00966912]\n [ 0.41245618 -0.01386649 0.51766604 0.01745852 0.00058034 0.00966912]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQd7rO3lEKL0pKz8+HQW2ulqo9D27LNI81lylvaImob2KgZg92IiyvTT8jb07Zj4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.00719813 -0.04108093 0.18668808]\n [-0.0013887 0.11946173 0.02565609]\n [-0.08074348 -0.07868697 0.07446583]\n [-0.08717507 -0.0693287 0.18593685]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILSY2H9dmAMCUhpRSlIwBbJRLMowBdJRHQKe9sGgSOBF1fZQoaAZoCWgPQwiAuKtXkfEJwJSGlFKUaBVLMmgWR0CnvVNyPuG9dX2UKGgGaAloD0MIP5C8cyiD8r+UhpRSlGgVSzJoFkdAp7z+gezUqnV9lChoBmgJaA9DCI/9LJYiefq/lIaUUpRoFUsyaBZHQKe8qwyIpH91fZQoaAZoCWgPQwjG20qvzYb/v5SGlFKUaBVLMmgWR0Cnvq3UQTVUdX2UKGgGaAloD0MIAHFXryKj+r+UhpRSlGgVSzJoFkdAp75Q53kgfXV9lChoBmgJaA9DCCqRRC+jOAHAlIaUUpRoFUsyaBZHQKe9/DneSB91fZQoaAZoCWgPQwgbnl4py1ACwJSGlFKUaBVLMmgWR0CnvaiFsYVJdX2UKGgGaAloD0MINEksKXef/L+UhpRSlGgVSzJoFkdAp7/C4z7/GXV9lChoBmgJaA9DCApmTMEa5wvAlIaUUpRoFUsyaBZHQKe/ZeLvTgF1fZQoaAZoCWgPQwgo1xTI7MwLwJSGlFKUaBVLMmgWR0CnvxE9t/FzdX2UKGgGaAloD0MINufgmdDk/b+UhpRSlGgVSzJoFkdAp7693Ux20XV9lChoBmgJaA9DCDP7PEZ5xgHAlIaUUpRoFUsyaBZHQKfAwpT/ACZ1fZQoaAZoCWgPQwgmqUwxB8EKwJSGlFKUaBVLMmgWR0CnwGWOZLIxdX2UKGgGaAloD0MI5xcl6C+UD8CUhpRSlGgVSzJoFkdAp8AQ7kn1F3V9lChoBmgJaA9DCLvQXKeRFgTAlIaUUpRoFUsyaBZHQKe/vTvRZ2Z1fZQoaAZoCWgPQwhkWTDxR1EQwJSGlFKUaBVLMmgWR0CnwcueSSvDdX2UKGgGaAloD0MI1xLyQc9mA8CUhpRSlGgVSzJoFkdAp8Funfl6q3V9lChoBmgJaA9DCDl+qDRi5vu/lIaUUpRoFUsyaBZHQKfBGc9W6sh1fZQoaAZoCWgPQwhu2ozTEBXyv5SGlFKUaBVLMmgWR0CnwMaJAMUidX2UKGgGaAloD0MIaoZUUbwK+7+UhpRSlGgVSzJoFkdAp8LW05U96nV9lChoBmgJaA9DCGtkV1pGKgDAlIaUUpRoFUsyaBZHQKfCeeRPoFF1fZQoaAZoCWgPQwjdYKjDChcIwJSGlFKUaBVLMmgWR0CnwiVu76HkdX2UKGgGaAloD0MIjBNf7SjO/7+UhpRSlGgVSzJoFkdAp8HR51Ng0HV9lChoBmgJaA9DCLpnXaPl4AvAlIaUUpRoFUsyaBZHQKfD/ILgGbF1fZQoaAZoCWgPQwg1RuuoasILwJSGlFKUaBVLMmgWR0Cnw5+c6NlzdX2UKGgGaAloD0MIUDdQ4J1cAcCUhpRSlGgVSzJoFkdAp8NLAtWdVnV9lChoBmgJaA9DCOmdCrjn+f6/lIaUUpRoFUsyaBZHQKfC97SiM5x1fZQoaAZoCWgPQwj8HB8tzngIwJSGlFKUaBVLMmgWR0CnxQGDL8rJdX2UKGgGaAloD0MIxty1hHwwAMCUhpRSlGgVSzJoFkdAp8Skpobn5nV9lChoBmgJaA9DCGWPUDOkOhDAlIaUUpRoFUsyaBZHQKfET8Z1mrd1fZQoaAZoCWgPQwhqwvaTMV4EwJSGlFKUaBVLMmgWR0Cnw/yYXwb3dX2UKGgGaAloD0MINUQV/gwPAMCUhpRSlGgVSzJoFkdAp8YW78Nx2nV9lChoBmgJaA9DCJUMAFXcOPe/lIaUUpRoFUsyaBZHQKfFuecx0uF1fZQoaAZoCWgPQwgqi8Iuin4FwJSGlFKUaBVLMmgWR0CnxWVmSQo1dX2UKGgGaAloD0MIfhghPNp4+L+UhpRSlGgVSzJoFkdAp8USIvalDXV9lChoBmgJaA9DCGQEVDiCdAvAlIaUUpRoFUsyaBZHQKfHFS5RTCN1fZQoaAZoCWgPQwimuRXCamwDwJSGlFKUaBVLMmgWR0Cnxrf0dzXCdX2UKGgGaAloD0MIwy6KHvgYCcCUhpRSlGgVSzJoFkdAp8ZjSgGr0nV9lChoBmgJaA9DCKOP+YBA5/q/lIaUUpRoFUsyaBZHQKfGD6F/QSl1fZQoaAZoCWgPQwgvNNdppGUGwJSGlFKUaBVLMmgWR0CnyJa2nbZfdX2UKGgGaAloD0MI+3Q8ZqBSAcCUhpRSlGgVSzJoFkdAp8g59gF5fXV9lChoBmgJaA9DCGrdBrXfGgHAlIaUUpRoFUsyaBZHQKfH5exfOUt1fZQoaAZoCWgPQwgP1CmPbmQMwJSGlFKUaBVLMmgWR0Cnx5Nzr/sFdX2UKGgGaAloD0MIk45yMJtAAsCUhpRSlGgVSzJoFkdAp8o0BXCCSXV9lChoBmgJaA9DCJDaxMn9TgDAlIaUUpRoFUsyaBZHQKfJ15OafBh1fZQoaAZoCWgPQwguqdpugg8DwJSGlFKUaBVLMmgWR0CnyYNKRMewdX2UKGgGaAloD0MIBmSvd3+cBcCUhpRSlGgVSzJoFkdAp8kwxgy/K3V9lChoBmgJaA9DCME6jh8qTQLAlIaUUpRoFUsyaBZHQKfL0AjIJZ51fZQoaAZoCWgPQwj1ona/CvACwJSGlFKUaBVLMmgWR0Cny3OskpqidX2UKGgGaAloD0MIpPs5Bfk5CMCUhpRSlGgVSzJoFkdAp8sfLaEi+3V9lChoBmgJaA9DCG9GzVfJxwjAlIaUUpRoFUsyaBZHQKfKzIjnmq51fZQoaAZoCWgPQwj4xaUqbVEDwJSGlFKUaBVLMmgWR0CnzY+0ojOcdX2UKGgGaAloD0MIeAq5Us+CCcCUhpRSlGgVSzJoFkdAp80zlo11n3V9lChoBmgJaA9DCP+vOnKk8wHAlIaUUpRoFUsyaBZHQKfM34rz5Gl1fZQoaAZoCWgPQwjdsdgmFQ35v5SGlFKUaBVLMmgWR0CnzIz/hl19dX2UKGgGaAloD0MITODW3Tz1CsCUhpRSlGgVSzJoFkdAp89WPLgXM3V9lChoBmgJaA9DCJ30vvG1RxHAlIaUUpRoFUsyaBZHQKfO+j4593N1fZQoaAZoCWgPQwiTyD7IsqAAwJSGlFKUaBVLMmgWR0CnzqZUDMePdX2UKGgGaAloD0MIcqd0sP6vBcCUhpRSlGgVSzJoFkdAp85UC3gDR3V9lChoBmgJaA9DCJfiqrLvCgPAlIaUUpRoFUsyaBZHQKfRKmR/3Fl1fZQoaAZoCWgPQwgqb0c4LXj9v5SGlFKUaBVLMmgWR0Cn0M4+0PYndX2UKGgGaAloD0MIfv578NolCsCUhpRSlGgVSzJoFkdAp9B6fWcz7HV9lChoBmgJaA9DCPQY5