zyoscovits
commited on
Commit
•
7edda14
1
Parent(s):
3f0750c
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1320.99 +/- 509.55
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e2017072eda284fd8790906fdb89001ddccbf2a96f472055147bfb5d187d153
|
3 |
+
size 129256
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f41e96689d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f41e9668a60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f41e9668af0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f41e9668b80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f41e9668c10>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f41e9668ca0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f41e9668d30>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f41e9668dc0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f41e9668e50>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f41e9668ee0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f41e9668f70>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f41e966b040>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f41e9661ae0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1677092760898911498,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJd4Pz8/QyO/8HgEP59zTz1W3LU/SzWwvtxCIz7zaFk943ELP7FEF73QnFy/AFk2vA1xFT/X4oA/IJwWv/E6qT9icqY/AbOdvO02ub5KD1bAq71CvyR0AD9zEgs/aLxfPyebir/LZCs/QqoLwB5rZT8Haig/32skv9AcBD/69EE/kEucPgsoYj90RcU+ZYjuv1LyCj+FhJ+9bkhTv45B/D7JiIc+wwgKP7oYLz9F5cW8uZCgP3LLbL59Ong+vVgEP2Y3Sr9juo8+BQTXP049Db8nm4q/y2QrP1Ce6j4ea2U/+TYvPteYO79gM/g+9j2KP3VMJb97TKO9ZyQ+voXreL+BaAo/9P31vL65Xb+c8RA8UOHQvs22lj+Ol98+204MvgaAY75OiLQ/VIxhP4Q+cTkLHkW/6S+qv0luej+S3nY9J5uKv8tkKz9CqgvAqtSOv1BrHj/kBvW/HVk2v0UEQb7JFNU/2yClP/rIOD+T3nm/jAELP4qisLyZdHy/TszVvLj9AT4RDy4/ox5zvuGgC7/gIZ8//nqiPe4SXz8k1to+vkpNv/cVbz1GCPM+3wdiviebir/LZCs/QqoLwB5rZT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABj1KM0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAbWf8OwAAAABfcee/AAAAANxLEj4AAAAAHGDnPwAAAAD0YHq8AAAAAF+96z8AAAAACh/ePQAAAAARGgDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoOavtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgN9jVj0AAAAAs+vcvwAAAACtbo29AAAAAL1S4z8AAAAANg/7vQAAAABAwfc/AAAAAL4Do7wAAAAANIXxvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIQ11TUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBZgZQ9AAAAAMe5578AAAAA3EWtvQAAAACd4eU/AAAAAF8O6T0AAAAAvXH2PwAAAABLAPK9AAAAAKau/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADPd222AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAlSZMvAAAAACdNvG/AAAAAHnKD74AAAAA2lj6PwAAAAA7Ska9AAAAAMRi7z8AAAAAiNOWvAAAAACU4N2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJqFv0qYqoaMAWyUTegDjAF0lEdAqpGrkZJkG3V9lChoBkdAmqVbm+0w8GgHTegDaAhHQKqV74sVclh1fZQoaAZHQJJdf+rELploB03oA2gIR0CqmUQg9vCNdX2UKGgGR8AmnzvJA+pwaAdLrmgIR0CqnI4KpkwwdX2UKGgGR0Cbk2Pl+3H8aAdN6ANoCEdAqqFos7MgU3V9lChoBkdAmzliiudPL2gHTegDaAhHQKqhdALRa5h1fZQoaAZHQI3Bg5PuXu5oB03oA2gIR0CqpNpwsGxEdX2UKGgGR0CNytpBX0XhaAdN6ANoCEdAqqkmo5xR23V9lChoBkdAbAM1baAWi2gHTWoBaAhHQKqth/p+tr91fZQoaAZHQJd9Ju5z5oJoB03oA2gIR0CqrZa7NB4VdX2UKGgGR0COJMYyfthNaAdN6ANoCEdAqq2k7r9l3HV9lChoBkdAk4hjlT3qRmgHTegDaAhHQKqxAih37k51fZQoaAZHQJrRD7bcoH9oB03oA2gIR0CqvQyNn5BUdX2UKGgGR0CXwYv4M4LkaAdN6ANoCEdAqr0bYh+vyXV9lChoBkdAklTOl41P32gHTegDaAhHQKq9JeBxxT91fZQoaAZHQJUkzpRoAXFoB03oA2gIR0CqwIv2oNutdX2UKGgGR0CaCXD8LrooaAdN6ANoCEdAqskkbvPTonV9lChoBkdAlBJsxKxs22gHTegDaAhHQKrJMmO2iL51fZQoaAZHQJbLg7YChexoB03oA2gIR0CqyTzj/+85dX2UKGgGR0Casbb2USqVaAdN6ANoCEdAqsyhcAzYVnV9lChoBkdAlJ9GaYu01WgHTegDaAhHQKrX+L3K0Up1fZQoaAZHQJBLP8KohpxoB03oA2gIR0Cq2A/642CNdX2UKGgGR0CZV0bqhUR4aAdN6ANoCEdAqtggnv2GqXV9lChoBkdAlii8ZgogFGgHTegDaAhHQKrcIJqIrOJ1fZQoaAZHQJjgeaJAMUhoB03oA2gIR0Cq5LdmYjSodX2UKGgGR0CUQAJMxoIwaAdN6ANoCEdAquTFnqVyFXV9lChoBkdAkhER5HEuQWgHTegDaAhHQKrk0HlfZ291fZQoaAZHQJhxbL3bmEJoB03oA2gIR0Cq6DVaW5YpdX2UKGgGR0BiUO/5+H8CaAdN6ANoCEdAqvIahFmWdHV9lChoBkdAlgpxyKekHmgHTegDaAhHQKryLytmthd1fZQoaAZHQJKhkmTkhidoB03oA2gIR0Cq8j4Ny5qedX2UKGgGR0CaxXwAU+LWaAdN6ANoCEdAqvd0b5uZTnV9lChoBkdAhizRPGhmG2gHTegDaAhHQKsATz1bqyJ1fZQoaAZHQJGrtQ53kghoB03oA2gIR0CrAF6UA1ejdX2UKGgGR0CWFrf3vhIfaAdN6ANoCEdAqwBpFVktmXV9lChoBkdAi8e0rkKeCmgHTegDaAhHQKsDz+5OJtV1fZQoaAZHQJGxTbDdgv1oB03oA2gIR0CrDH2R7qptdX2UKGgGR0CZ2/caOxSpaAdN6ANoCEdAqwyTxPO6d3V9lChoBkdAlJF8Jlar3mgHTegDaAhHQKsMouoxYaJ1fZQoaAZHQI9MwNiH6/JoB03oA2gIR0CrEXhd+ocadX2UKGgGR0CW/YkNFz+4aAdN6ANoCEdAqx0Ue2d/a3V9lChoBkdAlh3fze40/GgHTegDaAhHQKsdKerdWQx1fZQoaAZHQJh27Hq/ub9oB03oA2gIR0CrHTkRjBl+dX2UKGgGR0CYMFyfthNNaAdN6ANoCEdAqyJoWgvlEXV9lChoBkdAkXNueOGTLWgHTegDaAhHQKsrZ+lTFVF1fZQoaAZHQJJpBYkmhM9oB03oA2gIR0CrK4ITPBzndX2UKGgGR0CNSPRQ79ycaAdN6ANoCEdAqyuS2x6fJ3V9lChoBkdAk2N9deIEbGgHTegDaAhHQKswpaufVZt1fZQoaAZHQJAmmXBxgiNoB03oA2