zwt123home123 commited on
Commit
a762929
1 Parent(s): c0ddce6

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "lmsys/vicuna-7b-v1.5",
3
+ "architectures": [
4
+ "LlavaLlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 4096,
13
+ "image_aspect_ratio": "pad",
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 11008,
16
+ "max_position_embeddings": 4096,
17
+ "mm_hidden_size": 1024,
18
+ "mm_patch_merge_type": "flat",
19
+ "mm_projector_lr": null,
20
+ "mm_projector_type": "mlp2x_gelu",
21
+ "mm_use_im_patch_token": false,
22
+ "mm_use_im_start_end": false,
23
+ "mm_vision_select_feature": "patch",
24
+ "mm_vision_select_layer": -2,
25
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
26
+ "model_type": "llava_llama",
27
+ "num_attention_heads": 32,
28
+ "num_hidden_layers": 32,
29
+ "num_key_value_heads": 32,
30
+ "pad_token_id": 0,
31
+ "pretraining_tp": 1,
32
+ "rms_norm_eps": 1e-05,
33
+ "rope_scaling": null,
34
+ "rope_theta": 10000.0,
35
+ "tie_word_embeddings": false,
36
+ "tokenizer_model_max_length": 1560,
37
+ "tokenizer_padding_side": "right",
38
+ "torch_dtype": "bfloat16",
39
+ "transformers_version": "4.36.2",
40
+ "tune_mm_mlp_adapter": false,
41
+ "use_cache": true,
42
+ "use_mm_proj": true,
43
+ "vocab_size": 32000,
44
+ "attncut_w": 5,
45
+ "layercut_num": 16,
46
+ "headcut_num": 16,
47
+ "mlpcut_ratio": 4,
48
+ "sprompt_len": 35
49
+ }
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99a95ba7c5c6b6e20541000daf94864242cfa6d5574232324145033e9f72d341
3
+ size 4938985352
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ce5ba04c1346143c9efe0534a7a44908f8df1fdaa5330b3bad9106314d12b5f
3
+ size 4947390880
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6258bd3b23bea76f41eb33284e1b44cb94fe9bcc4b9d3e8368817ee0fdcd70cf
3
+ size 4239524944
model.safetensors.index.json ADDED
@@ -0,0 +1,693 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 14125805568
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
296
+ "model.mm_projector.0.bias": "model-00003-of-00003.safetensors",
297
+ "model.mm_projector.0.weight": "model-00003-of-00003.safetensors",
298
+ "model.mm_projector.2.bias": "model-00003-of-00003.safetensors",
299
+ "model.mm_projector.2.weight": "model-00003-of-00003.safetensors",
300
+ "model.norm.weight": "model-00003-of-00003.safetensors",
301
+ "model.vision_tower.vision_tower.vision_model.embeddings.class_embedding": "model-00003-of-00003.safetensors",
302
+ "model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00003-of-00003.safetensors",
303
+ "model.vision_tower.vision_tower.vision_model.embeddings.position_embedding.weight": "model-00003-of-00003.safetensors",
304
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00003-of-00003.safetensors",
305
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00003-of-00003.safetensors",
306
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00003-of-00003.safetensors",
307
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00003-of-00003.safetensors",
308
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00003-of-00003.safetensors",
309
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00003-of-00003.safetensors",
310
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00003-of-00003.safetensors",
311
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00003-of-00003.safetensors",
312
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
313
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
314
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
315
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
316
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
317
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
318
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
319
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
320
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00003-of-00003.safetensors",
321
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00003-of-00003.safetensors",
322
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00003-of-00003.safetensors",
323
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00003-of-00003.safetensors",
324
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00003-of-00003.safetensors",
325
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00003-of-00003.safetensors",
326
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00003-of-00003.safetensors",
327
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00003-of-00003.safetensors",
328
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
329
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
330
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
331
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
332
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
333
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
334
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
335
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
336
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00003-of-00003.safetensors",
337
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00003-of-00003.safetensors",
338
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00003-of-00003.safetensors",
339
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00003-of-00003.safetensors",
340
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00003-of-00003.safetensors",
341
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00003-of-00003.safetensors",
342
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00003-of-00003.safetensors",
343
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00003-of-00003.safetensors",
344
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
345
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
346
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
347
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
348
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
349
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
350
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
351
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
352
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00003-of-00003.safetensors",
353
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00003-of-00003.safetensors",
354
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00003-of-00003.safetensors",
355
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00003-of-00003.safetensors",
356
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00003-of-00003.safetensors",
357
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00003-of-00003.safetensors",
358
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00003-of-00003.safetensors",
359
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00003-of-00003.safetensors",
360
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
361
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
362
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
363
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
364
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
365
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
366
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
367
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
368
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00003-of-00003.safetensors",
369
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00003-of-00003.safetensors",
370
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00003-of-00003.safetensors",
371
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00003-of-00003.safetensors",
372
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00003-of-00003.safetensors",
373
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00003-of-00003.safetensors",
374
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00003-of-00003.safetensors",
375
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00003-of-00003.safetensors",
376
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
377
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
378
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
379
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
380
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
381
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
382
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
383
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
384
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00003-of-00003.safetensors",
385
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00003-of-00003.safetensors",
386
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00003-of-00003.safetensors",
387
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00003-of-00003.safetensors",
388
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00003-of-00003.safetensors",
389
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00003-of-00003.safetensors",
390
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00003-of-00003.safetensors",
391
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00003-of-00003.safetensors",
392
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
393
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
394
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
395
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
396
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
397
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
398
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
399
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
400
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00003-of-00003.safetensors",
401
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00003-of-00003.safetensors",
402
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00003-of-00003.safetensors",
403
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00003-of-00003.safetensors",
404
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00003-of-00003.safetensors",
405
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00003-of-00003.safetensors",
406
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00003-of-00003.safetensors",
407
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00003-of-00003.safetensors",
408
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
409
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
410
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
411
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
412
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
413
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
414
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
415
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
416
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00003-of-00003.safetensors",
417
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00003-of-00003.safetensors",
418
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00003-of-00003.safetensors",
419
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00003-of-00003.safetensors",
420
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00003-of-00003.safetensors",
421
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00003-of-00003.safetensors",
422
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00003-of-00003.safetensors",
423
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00003-of-00003.safetensors",
424
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
425
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
426
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
427
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
428
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
429
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
430
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
431
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
432
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00003-of-00003.safetensors",
433
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00003-of-00003.safetensors",
434
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00003-of-00003.safetensors",
435
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00003-of-00003.safetensors",
436
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00003-of-00003.safetensors",
437
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00003-of-00003.safetensors",
438
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00003-of-00003.safetensors",
439
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00003-of-00003.safetensors",
440
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
441
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
442
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
443
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
444
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
445
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
446
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
447
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
448
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00003-of-00003.safetensors",
449
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00003-of-00003.safetensors",
450
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00003-of-00003.safetensors",
451
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00003-of-00003.safetensors",
452
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00003-of-00003.safetensors",
453
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00003-of-00003.safetensors",
454
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00003-of-00003.safetensors",
455
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00003-of-00003.safetensors",
456
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
457
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
458
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
459
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
460
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
461
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
462
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
463
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
464
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00003-of-00003.safetensors",
465
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00003-of-00003.safetensors",
466
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00003-of-00003.safetensors",
467
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00003-of-00003.safetensors",
468
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00003-of-00003.safetensors",
469
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00003-of-00003.safetensors",
470
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00003-of-00003.safetensors",
471
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00003-of-00003.safetensors",
472
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
473
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
474
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
475
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
476
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
477
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
478
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
479
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
480
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00003-of-00003.safetensors",
481
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00003-of-00003.safetensors",
482
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00003-of-00003.safetensors",
483
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00003-of-00003.safetensors",
484
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00003-of-00003.safetensors",
485
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00003-of-00003.safetensors",
486
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00003-of-00003.safetensors",
487
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00003-of-00003.safetensors",
488
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
489
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
490
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
491
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
492
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
493
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
494
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
495
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
496
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00003-of-00003.safetensors",
497
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00003-of-00003.safetensors",
498
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00003-of-00003.safetensors",
499
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00003-of-00003.safetensors",
500
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00003-of-00003.safetensors",
501
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00003-of-00003.safetensors",
502
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00003-of-00003.safetensors",
503
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00003-of-00003.safetensors",
504
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
505
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
506
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
507
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
508
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
509
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
510
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
511
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
512
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00003-of-00003.safetensors",
513
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00003-of-00003.safetensors",
514
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00003-of-00003.safetensors",
515
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00003-of-00003.safetensors",
516
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00003-of-00003.safetensors",
517
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00003-of-00003.safetensors",
518
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00003-of-00003.safetensors",
519
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00003-of-00003.safetensors",
520
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
521
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
522
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
523
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
524
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
525
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
526
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
527
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
528
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00003-of-00003.safetensors",
529
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00003-of-00003.safetensors",
530
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00003-of-00003.safetensors",
531
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00003-of-00003.safetensors",
532
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00003-of-00003.safetensors",
533
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00003-of-00003.safetensors",
534
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00003-of-00003.safetensors",
535
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00003-of-00003.safetensors",
536
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
537
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
538
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
539
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
540
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
541
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
542
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
543
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
544
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00003-of-00003.safetensors",
545
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00003-of-00003.safetensors",
546
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00003-of-00003.safetensors",
547
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00003-of-00003.safetensors",
548
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00003-of-00003.safetensors",
549
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00003-of-00003.safetensors",
550
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00003-of-00003.safetensors",
551
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00003-of-00003.safetensors",
552
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
553
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
554
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
555
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
556
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
557
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
558
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
559
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
560
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00003-of-00003.safetensors",
561
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00003-of-00003.safetensors",
562
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00003-of-00003.safetensors",
563
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00003-of-00003.safetensors",
564