ZmXowrAlIaUUpRoFUsyaBZHQKfQKCW/rSp1fZQoaAZoCWgPQwh0X85sV2jyv5SGlFKUaBVLMmgWR0Cn0nrteD3/dX2UKGgGaAloD0MIbhXEQNe+B8CUhpRSlGgVSzJoFkdAp9Id+ocaO3V9lChoBmgJaA9DCHhCrz+JDwrAlIaUUpRoFUsyaBZHQKfRyUhV2id1fZQoaAZoCWgPQwjtnjws1PoOwJSGlFKUaBVLMmgWR0Cn0XXGwRoRdX2UKGgGaAloD0MIqIx/n3Fh9b+UhpRSlGgVSzJoFkdAp9N/lGPPs3V9lChoBmgJaA9DCOBJC5dV2ALAlIaUUpRoFUsyaBZHQKfTIs4DLbJ1fZQoaAZoCWgPQwgcXDrmPCMDwJSGlFKUaBVLMmgWR0Cn0s4etCAudX2UKGgGaAloD0MILLZJRWOtBcCUhpRSlGgVSzJoFkdAp9J6i0v4/XV9lChoBmgJaA9DCNy8cVKYFwLAlIaUUpRoFUsyaBZHQKfUhAsTWXl1fZQoaAZoCWgPQwj2QgHbwWgFwJSGlFKUaBVLMmgWR0Cn1CcriEQHdX2UKGgGaAloD0MIfR8OEqI8/7+UhpRSlGgVSzJoFkdAp9PSc5Ke1HV9lChoBmgJaA9DCGB15EhnYAjAlIaUUpRoFUsyaBZHQKfTfyBkI5Z1fZQoaAZoCWgPQwjbTfBN0yf0v5SGlFKUaBVLMmgWR0Cn1YRSxZ+ydX2UKGgGaAloD0MIrI4c6QwsBcCUhpRSlGgVSzJoFkdAp9UnVI7NjnV9lChoBmgJaA9DCKSmXUwz3f+/lIaUUpRoFUsyaBZHQKfU0plSS/11fZQoaAZoCWgPQwg3/kRlw3oIwJSGlFKUaBVLMmgWR0Cn1H+JHiFTdX2UKGgGaAloD0MIj+Gxn8USAcCUhpRSlGgVSzJoFkdAp9aRdv863nV9lChoBmgJaA9DCIuk3ehjPgzAlIaUUpRoFUsyaBZHQKfWNG2Culp1fZQoaAZoCWgPQwh1kxgEVo4NwJSGlFKUaBVLMmgWR0Cn1d+5e7cxdX2UKGgGaAloD0MIt5vgm6bPAsCUhpRSlGgVSzJoFkdAp9WMUM5OrXV9lChoBmgJaA9DCKxyofKv5RTAlIaUUpRoFUsyaBZHQKfXnKJ2t+11fZQoaAZoCWgPQwiy9QzhmMUFwJSGlFKUaBVLMmgWR0Cn1z+aa1CxdX2UKGgGaAloD0MICTNt/8rqCsCUhpRSlGgVSzJoFkdAp9bq+BYms3V9lChoBmgJaA9DCLjM6bKYuAfAlIaUUpRoFUsyaBZHQKfWl3qRlpZ1fZQoaAZoCWgPQwi7RWCsb2AHwJSGlFKUaBVLMmgWR0Cn2KLmyPdVdX2UKGgGaAloD0MINlZinpVEEMCUhpRSlGgVSzJoFkdAp9hF1+y7gHV9lChoBmgJaA9DCOhoVUs6SgTAlIaUUpRoFUsyaBZHQKfX8R0U4711fZQoaAZoCWgPQwj/I9Oh0zP7v5SGlFKUaBVLMmgWR0Cn153HR1HOdX2UKGgGaAloD0MIAHMtWoCWFsCUhpRSlGgVSzJoFkdAp9mmKCQLeHV9lChoBmgJaA9DCACpTZzcvxDAlIaUUpRoFUsyaBZHQKfZSRZlnRN1fZQoaAZoCWgPQwi7mjxlNR34v5SGlFKUaBVLMmgWR0Cn2PQrc0tRdX2UKGgGaAloD0MIdEAS9u0EGMCUhpRSlGgVSzJoFkdAp9ig1JlJ6XV9lChoBmgJaA9DCJyjjo6rMRHAlIaUUpRoFUsyaBZHQKfatXUYsNF1fZQoaAZoCWgPQwj/rs+c9enyv5SGlFKUaBVLMmgWR0Cn2lh9Cu2adX2UKGgGaAloD0MIP+JXrOEyEcCUhpRSlGgVSzJoFkdAp9oDyhBZ6nV9lChoBmgJaA9DCLQ5zm3Cvf6/lIaUUpRoFUsyaBZHQKfZsGTLW7R1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7dee8cc5ef2c9a9104b3d703c0277a812cc58e68893550f5f987144a89ad1cd9