gIR0CrOuQb+98JdX2UKGgGR0CP6T25hBqsaAdN6ANoCEdAqzrx7b+LnHV9lChoBkdAkz0w+UyHmGgHTegDaAhHQKs6/JcPe551fZQoaAZHQJJmFY2bXpZoB03oA2gIR0CrPl/nfVI7dX2UKGgGR0CSn/dyT6i1aAdN6ANoCEdAq0cUJng5znV9lChoBkdAk+b/OMVDbGgHTegDaAhHQKtHI/ATIvJ1fZQoaAZHQJEl9iExqO9oB03oA2gIR0CrRy974SHudX2UKGgGR0CVJ9hAGB4EaAdN6ANoCEdAq0tQ9HMEBHV9lChoBkdAkh13okiUxGgHTegDaAhHQKtWsfseGPB1fZQoaAZHQJEpATsY2sJoB03oA2gIR0CrVsALy+YddX2UKGgGR0CQbct5le4TaAdN6ANoCEdAq1bLbSJCSnV9lChoBkdAkdeeS8rZrmgHTegDaAhHQKtaMI7/4qR1fZQoaAZHQJDskVN5+phoB03oA2gIR0CrYslgMMJAdX2UKGgGR0CSmz3RXwLFaAdN6ANoCEdAq2LZEpiI+HV9lChoBkdAkfMstCiRGWgHTegDaAhHQKti45Xlr/N1fZQoaAZHQJGpAtjCpFVoB03oA2gIR0CrZisUh3aBdX2UKGgGR0CTZjNMXaakaAdN6ANoCEdAq3I8/B3zMHV9lChoBkdAjMaxdY4hlmgHTegDaAhHQKtySsgdOqN1fZQoaAZHQJbc18gIQe5oB03oA2gIR0CrclVwo9cKdX2UKGgGR0CSBDNS619faAdN6ANoCEdAq3W9pXZGrnV9lChoBkdAkfN2L9/BnGgHTegDaAhHQKt+ZKnvUjN1fZQoaAZHQI1G/Z7HAARoB03oA2gIR0CrfnOD8LrpdX2UKGgGR0CTNdmE4//vaAdN6ANoCEdAq35/zUZvUHV9lChoBkdAkvQTMzMzM2gHTegDaAhHQKuB9eqJdjZ1fZQoaAZHwGiW1CPZIxxoB03oA2gIR0CrjTt9ph4MdX2UKGgGR0CSvJyMkyDaaAdN6ANoCEdAq41SOWBz3nV9lChoBkdAkEy6AFxGUmgHTegDaAhHQKuNZLHuJDV1fZQoaAZHQJFPyJAMUh5oB03oA2gIR0Crkb/UnXumdX2UKGgGR0CQVRv3rUsnaAdN6ANoCEdAq5peFQEZBXV9lChoBkdAkv9MKgIyCWgHTegDaAhHQKuabG8274B1fZQoaAZHQJHfOQmu1WtoB03oA2gIR0CrmndQ40djdX2UKGgGR0CQZnYO2AoYaAdN6ANoCEdAq53J7mdRSHV9lChoBkdATcDWuoxYaGgHTegDaAhHQKunpXr+o991fZQoaAZHQJTd0RpUPxxoB03oA2gIR0Crp7niWE9MdX2UKGgGR0CQl1aQ3gk1aAdN6ANoCEdAq6fOeDnNgXV9lChoBkdAkjn3o9s7+2gHTegDaAhHQKus/XZGrjp1fZQoaAZHQJYNGuyNXHRoB03oA2gIR0CrtjrwvxpddX2UKGgGR0CSYZEDQqqfaAdN6ANoCEdAq7ZIwCbMHXV9lChoBkdAkfiYY3vQW2gHTegDaAhHQKu2U7QLNOd1fZQoaAZHQI/n0PQOWjZoB03oA2gIR0CrubmZ/kNndX2UKGgGR0CUiGBHCoCNaAdN6ANoCEdAq8LC4jKPn3V9lChoBkdAj6/DGkvboWgHTegDaAhHQKvC2uLaVUx1fZQoaAZHQJTWZpWV/tpoB03oA2gIR0Crwuybx3FDdX2UKGgGR0CTAr/MW43FaAdN6ANoCEdAq8fiPsAvMHV9lChoBkdAmC8yvxH5J2gHTegDaAhHQKvSeBU70Wd1fZQoaAZHQJhA/YRNATtoB03oA2gIR0Cr0oYYJmdzdX2UKGgGR0CX8p7Lt/nXaAdN6ANoCEdAq9KQt+TePHV9lChoBkdAmJx0+s5n12gHTegDaAhHQKvV+dvKlpJ1fZQoaAZHQJdwQL6UJOZoB03oA2gIR0Cr3odcry2AdX2UKGgGR0CYKaQwK0D2aAdN6ANoCEdAq96WEZiuuHV9lChoBkdAk8RiBkI5YGgHTegDaAhHQKveoHxBmf51fZQoaAZHQJgYLCZWq95oB03oA2gIR0Cr4m0YsNDudWUu"
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05d598f49a5840e28121db6baac0726632c170689ac4ea67722be6a694df18f4
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:52837f5ee2ef55d044b119a5db543230ae082b241729d3693f85deb7700952ec
