zyoscovits commited on
Commit
7edda14
1 Parent(s): 3f0750c

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1320.99 +/- 509.55
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e2017072eda284fd8790906fdb89001ddccbf2a96f472055147bfb5d187d153
3
+ size 129256
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f41e96689d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f41e9668a60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f41e9668af0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f41e9668b80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f41e9668c10>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f41e9668ca0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f41e9668d30>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f41e9668dc0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f41e9668e50>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f41e9668ee0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f41e9668f70>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f41e966b040>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f41e9661ae0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1677092760898911498,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJd4Pz8/QyO/8HgEP59zTz1W3LU/SzWwvtxCIz7zaFk943ELP7FEF73QnFy/AFk2vA1xFT/X4oA/IJwWv/E6qT9icqY/AbOdvO02ub5KD1bAq71CvyR0AD9zEgs/aLxfPyebir/LZCs/QqoLwB5rZT8Haig/32skv9AcBD/69EE/kEucPgsoYj90RcU+ZYjuv1LyCj+FhJ+9bkhTv45B/D7JiIc+wwgKP7oYLz9F5cW8uZCgP3LLbL59Ong+vVgEP2Y3Sr9juo8+BQTXP049Db8nm4q/y2QrP1Ce6j4ea2U/+TYvPteYO79gM/g+9j2KP3VMJb97TKO9ZyQ+voXreL+BaAo/9P31vL65Xb+c8RA8UOHQvs22lj+Ol98+204MvgaAY75OiLQ/VIxhP4Q+cTkLHkW/6S+qv0luej+S3nY9J5uKv8tkKz9CqgvAqtSOv1BrHj/kBvW/HVk2v0UEQb7JFNU/2yClP/rIOD+T3nm/jAELP4qisLyZdHy/TszVvLj9AT4RDy4/ox5zvuGgC7/gIZ8//nqiPe4SXz8k1to+vkpNv/cVbz1GCPM+3wdiviebir/LZCs/QqoLwB5rZT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABj1KM0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAbWf8OwAAAABfcee/AAAAANxLEj4AAAAAHGDnPwAAAAD0YHq8AAAAAF+96z8AAAAACh/ePQAAAAARGgDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoOavtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgN9jVj0AAAAAs+vcvwAAAACtbo29AAAAAL1S4z8AAAAANg/7vQAAAABAwfc/AAAAAL4Do7wAAAAANIXxvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIQ11TUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBZgZQ9AAAAAMe5578AAAAA3EWtvQAAAACd4eU/AAAAAF8O6T0AAAAAvXH2PwAAAABLAPK9AAAAAKau/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADPd222AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAlSZMvAAAAACdNvG/AAAAAHnKD74AAAAA2lj6PwAAAAA7Ska9AAAAAMRi7z8AAAAAiNOWvAAAAACU4N2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJqFv0qYqoaMAWyUTegDjAF0lEdAqpGrkZJkG3V9lChoBkdAmqVbm+0w8GgHTegDaAhHQKqV74sVclh1fZQoaAZHQJJdf+rELploB03oA2gIR0CqmUQg9vCNdX2UKGgGR8AmnzvJA+pwaAdLrmgIR0CqnI4KpkwwdX2UKGgGR0Cbk2Pl+3H8aAdN6ANoCEdAqqFos7MgU3V9lChoBkdAmzliiudPL2gHTegDaAhHQKqhdALRa5h1fZQoaAZHQI3Bg5PuXu5oB03oA2gIR0CqpNpwsGxEdX2UKGgGR0CNytpBX0XhaAdN6ANoCEdAqqkmo5xR23V9lChoBkdAbAM1baAWi2gHTWoBaAhHQKqth/p+tr91fZQoaAZHQJd9Ju5z5oJoB03oA2gIR0CqrZa7NB4VdX2UKGgGR0COJMYyfthNaAdN6ANoCEdAqq2k7r9l3HV9lChoBkdAk4hjlT3qRmgHTegDaAhHQKqxAih37k51fZQoaAZHQJrRD7bcoH9oB03oA2gIR0CqvQyNn5BUdX2UKGgGR0CXwYv4M4LkaAdN6ANoCEdAqr0bYh+vyXV9lChoBkdAklTOl41P32gHTegDaAhHQKq9JeBxxT91fZQoaAZHQJUkzpRoAXFoB03oA2gIR0CqwIv2oNutdX2UKGgGR0CaCXD8LrooaAdN6ANoCEdAqskkbvPTonV9lChoBkdAlBJsxKxs22gHTegDaAhHQKrJMmO2iL51fZQoaAZHQJbLg7YChexoB03oA2gIR0CqyTzj/+85dX2UKGgGR0Casbb2USqVaAdN6ANoCEdAqsyhcAzYVnV9lChoBkdAlJ9GaYu01WgHTegDaAhHQKrX+L3K0Up1fZQoaAZHQJBLP8KohpxoB03oA2gIR0Cq2A/642CNdX2UKGgGR0CZV0bqhUR4aAdN6ANoCEdAqtggnv2GqXV9lChoBkdAlii8ZgogFGgHTegDaAhHQKrcIJqIrOJ1fZQoaAZHQJjgeaJAMUhoB03oA2gIR0Cq5LdmYjSodX2UKGgGR0CUQAJMxoIwaAdN6ANoCEdAquTFnqVyFXV9lChoBkdAkhER5HEuQWgHTegDaAhHQKrk0HlfZ291fZQoaAZHQJhxbL3bmEJoB03oA2gIR0Cq6DVaW5YpdX2UKGgGR0BiUO/5+H8CaAdN6ANoCEdAqvIahFmWdHV9lChoBkdAlgpxyKekHmgHTegDaAhHQKryLytmthd1fZQoaAZHQJKhkmTkhidoB03oA2gIR0Cq8j4Ny5qedX2UKGgGR0CaxXwAU+LWaAdN6ANoCEdAqvd0b5uZTnV9lChoBkdAhizRPGhmG2gHTegDaAhHQKsATz1bqyJ1fZQoaAZHQJGrtQ53kghoB03oA2gIR0CrAF6UA1ejdX2UKGgGR0CWFrf3vhIfaAdN6ANoCEdAqwBpFVktmXV9lChoBkdAi8e0rkKeCmgHTegDaAhHQKsDz+5OJtV1fZQoaAZHQJGxTbDdgv1oB03oA2gIR0CrDH2R7qptdX2UKGgGR0CZ2/caOxSpaAdN6ANoCEdAqwyTxPO6d3V9lChoBkdAlJF8Jlar3mgHTegDaAhHQKsMouoxYaJ1fZQoaAZHQI9MwNiH6/JoB03oA2gIR0CrEXhd+ocadX2UKGgGR0CW/YkNFz+4aAdN6ANoCEdAqx0Ue2d/a3V9lChoBkdAlh3fze40/GgHTegDaAhHQKsdKerdWQx1fZQoaAZHQJh27Hq/ub9oB03oA2gIR0CrHTkRjBl+dX2UKGgGR0CYMFyfthNNaAdN6ANoCEdAqyJoWgvlEXV9lChoBkdAkXNueOGTLWgHTegDaAhHQKsrZ+lTFVF1fZQoaAZHQJJpBYkmhM9oB03oA2gIR0CrK4ITPBzndX2UKGgGR0CNSPRQ79ycaAdN6ANoCEdAqyuS2x6fJ3V9lChoBkdAk2N9deIEbGgHTegDaAhHQKswpaufVZt1fZQoaAZHQJAmmXBxgiNoB03oA2