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b0437877df8e04d86e1c93e3dca09b7abf56292cfdf65fa8164691770a74c94
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f41e966b160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f41e9661d80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677096410055401429, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAdS3TPkcwY7zDhQQ/dS3TPkcwY7zDhQQ/dS3TPkcwY7zDhQQ/dS3TPkcwY7zDhQQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA03TQv2LSHz/hbpU/O1jVv/Nozz+gj60/+YYvv/IymT+Lf5E/u1IZPk4/pr+YCmY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB1LdM+RzBjvMOFBD8uBY88pyEYOjxrHjx1LdM+RzBjvMOFBD8uBY88pyEYOjxrHjx1LdM+RzBjvMOFBD8uBY88pyEYOjxrHjx1LdM+RzBjvMOFBD8uBY88pyEYOjxrHjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.41245618 -0.01386649 0.51766604]\n [ 0.41245618 -0.01386649 0.51766604]\n [ 0.41245618 -0.01386649 0.51766604]\n [ 0.41245618 -0.01386649 0.51766604]]", "desired_goal": "[[-1.6285652 0.62430394 1.1674463 ]\n [-1.6667551 1.6203903 1.3559456 ]\n [-0.68565327 1.1968672 1.1367048 ]\n [ 0.14972965 -1.2988069 0.22464979]]", "observation": "[[ 0.41245618 -0.01386649 0.51766604 0.01745852 0.00058034 0.00966912]\n [ 0.41245618 -0.01386649 0.51766604 0.01745852 0.00058034 0.00966912]\n [ 0.41245618 -0.01386649 0.51766604 0.01745852 0.00058034 0.00966912]\n [ 0.41245618 -0.01386649 0.51766604 0.01745852 0.00058034 0.00966912]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQd7rO3lEKL0pKz8+HQW2ulqo9D27LNI81lylvaImob2KgZg92IiyvTT8jb07Zj4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.00719813 -0.04108093 0.18668808]\n [-0.0013887 0.11946173 0.02565609]\n [-0.08074348 -0.07868697 0.07446583]\n [-0.08717507 -0.0693287 