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f41e96689d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f41e9668a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f41e9668af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f41e9668b80>", "_build": "<function ActorCriticPolicy._build at 0x7f41e9668c10>", "forward": "<function ActorCriticPolicy.forward at 0x7f41e9668ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f41e9668d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f41e9668dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f41e9668e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f41e9668ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f41e9668f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f41e966b040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f41e9661ae0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677092760898911498, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJd4Pz8/QyO/8HgEP59zTz1W3LU/SzWwvtxCIz7zaFk943ELP7FEF73QnFy/AFk2vA1xFT/X4oA/IJwWv/E6qT9icqY/AbOdvO02ub5KD1bAq71CvyR0AD9zEgs/aLxfPyebir/LZCs/QqoLwB5rZT8Haig/32skv9AcBD/69EE/kEucPgsoYj90RcU+ZYjuv1LyCj+FhJ+9bkhTv45B/D7JiIc+wwgKP7oYLz9F5cW8uZCgP3LLbL59Ong+vVgEP2Y3Sr9juo8+BQTXP049Db8nm4q/y2QrP1Ce6j4ea2U/+TYvPteYO79gM/g+9j2KP3VMJb97TKO9ZyQ+voXreL+BaAo/9P31vL65Xb+c8RA8UOHQvs22lj+Ol98+204MvgaAY75OiLQ/VIxhP4Q+cTkLHkW/6S+qv0luej+S3nY9J5uKv8tkKz9CqgvAqtSOv1BrHj/kBvW/HVk2v0UEQb7JFNU/2yClP/rIOD+T3nm/jAELP4qisLyZdHy/TszVvLj9AT4RDy4/ox5zvuGgC7/gIZ8//nqiPe4SXz8k1to+vkpNv/cVbz1GCPM+3wdiviebir/LZCs/QqoLwB5rZT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABj1KM0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAbWf8OwAAAABfcee/AAAAANxLEj4AAAAAHGDnPwAAAAD0YHq8AAAAAF+96z8AAAAACh/ePQAAAAARGgDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoOavtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgN9jVj0AAAAAs+vcvwAAAACtbo29AAAAAL1S4z8AAAAANg/7vQAAAABAwfc/AAAAAL4Do7wAAAAANIXxvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIQ11TUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBZgZQ9AAAAAMe5578AAAAA3EWtvQAAAACd4eU/AAAAAF8O6T0AAAAAvXH2PwAAAABLAPK9AAAAAKau/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADPd222AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAlSZMvAAAAACdNvG/AAAAAHnKD74AAAAA2lj6PwAAAAA7Ska9AAAAAMRi7z