gIR0CrOuQb+98JdX2UKGgGR0CP6T25hBqsaAdN6ANoCEdAqzrx7b+LnHV9lChoBkdAkz0w+UyHmGgHTegDaAhHQKs6/JcPe551fZQoaAZHQJJmFY2bXpZoB03oA2gIR0CrPl/nfVI7dX2UKGgGR0CSn/dyT6i1aAdN6ANoCEdAq0cUJng5znV9lChoBkdAk+b/OMVDbGgHTegDaAhHQKtHI/ATIvJ1fZQoaAZHQJEl9iExqO9oB03oA2gIR0CrRy974SHudX2UKGgGR0CVJ9hAGB4EaAdN6ANoCEdAq0tQ9HMEBHV9lChoBkdAkh13okiUxGgHTegDaAhHQKtWsfseGPB1fZQoaAZHQJEpATsY2sJoB03oA2gIR0CrVsALy+YddX2UKGgGR0CQbct5le4TaAdN6ANoCEdAq1bLbSJCSnV9lChoBkdAkdeeS8rZrmgHTegDaAhHQKtaMI7/4qR1fZQoaAZHQJDskVN5+phoB03oA2gIR0CrYslgMMJAdX2UKGgGR0CSmz3RXwLFaAdN6ANoCEdAq2LZEpiI+HV9lChoBkdAkfMstCiRGWgHTegDaAhHQKti45Xlr/N1fZQoaAZHQJGpAtjCpFVoB03oA2gIR0CrZisUh3aBdX2UKGgGR0CTZjNMXaakaAdN6ANoCEdAq3I8/B3zMHV9lChoBkdAjMaxdY4hlmgHTegDaAhHQKtySsgdOqN1fZQoaAZHQJbc18gIQe5oB03oA2gIR0CrclVwo9cKdX2UKGgGR0CSBDNS619faAdN6ANoCEdAq3W9pXZGrnV9lChoBkdAkfN2L9/BnGgHTegDaAhHQKt+ZKnvUjN1fZQoaAZHQI1G/Z7HAARoB03oA2gIR0CrfnOD8LrpdX2UKGgGR0CTNdmE4//vaAdN6ANoCEdAq35/zUZvUHV9lChoBkdAkvQTMzMzM2gHTegDaAhHQKuB9eqJdjZ1fZQoaAZHwGiW1CPZIxxoB03oA2gIR0CrjTt9ph4MdX2UKGgGR0CSvJyMkyDaaAdN6ANoCEdAq41SOWBz3nV9lChoBkdAkEy6AFxGUmgHTegDaAhHQKuNZLHuJDV1fZQoaAZHQJFPyJAMUh5oB03oA2gIR0Crkb/UnXumdX2UKGgGR0CQVRv3rUsnaAdN6ANoCEdAq5peFQEZBXV9lChoBkdAkv9MKgIyCWgHTegDaAhHQKuabG8274B1fZQoaAZHQJHfOQmu1WtoB03oA2gIR0CrmndQ40djdX2UKGgGR0CQZnYO2AoYaAdN6ANoCEdAq53J7mdRSHV9lChoBkdATcDWuoxYaGgHTegDaAhHQKunpXr+o991fZQoaAZHQJTd0RpUPxxoB03oA2gIR0Crp7niWE9MdX2UKGgGR0CQl1aQ3gk1aAdN6ANoCEdAq6fOeDnNgXV9lChoBkdAkjn3o9s7+2gHTegDaAhHQKus/XZGrjp1fZQoaAZHQJYNGuyNXHRoB03oA2gIR0CrtjrwvxpddX2UKGgGR0CSYZEDQqqfaAdN6ANoCEdAq7ZIwCbMHXV9lChoBkdAkfiYY3vQW2gHTegDaAhHQKu2U7QLNOd1fZQoaAZHQI/n0PQOWjZoB03oA2gIR0CrubmZ/kNndX2UKGgGR0CUiGBHCoCNaAdN6ANoCEdAq8LC4jKPn3V9lChoBkdAj6/DGkvboWgHTegDaAhHQKvC2uLaVUx1fZQoaAZHQJTWZpWV/tpoB03oA2gIR0Crwuybx3FDdX2UKGgGR0CTAr/MW43FaAdN6ANoCEdAq8fiPsAvMHV9lChoBkdAmC8yvxH5J2gHTegDaAhHQKvSeBU70Wd1fZQoaAZHQJhA/YRNATtoB03oA2gIR0Cr0oYYJmdzdX2UKGgGR0CX8p7Lt/nXaAdN6ANoCEdAq9KQt+TePHV9lChoBkdAmJx0+s5n12gHTegDaAhHQKvV+dvKlpJ1fZQoaAZHQJdwQL6UJOZoB03oA2gIR0Cr3odcry2AdX2UKGgGR0CYKaQwK0D2aAdN6ANoCEdAq96WEZiuuHV9lChoBkdAk8RiBkI5YGgHTegDaAhHQKveoHxBmf51fZQoaAZHQJgYLCZWq95oB03oA2gIR0Cr4m0YsNDudWUu"
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05d598f49a5840e28121db6baac0726632c170689ac4ea67722be6a694df18f4
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52837f5ee2ef55d044b119a5db543230ae082b241729d3693f85deb7700952ec