0.18593685]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILSY2H9dmAMCUhpRSlIwBbJRLMowBdJRHQKe9sGgSOBF1fZQoaAZoCWgPQwiAuKtXkfEJwJSGlFKUaBVLMmgWR0CnvVNyPuG9dX2UKGgGaAloD0MIP5C8cyiD8r+UhpRSlGgVSzJoFkdAp7z+gezUqnV9lChoBmgJaA9DCI/9LJYiefq/lIaUUpRoFUsyaBZHQKe8qwyIpH91fZQoaAZoCWgPQwjG20qvzYb/v5SGlFKUaBVLMmgWR0Cnvq3UQTVUdX2UKGgGaAloD0MIAHFXryKj+r+UhpRSlGgVSzJoFkdAp75Q53kgfXV9lChoBmgJaA9DCCqRRC+jOAHAlIaUUpRoFUsyaBZHQKe9/DneSB91fZQoaAZoCWgPQwgbnl4py1ACwJSGlFKUaBVLMmgWR0CnvaiFsYVJdX2UKGgGaAloD0MINEksKXef/L+UhpRSlGgVSzJoFkdAp7/C4z7/GXV9lChoBmgJaA9DCApmTMEa5wvAlIaUUpRoFUsyaBZHQKe/ZeLvTgF1fZQoaAZoCWgPQwgo1xTI7MwLwJSGlFKUaBVLMmgWR0CnvxE9t/FzdX2UKGgGaAloD0MINufgmdDk/b+UhpRSlGgVSzJoFkdAp7693Ux20XV9lChoBmgJaA9DCDP7PEZ5xgHAlIaUUpRoFUsyaBZHQKfAwpT/ACZ1fZQoaAZoCWgPQwgmqUwxB8EKwJSGlFKUaBVLMmgWR0CnwGWOZLIxdX2UKGgGaAloD0MI5xcl6C+UD8CUhpRSlGgVSzJoFkdAp8AQ7kn1F3V9lChoBmgJaA9DCLvQXKeRFgTAlIaUUpRoFUsyaBZHQKe/vTvRZ2Z1fZQoaAZoCWgPQwhkWTDxR1EQwJSGlFKUaBVLMmgWR0CnwcueSSvDdX2UKGgGaAloD0MI1xLyQc9mA8CUhpRSlGgVSzJoFkdAp8Funfl6q3V9lChoBmgJaA9DCDl+qDRi5vu/lIaUUpRoFUsyaBZHQKfBGc9W6sh1fZQoaAZoCWgPQwhu2ozTEBXyv5SGlFKUaBVLMmgWR0CnwMaJAMUidX2UKGgGaAloD0MIaoZUUbwK+7+UhpRSlGgVSzJoFkdAp8LW05U96nV9lChoBmgJaA9DCGtkV1pGKgDAlIaUUpRoFUsyaBZHQKfCeeRPoFF1fZQoaAZoCWgPQwjdYKjDChcIwJSGlFKUaBVLMmgWR0CnwiVu76HkdX2UKGgGaAloD0MIjBNf7SjO/7+UhpRSlGgVSzJoFkdAp8HR51Ng0HV9lChoBmgJaA9DCLpnXaPl4AvAlIaUUpRoFUsyaBZHQKfD/ILgGbF1fZQoaAZoCWgPQwg1RuuoasILwJSGlFKUaBVLMmgWR0Cnw5+c6NlzdX2UKGgGaAloD0MIUDdQ4J1cAcCUhpRSlGgVSzJoFkdAp8NLAtWdVnV9lChoBmgJaA9DCOmdCrjn+f6/lIaUUpRoFUsyaBZHQKfC97SiM5x1fZQoaAZoCWgPQwj8HB8tzngIwJSGlFKUaBVLMmgWR0CnxQGDL8rJdX2UKGgGaAloD0MIxty1hHwwAMCUhpRSlGgVSzJoFkdAp8Skpobn5nV9lChoBmgJaA9DCGWPUDOkOhDAlIaUUpRoFUsyaBZHQKfET8Z1mrd1fZQoaAZoCWgPQwhqwvaTMV4EwJSGlFKUaBVLMmgWR0Cnw/yYXwb3dX2UKGgGaAloD0MINUQV/gwPAMCUhpRSlGgVSzJoFkdAp8YW78Nx2nV9lChoBmgJaA9DCJUMAFXcOPe/lIaUUpRoFUsyaBZHQKfFuecx0uF1fZQoaAZoCWgPQwgqi8Iuin4FwJSGlFKUaBVLMmgWR0CnxWVmSQo1dX2UKGgGaAloD0MIfhghPNp4