8AAAAAiNOWvAAAAACU4N2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJqFv0qYqoaMAWyUTegDjAF0lEdAqpGrkZJkG3V9lChoBkdAmqVbm+0w8GgHTegDaAhHQKqV74sVclh1fZQoaAZHQJJdf+rELploB03oA2gIR0CqmUQg9vCNdX2UKGgGR8AmnzvJA+pwaAdLrmgIR0CqnI4KpkwwdX2UKGgGR0Cbk2Pl+3H8aAdN6ANoCEdAqqFos7MgU3V9lChoBkdAmzliiudPL2gHTegDaAhHQKqhdALRa5h1fZQoaAZHQI3Bg5PuXu5oB03oA2gIR0CqpNpwsGxEdX2UKGgGR0CNytpBX0XhaAdN6ANoCEdAqqkmo5xR23V9lChoBkdAbAM1baAWi2gHTWoBaAhHQKqth/p+tr91fZQoaAZHQJd9Ju5z5oJoB03oA2gIR0CqrZa7NB4VdX2UKGgGR0COJMYyfthNaAdN6ANoCEdAqq2k7r9l3HV9lChoBkdAk4hjlT3qRmgHTegDaAhHQKqxAih37k51fZQoaAZHQJrRD7bcoH9oB03oA2gIR0CqvQyNn5BUdX2UKGgGR0CXwYv4M4LkaAdN6ANoCEdAqr0bYh+vyXV9lChoBkdAklTOl41P32gHTegDaAhHQKq9JeBxxT91fZQoaAZHQJUkzpRoAXFoB03oA2gIR0CqwIv2oNutdX2UKGgGR0CaCXD8LrooaAdN6ANoCEdAqskkbvPTonV9lChoBkdAlBJsxKxs22gHTegDaAhHQKrJMmO2iL51fZQoaAZHQJbLg7YChexoB03oA2gIR0CqyTzj/+85dX2UKGgGR0Casbb2USqVaAdN6ANoCEdAqsyhcAzYVnV9lChoBkdAlJ9GaYu01WgHTegDaAhHQKrX+L3K0Up1fZQoaAZHQJBLP8KohpxoB03oA2gIR0Cq2A/642CNdX2UKGgGR0CZV0bqhUR4aAdN6ANoCEdAqtggnv2GqXV9lChoBkdAlii8ZgogFGgHTegDaAhHQKrcIJqIrOJ1fZQoaAZHQJjgeaJAMUhoB03oA2gIR0Cq5LdmYjSodX2UKGgGR0CUQAJMxoIwaAdN6ANoCEdAquTFnqVyFXV9lChoBkdAkhER5HEuQWgHTegDaAhHQKrk0HlfZ291fZQoaAZHQJhxbL3bmEJoB03oA2gIR0Cq6DVaW5YpdX2UKGgGR0BiUO/5+H8CaAdN6ANoCEdAqvIahFmWdHV9lChoBkdAlgpxyKekHmgHTegDaAhHQKryLytmthd1fZQoaAZHQJKhkmTkhidoB03oA2gIR0Cq8j4Ny5qedX2UKGgGR0CaxXwAU+LWaAdN6ANoCEdAqvd0b5uZTnV9lChoBkdAhizRPGhmG2gHTegDaAhHQKsATz1bqyJ1fZQoaAZHQJGrtQ53kghoB03oA2gIR0CrAF6UA1ejdX2UKGgGR0CWFrf3vhIfaAdN6ANoCEdAqwBpFVktmXV9lChoBkdAi8e0rkKeCmgHTegDaAhHQKsDz+5OJtV1fZQoaAZHQJGxTbDdgv1oB03oA2gIR0CrDH2R7qptdX2UKGgGR0CZ2/caOxSpaAdN6ANoCEdAqwyTxPO6d3V9lChoBkdAlJF8Jlar3mgHTegDaAhHQKsMouoxYaJ1fZQoaAZHQI9MwNiH6/JoB03oA2gIR0CrEXhd+ocadX2UKGgGR0CW/YkNFz+4aAdN6ANoCEdAqx0Ue2d/a3V9lChoBkdAlh3fze40/GgHTegDaAhHQKsdKerdWQx1fZQoaAZHQJh27Hq/ub9oB03oA2gIR0CrHTkRjBl+dX2UKGgGR0CYMFyfthNNaAdN6ANoCEdAqyJoWgvlEXV9lChoBkdAkXNueOGTLWgHTegDaAhHQKsrZ+lTFVF1fZQoaAZHQJJpBYkmhM9oB03oA2gIR0CrK4ITPBzndX2UKGgGR0CNSPRQ79ycaAdN6ANoCEdAqyuS2x6fJ3V9lChoBkdAk2N9deIEbGgHTegDaAhHQKswpaufVZt1fZQoaAZHQJAmmXBxgiNoB03oA2gIR0CrOuQb+98JdX2UKGgGR0CP6T25hBqsaAdN6ANoCEdAqzrx7b+LnHV9lChoBkdAkz0w+UyHmGgHTegDaAhHQKs6/JcPe551fZQoaAZHQJJmFY2bXpZoB03oA2gIR0CrPl/nfVI7dX2UKGgGR0CSn/dyT6i1aAdN6ANoCEdAq0cUJng5znV9lChoBkdAk+b/OMVDbGgHTegDaAhHQKtHI/ATIvJ1fZQoaAZHQJEl9iExqO9oB03oA2gIR0CrRy974SHudX2UKGgGR0CVJ9hAGB4EaAdN6ANoCEdAq0tQ9HMEBHV9lChoBkdAkh13okiUxGgHTegDaAhHQKtWsfseGPB1fZQoaAZHQJEpATsY2sJoB03oA2gIR0CrVsALy+YddX2UKGgGR0CQbct5le4TaAdN6ANoCEdAq1bLbSJCSnV9lChoBkdAkdeeS8rZrmgHTegDaAhHQKtaMI7/4qR1fZQoaAZHQJDskVN5+phoB03oA2gIR0CrYslgMMJAdX2UKGgGR0CSmz3RXwLFaAdN6ANoCEdAq2LZEpiI+HV9lChoBkdAkfMstCiRGWgHTegDaAhHQKti45Xlr/N1fZQoaAZHQJGpAtjCpFVoB03oA2gIR0CrZisUh3aBdX2UKGgGR0CTZjNMXaakaAdN6ANoCEdAq3I8/B3zMHV9lChoBkdAjMaxdY4hlmgHTegDaAhHQKtySsgdOqN1fZQoaAZHQJbc18gIQe5oB03oA2gIR0CrclVwo9cKdX2UKGgGR0CSBDNS619faAdN6ANoCEdAq3W9pXZGrnV9lChoBkdAkfN2L9/BnGgHTegDaAhHQKt+ZKnvUjN1fZQoaAZHQI1G/Z7HAARoB03oA2gIR0CrfnOD8LrpdX2UKGgGR0CTNdmE4//vaAdN6ANoCEdAq35/zUZvUHV9lChoBkdAkvQTMzMzM2gHTegDaAhHQKuB9eqJdjZ1fZQoaAZHwGiW1CPZIxxoB03oA2gIR0CrjTt9ph4MdX2UKGgGR0CSvJyMkyDaaAdN6ANoCEdAq41SOWBz3nV9lChoBkdAkEy6AFxGUmgHTegDaAhHQKuNZLHuJDV1fZQoaAZHQJFPyJAMUh5oB03oA2gIR0Crkb/UnXumdX2UKGgGR0CQVRv3rUsnaAdN6ANoCEdAq5peFQEZBXV9lChoBkdAkv9MKgIyCWgHTegDaAhHQKuabG8274B1fZQoaAZHQJHfOQmu1WtoB03oA2gIR0CrmndQ40djdX2UKGgGR0CQZnYO2AoYaAdN6ANoCEdAq53J7mdRSHV9lChoBkdATcDWuoxYaGgHTegDaAhHQKunpXr+o991fZQoaAZHQJTd0RpUPxxoB03oA2gIR0Crp7niWE9MdX2UKGgGR0CQl1aQ3gk1aAdN6ANoCEdAq6fOeDnNgXV9lChoBkdAkjn3o9s7+2gHTegDaAhHQKus/XZGrjp1fZQoaAZHQJYNGuyNXHRoB03oA2gIR0CrtjrwvxpddX2UKGgGR0CSYZEDQqqfaAdN6ANoCEdAq7ZIwCbMHXV9lChoBkdAkfiYY3vQW2gHTegDaAhHQKu2U7QLNOd1fZQoaAZHQI/n0PQOWjZoB03oA2gIR0CrubmZ/kNndX2UKGgGR0CUiGBHCoCNaAdN6ANoCEdAq8LC4jKPn3V9lChoBkdAj6/DGkvboWgHTegDaAhHQKvC2uLaVUx1fZQoaAZHQJTWZpWV/tpoB03oA2gIR0Crwuybx3FDdX2UKGgGR0CTAr/MW43FaAdN6ANoCEdAq8fiPsAvMHV9lChoBkdAmC8yvxH5J2gHTegDaAhHQKvSeBU70Wd1fZQoaAZHQJhA/YRNATtoB03oA2gIR0Cr0oYYJmdzdX2UKGgGR0CX8p7Lt/nXaAdN6ANoCEdAq9KQt+TePHV9lChoBkdAmJx0+s5n12gHTegDaAhHQKvV+dvKlpJ1fZQoaAZHQJdwQL6UJOZoB03oA2gIR0Cr3odcry2AdX2UKGgGR0CYKaQwK0D2aAdN6ANoCEdAq96WEZiuuHV9lChoBkdAk8RiBkI5YGgHTegDaAhHQKveoHxBmf51fZQoaAZHQJgYLCZWq95oB03oA2gIR0Cr4m0YsNDudWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37fba6fa95df334e5105181853d47c0fbfc419e15e0ca35bd022068c1bd836d3
|
3 |
+
size 1139390
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1320.9851492059443, "std_reward": 509.5450109702923, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-22T20:06:03.517136"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b81e411aaccdda6f7ff8edb958f4bd00604611d46330c434db6134c6ebef4ebb
|
3 |
+
size 2136
|