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f41e96689d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f41e9668a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f41e9668af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f41e9668b80>", "_build": "<function ActorCriticPolicy._build at 0x7f41e9668c10>", "forward": "<function ActorCriticPolicy.forward at 0x7f41e9668ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f41e9668d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f41e9668dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f41e9668e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f41e9668ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f41e9668f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f41e966b040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f41e9661ae0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677092760898911498, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJd4Pz8/QyO/8HgEP59zTz1W3LU/SzWwvtxCIz7zaFk943ELP7FEF73QnFy/AFk2vA1xFT/X4oA/IJwWv/E6qT9icqY/AbOdvO02ub5KD1bAq71CvyR0AD9zEgs/aLxfPyebir/LZCs/QqoLwB5rZT8Haig/32skv9AcBD/69EE/kEucPgsoYj90RcU+ZYjuv1LyCj+FhJ+9bkhTv45B/D7JiIc+wwgKP7oYLz9F5cW8uZCgP3LLbL59Ong+vVgEP2Y3Sr9juo8+BQTXP049Db8nm4q/y2QrP1Ce6j4ea2U/+TYvPteYO79gM/g+9j2KP3VMJb97TKO9ZyQ+voXreL+BaAo/9P31vL65Xb+c8RA8UOHQvs22lj+Ol98+204MvgaAY75OiLQ/VIxhP4Q+cTkLHkW/6S+qv0luej+S3nY9J5uKv8tkKz9CqgvAqtSOv1BrHj/kBvW/HVk2v0UEQb7JFNU/2yClP/rIOD+T3nm/jAELP4qisLyZdHy/TszVvLj9AT4RDy4/ox5zvuGgC7/gIZ8//nqiPe4SXz8k1to+vkpNv/cVbz1GCPM+3wdiviebir/LZCs/QqoLwB5rZT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABj1KM0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAbWf8OwAAAABfcee/AAAAANxLEj4AAAAAHGDnPwAAAAD0YHq8AAAAAF+96z8AAAAACh/ePQAAAAARGgDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoOavtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgN9jVj0AAAAAs+vcvwAAAACtbo29AAAAAL1S4z8AAAAANg/7vQAAAABAwfc/AAAAAL4Do7wAAAAANIXxvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIQ11TUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBZgZQ9AAAAAMe5578AAAAA3EWtvQAAAACd4eU/AAAAAF8O6T0AAAAAvXH2PwAAAABLAPK9AAAAAKau/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADPd222AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAlSZMvAAAAACdNvG/AAAAAHnKD74AAAAA2lj6PwAAAAA7Ska9AAAAAMRi7z8AAAAAiNOWvAAAAACU4N2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJqFv0qYqoaMAWyUTegDjAF0lEdAqpGrkZJkG3V9lChoBkdAmqVbm+0w8GgHTegDaAhHQKqV74sVclh1fZQoaAZHQJJdf+rELploB03oA2gIR0CqmUQg9vCNdX2UKGgGR8AmnzvJA+pwaAdLrmgIR0CqnI4KpkwwdX2UKGgGR0Cbk2Pl+3H8aAdN6ANoCEdAqqFos7MgU3V9lChoBkdAmzliiudPL2gHTegDaAhHQKqhdALRa5h1fZQoaAZHQI3Bg5PuXu5oB03oA2gIR0CqpNpwsGxEdX2UKGgGR0CNytpBX0XhaAdN6ANoCEdAqqkmo5xR23V9lChoBkdAbAM1baAWi2gHTWoBaAhHQKqth/p+tr91fZQoaAZHQJd9Ju5z5oJoB03oA2gIR0CqrZa7NB4VdX2UKGgGR0COJMYyfthNaAdN6ANoCEdAqq2k7r9l3HV9lChoBkdAk4hjlT3qRmgHTegDaAhHQKqxAih37k51fZQoaAZHQJrRD7bcoH9oB03oA2gIR0CqvQyNn5BUdX2UKGgGR0CXwYv4M4LkaAdN6ANoCEdAqr0bYh+vyXV9lChoBkdAklTOl41P32gHTegDaAhHQKq9JeBxxT91fZQoaAZHQJUkzpRoAXFoB03oA2gIR0CqwIv2oNutdX2UKGgGR0CaCXD8LrooaAdN6ANoCEdAqskkbvPTonV9lChoBkdAlBJsxKxs22gHTegDaAhHQKrJMmO2iL51fZQoaAZHQJbLg7YChexoB03oA2gIR0CqyTzj/+85dX2UKGgGR0Casbb2USqVaAdN6ANoCEdAqsyhcAzYVnV9lChoBkdAlJ9GaYu01WgHTegDaAhHQKrX+L3K0Up1fZQoaAZHQJBLP8KohpxoB03oA2gIR0Cq2A/642CNdX2UKGgGR0CZV0bqhUR4aAdN6ANoCEdAqtggnv2GqXV9lChoBkdAlii8ZgogFGgHTegDaAhHQKrcIJqIrOJ1fZQoaAZHQJjgeaJAMUhoB03oA2gIR0Cq5LdmYjSodX2UKGgGR0CUQAJMxoIwaAdN6ANoCEdAquTFnqVyFXV9lChoBkdAkhER5HEuQWgHTegDaAhHQKrk0HlfZ291fZQoaAZHQJhxbL3bmEJoB03oA2gIR0Cq6DVaW5YpdX2UKGgGR0BiUO/5+H8CaAdN6ANoCEdAqvIahFmWdHV9lChoBkdAlgpxyKekHmgHTegDaAhHQKryLytmthd1fZQoaAZHQJKhkmTkhidoB03oA2gIR0Cq8j4Ny5qedX2UKGgGR0CaxXwAU+LWaAdN6ANoCEdAqvd0b5uZTnV9lChoBkdAhizRPGhmG2gHTegDaAhHQKsATz1bqyJ1fZQoaAZHQJGrtQ53kghoB03oA2gIR0CrAF6UA1ejdX2UKGgGR0CWFrf3vhIfaAdN6ANoCEdAqwBpFVktmXV9lChoBkdAi8e0rkKeCmgHTegDaAhHQKsDz+5OJtV1fZQoaAZHQJGxTbDdgv1oB03oA2gIR0CrDH2R7qptdX2UKGgGR0CZ2/caOxSpaAdN6ANoCEdAqwyTxPO6d3V9lChoBkdAlJF8Jlar3mgHTegDaAhHQKsMouoxYaJ1fZQoaAZHQI9MwNiH6/JoB03oA2gIR0CrEXhd+ocadX2UKGgGR0CW/YkNFz+4aAdN6ANoCEdAqx0Ue2d/a3V9lChoBkdAlh3fze40/GgHTegDaAhHQKsdKerdWQx1fZQoaAZHQJh27Hq/ub9oB03oA2gIR0CrHTkRjBl+dX2UKGgGR0CYMFyfthNNaAdN6ANoCEdAqyJoWgvlEXV9lChoBkdAkXNueOGTLWgHTegDaAhHQKsrZ+lTFVF1fZQoaAZHQJJpBYkmhM9oB03oA2gIR0CrK4ITPBzndX2UKGgGR0CNSPRQ79ycaAdN6ANoCEdAqyuS2x6fJ3V9lChoBkdAk2N9deIEbGgHTegDaAhHQKswpaufVZt1fZQoaAZHQJAmmXBxgiNoB03oA2gIR0CrOuQb+98JdX2UKGgGR0CP6T25hBqsaAdN6ANoCEdAqzrx7b+LnHV9lChoBkdAkz0w+UyHmGgHTegDaAhHQKs6/JcPe551fZQoaAZHQJJmFY2bXpZoB03oA2gIR0CrPl/nfVI7dX2UKGgGR0CSn/dyT6i1aAdN6ANoCEdAq0cUJng5znV9lChoBkdAk+b/OMVDbGgHTegDaAhHQKtHI/ATIvJ1fZQoaAZHQJEl9iExqO9oB03oA2gIR0CrRy974SHudX2UKGgGR0CVJ9hAGB4EaAdN6ANoCEdAq0tQ9HMEBHV9lChoBkdAkh13okiUxGgHTegDaAhHQKtWsfseGPB1fZQoaAZHQJEpATsY2sJoB03oA2gIR0CrVsALy+YddX2UKGgGR0CQbct5le4TaAdN6ANoCEdAq1bLbSJCSnV9lChoBkdAkdeeS8rZrmgHTegDaAhHQKtaMI7/4qR1fZQoaAZHQJDskVN5+phoB03oA2gIR0CrYslgMMJAdX2UKGgGR0CSmz3RXwLFaAdN6ANoCEdAq2LZEpiI+HV9lChoBkdAkfMstCiRGWgHTegDaAhHQKti45Xlr/N1fZQoaAZHQJGpAtjCpFVoB03oA2gIR0CrZisUh3aBdX2UKGgGR0CTZjNMXaakaAdN6ANoCEdAq3I8/B3zMHV9lChoBkdAjMaxdY4hlmgHTegDaAhHQKtySsgdOqN1fZQoaAZHQJbc18gIQe5oB03oA2gIR0CrclVwo9cKdX2UKGgGR0CSBDNS619faAdN6ANoCEdAq3W9pXZGrnV9lChoBkdAkfN2L9/BnGgHTegDaAhHQKt+ZKnvUjN1fZQoaAZHQI1G/Z7HAARoB03oA2gIR0CrfnOD8LrpdX2UKGgGR0CTNdmE4//vaAdN6ANoCEdAq35/zUZvUHV9lChoBkdAkvQTMzMzM2gHTegDaAhHQKuB9eqJdjZ1fZQoaAZHwGiW1CPZIxxoB03oA2gIR0CrjTt9ph4MdX2UKGgGR0CSvJyMkyDaaAdN6ANoCEdAq41SOWBz3nV9lChoBkdAkEy6AFxGUmgHTegDaAhHQKuNZLHuJDV1fZQoaAZHQJFPyJAMUh5oB03oA2gIR0Crkb/UnXumdX2UKGgGR0CQVRv3rUsnaAdN6ANoCEdAq5peFQEZBXV9lChoBkdAkv9MKgIyCWgHTegDaAhHQKuabG8274B1fZQoaAZHQJHfOQmu1WtoB03oA2gIR0CrmndQ40djdX2UKGgGR0CQZnYO2AoYaAdN6ANoCEdAq53J7mdRSHV9lChoBkdATcDWuoxYaGgHTegDaAhHQKunpXr+o991fZQoaAZHQJTd0RpUPxxoB03oA2gIR0Crp7niWE9MdX2UKGgGR0CQl1aQ3gk1aAdN6ANoCEdAq6fOeDnNgXV9lChoBkdAkjn3o9s7+2gHTegDaAhHQKus/XZGrjp1fZQoaAZHQJYNGuyNXHRoB03oA2gIR0CrtjrwvxpddX2UKGgGR0CSYZEDQqqfaAdN6ANoCEdAq7ZIwCbMHXV9lChoBkdAkfiYY3vQW2gHTegDaAhHQKu2U7QLNOd1fZQoaAZHQI/n0PQOWjZoB03oA2gIR0CrubmZ/kNndX2UKGgGR0CUiGBHCoCNaAdN6ANoCEdAq8LC4jKPn3V9lChoBkdAj6/DGkvboWgHTegDaAhHQKvC2uLaVUx1fZQoaAZHQJTWZpWV/tpoB03oA2gIR0Crwuybx3FDdX2UKGgGR0CTAr/MW43FaAdN6ANoCEdAq8fiPsAvMHV9lChoBkdAmC8yvxH5J2gHTegDaAhHQKvSeBU70Wd1fZQoaAZHQJhA/YRNATtoB03oA2gIR0Cr0oYYJmdzdX2UKGgGR0CX8p7Lt/nXaAdN6ANoCEdAq9KQt+TePHV9lChoBkdAmJx0+s5n12gHTegDaAhHQKvV+dvKlpJ1fZQoaAZHQJdwQL6UJOZoB03oA2gIR0Cr3odcry2AdX2UKGgGR0CYKaQwK0D2aAdN6ANoCEdAq96WEZiuuHV9lChoBkdAk8RiBkI5YGgHTegDaAhHQKveoHxBmf51fZQoaAZHQJgYLCZWq95oB03oA2gIR0Cr4m0YsNDudWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37fba6fa95df334e5105181853d47c0fbfc419e15e0ca35bd022068c1bd836d3
3
+ size 1139390
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1320.9851492059443, "std_reward": 509.5450109702923, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-22T20:06:03.517136"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b81e411aaccdda6f7ff8edb958f4bd00604611d46330c434db6134c6ebef4ebb
3
+ size 2136