+L+UhpRSlGgVSzJoFkdAp8USIvalDXV9lChoBmgJaA9DCGQEVDiCdAvAlIaUUpRoFUsyaBZHQKfHFS5RTCN1fZQoaAZoCWgPQwimuRXCamwDwJSGlFKUaBVLMmgWR0Cnxrf0dzXCdX2UKGgGaAloD0MIwy6KHvgYCcCUhpRSlGgVSzJoFkdAp8ZjSgGr0nV9lChoBmgJaA9DCKOP+YBA5/q/lIaUUpRoFUsyaBZHQKfGD6F/QSl1fZQoaAZoCWgPQwgvNNdppGUGwJSGlFKUaBVLMmgWR0CnyJa2nbZfdX2UKGgGaAloD0MI+3Q8ZqBSAcCUhpRSlGgVSzJoFkdAp8g59gF5fXV9lChoBmgJaA9DCGrdBrXfGgHAlIaUUpRoFUsyaBZHQKfH5exfOUt1fZQoaAZoCWgPQwgP1CmPbmQMwJSGlFKUaBVLMmgWR0Cnx5Nzr/sFdX2UKGgGaAloD0MIk45yMJtAAsCUhpRSlGgVSzJoFkdAp8o0BXCCSXV9lChoBmgJaA9DCJDaxMn9TgDAlIaUUpRoFUsyaBZHQKfJ15OafBh1fZQoaAZoCWgPQwguqdpugg8DwJSGlFKUaBVLMmgWR0CnyYNKRMewdX2UKGgGaAloD0MIBmSvd3+cBcCUhpRSlGgVSzJoFkdAp8kwxgy/K3V9lChoBmgJaA9DCME6jh8qTQLAlIaUUpRoFUsyaBZHQKfL0AjIJZ51fZQoaAZoCWgPQwj1ona/CvACwJSGlFKUaBVLMmgWR0Cny3OskpqidX2UKGgGaAloD0MIpPs5Bfk5CMCUhpRSlGgVSzJoFkdAp8sfLaEi+3V9lChoBmgJaA9DCG9GzVfJxwjAlIaUUpRoFUsyaBZHQKfKzIjnmq51fZQoaAZoCWgPQwj4xaUqbVEDwJSGlFKUaBVLMmgWR0CnzY+0ojOcdX2UKGgGaAloD0MIeAq5Us+CCcCUhpRSlGgVSzJoFkdAp80zlo11n3V9lChoBmgJaA9DCP+vOnKk8wHAlIaUUpRoFUsyaBZHQKfM34rz5Gl1fZQoaAZoCWgPQwjdsdgmFQ35v5SGlFKUaBVLMmgWR0CnzIz/hl19dX2UKGgGaAloD0MITODW3Tz1CsCUhpRSlGgVSzJoFkdAp89WPLgXM3V9lChoBmgJaA9DCJ30vvG1RxHAlIaUUpRoFUsyaBZHQKfO+j4593N1fZQoaAZoCWgPQwiTyD7IsqAAwJSGlFKUaBVLMmgWR0CnzqZUDMePdX2UKGgGaAloD0MIcqd0sP6vBcCUhpRSlGgVSzJoFkdAp85UC3gDR3V9lChoBmgJaA9DCJfiqrLvCgPAlIaUUpRoFUsyaBZHQKfRKmR/3Fl1fZQoaAZoCWgPQwgqb0c4LXj9v5SGlFKUaBVLMmgWR0Cn0M4+0PYndX2UKGgGaAloD0MIfv578NolCsCUhpRSlGgVSzJoFkdAp9B6fWcz7HV9lChoBmgJaA9DCPQY5ZmXowrAlIaUUpRoFUsyaBZHQKfQKCW/rSp1fZQoaAZoCWgPQwh0X85sV2jyv5SGlFKUaBVLMmgWR0Cn0nrteD3/dX2UKGgGaAloD0MIbhXEQNe+B8CUhpRSlGgVSzJoFkdAp9Id+ocaO3V9lChoBmgJaA9DCHhCrz+JDwrAlIaUUpRoFUsyaBZHQKfRyUhV2id1fZQoaAZoCWgPQwjtnjws1PoOwJSGlFKUaBVLMmgWR0Cn0XXGwRoRdX2UKGgGaAloD0MIqIx/n3Fh9b+UhpRSlGgVSzJoFkdAp9N/lGPPs3V9lChoBmgJaA9DCOBJC5dV2ALAlIaUUpRoFUsyaBZHQKfTIs4DLbJ1fZQoaAZoCWgPQwgcXDrmPCMDwJSGlFKUaBVLMmgWR0Cn0s4etCAudX2UKGgGaAloD0MILLZJRWOtBcCUhpRSlGgVSzJoFkdAp9J6i0v4/XV9lChoBmgJaA9DCNy8cVKYFwLAlIaUUpRoFUsyaBZHQKfUhAsTWXl1fZQoaAZoCWgPQwj2QgHbwWgFwJSGlFKUaBVLMmgWR0Cn1CcriEQHdX2UKGgGaAloD0MIfR8OEqI8/7+UhpRSlGgVSzJoFkdAp9PSc5Ke1HV9lChoBmgJaA9DCGB15EhnYAjAlIaUUpRoFUsyaBZHQKfTfyBkI5Z1fZQoaAZoCWgPQwjbTfBN0yf0v5SGlFKUaBVLMmgWR0Cn1YRSxZ+ydX2UKGgGaAloD0MIrI4c6QwsBcCUhpRSlGgVSzJoFkdAp9UnVI7NjnV9lChoBmgJaA9DCKSmXUwz3f+/lIaUUpRoFUsyaBZHQKfU0plSS/11fZQoaAZoCWgPQwg3/kRlw3oIwJSGlFKUaBVLMmgWR0Cn1H+JHiFTdX2UKGgGaAloD0MIj+Gxn8USAcCUhpRSlGgVSzJoFkdAp9aRdv863nV9lChoBmgJaA9DCIuk3ehjPgzAlIaUUpRoFUsyaBZHQKfWNG2Culp1fZQoaAZoCWgPQwh1kxgEVo4NwJSGlFKUaBVLMmgWR0Cn1d+5e7cxdX2UKGgGaAloD0MIt5vgm6bPAsCUhpRSlGgVSzJoFkdAp9WMUM5OrXV9lChoBmgJaA9DCKxyofKv5RTAlIaUUpRoFUsyaBZHQKfXnKJ2t+11fZQoaAZoCWgPQwiy9QzhmMUFwJSGlFKUaBVLMmgWR0Cn1z+aa1CxdX2UKGgGaAloD0MICTNt/8rqCsCUhpRSlGgVSzJoFkdAp9bq+BYms3V9lChoBmgJaA9DCLjM6bKYuAfAlIaUUpRoFUsyaBZHQKfWl3qRlpZ1fZQoaAZoCWgPQwi7RWCsb2AHwJSGlFKUaBVLMmgWR0Cn2KLmyPdVdX2UKGgGaAloD0MINlZinpVEEMCUhpRSlGgVSzJoFkdAp9hF1+y7gHV9lChoBmgJaA9DCOhoVUs6SgTAlIaUUpRoFUsyaBZHQKfX8R0U4711fZQoaAZoCWgPQwj/I9Oh0zP7v5SGlFKUaBVLMmgWR0Cn153HR1HOdX2UKGgGaAloD0MIAHMtWoCWFsCUhpRSlGgVSzJoFkdAp9mmKCQLeHV9lChoBmgJaA9DCACpTZzcvxDAlIaUUpRoFUsyaBZHQKfZSRZlnRN1fZQoaAZoCWgPQwi7mjxlNR34v5SGlFKUaBVLMmgWR0Cn2PQrc0tRdX2UKGgGaAloD0MIdEAS9u0EGMCUhpRSlGgVSzJoFkdAp9ig1JlJ6XV9lChoBmgJaA9DCJyjjo6rMRHAlIaUUpRoFUsyaBZHQKfatXUYsNF1fZQoaAZoCWgPQwj/rs+c9enyv5SGlFKUaBVLMmgWR0Cn2lh9Cu2adX2UKGgGaAloD0MIP+JXrOEyEcCUhpRSlGgVSzJoFkdAp9oDyhBZ6nV9lChoBmgJaA9DCLQ5zm3Cvf6/lIaUUpRoFUsyaBZHQKfZsGTLW7R1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (484 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -3.2922056835144757, "std_reward": 1.2377221488760457, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-22T20:57:46.692424"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:822a88acf5a4a9cfa64300fd3bb5091722c83faff464d6bb6a8d7cb7623ff651
|
3 |
+
size 3056
|