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00003-of-00003.safetensors",
565
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00003-of-00003.safetensors",
566
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00003-of-00003.safetensors",
567
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00003-of-00003.safetensors",
568
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
569
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
570
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
571
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
572
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
573
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
574
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
575
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
576
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00003-of-00003.safetensors",
577
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00003-of-00003.safetensors",
578
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00003-of-00003.safetensors",
579
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00003-of-00003.safetensors",
580
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00003-of-00003.safetensors",
581
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00003-of-00003.safetensors",
582
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00003-of-00003.safetensors",
583
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00003-of-00003.safetensors",
584
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
585
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
586
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
587
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
588
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
589
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
590
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
591
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
592
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00003-of-00003.safetensors",
593
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00003-of-00003.safetensors",
594
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00003-of-00003.safetensors",
595
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00003-of-00003.safetensors",
596
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00003-of-00003.safetensors",
597
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00003-of-00003.safetensors",
598
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00003-of-00003.safetensors",
599
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00003-of-00003.safetensors",
600
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
601
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
602
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
603
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
604
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
605
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
606
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
607
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
608
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00003-of-00003.safetensors",
609
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00003-of-00003.safetensors",
610
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00003-of-00003.safetensors",
611
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00003-of-00003.safetensors",
612
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00003-of-00003.safetensors",
613
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00003-of-00003.safetensors",
614
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00003-of-00003.safetensors",
615
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00003-of-00003.safetensors",
616
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
617
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
618
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
619
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
620
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
621
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
622
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
623
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
624
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00003-of-00003.safetensors",
625
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00003-of-00003.safetensors",
626
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00003-of-00003.safetensors",
627
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00003-of-00003.safetensors",
628
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00003-of-00003.safetensors",
629
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00003-of-00003.safetensors",
630
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00003-of-00003.safetensors",
631
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00003-of-00003.safetensors",
632
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
633
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
634
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
635
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
636
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
637
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
638
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
639
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
640
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00003-of-00003.safetensors",
641
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00003-of-00003.safetensors",
642
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00003-of-00003.safetensors",
643
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00003-of-00003.safetensors",
644
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00003-of-00003.safetensors",
645
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00003-of-00003.safetensors",
646
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00003-of-00003.safetensors",
647
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00003-of-00003.safetensors",
648
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
649
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
650
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
651
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
652
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
653
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
654
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
655
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
656
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00003-of-00003.safetensors",
657
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00003-of-00003.safetensors",
658
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00003-of-00003.safetensors",
659
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00003-of-00003.safetensors",
660
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00003-of-00003.safetensors",
661
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00003-of-00003.safetensors",
662
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00003-of-00003.safetensors",
663
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00003-of-00003.safetensors",
664
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
665
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
666
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
667
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
668
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
669
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
670
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
671
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
672
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00003-of-00003.safetensors",
673
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00003-of-00003.safetensors",
674
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00003-of-00003.safetensors",
675
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00003-of-00003.safetensors",
676
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00003-of-00003.safetensors",
677
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00003-of-00003.safetensors",
678
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00003-of-00003.safetensors",
679
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00003-of-00003.safetensors",
680
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
681
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
682
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
683
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
684
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
685
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
686
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
687
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
688
+ "model.vision_tower.vision_tower.vision_model.post_layernorm.bias": "model-00003-of-00003.safetensors",
689
+ "model.vision_tower.vision_tower.vision_model.post_layernorm.weight": "model-00003-of-00003.safetensors",
690
+ "model.vision_tower.vision_tower.vision_model.pre_layrnorm.bias": "model-00003-of-00003.safetensors",
691
+ "model.vision_tower.vision_tower.vision_model.pre_layrnorm.weight": "model-00003-of-00003.safetensors"
692
+ }
693
+ }
modeling_llama.py ADDED
@@ -0,0 +1,1474 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch LLaMA model."""
21
+ import math
22
+ import warnings
23
+ from typing import List, Optional, Tuple, Union
24
+
25
+ import torch
26
+ import torch.nn.functional as F
27
+ import torch.utils.checkpoint
28
+ from torch import nn
29
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
30
+
31
+ from ...activations import ACT2FN
32
+ from ...cache_utils import Cache, DynamicCache
33
+ from ...modeling_attn_mask_utils import (
34
+ AttentionMaskConverter,
35
+ _prepare_4d_attention_mask,
36
+ _prepare_4d_causal_attention_mask,
37
+ _prepare_4d_causal_attention_mask_for_sdpa,
38
+ )
39
+ from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
40
+ from ...modeling_utils import PreTrainedModel
41
+ from ...pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13
42
+ from ...utils import (
43
+ add_start_docstrings,
44
+ add_start_docstrings_to_model_forward,
45
+ is_flash_attn_2_available,
46
+ is_flash_attn_greater_or_equal_2_10,
47
+ logging,
48
+ replace_return_docstrings,
49
+ )
50
+ from ...utils.import_utils import is_torch_fx_available
51
+ from .configuration_llama import LlamaConfig
52
+
53
+ import numpy as np
54
+ if is_flash_attn_2_available():
55
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
56
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
57
+
58
+
59
+ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
60
+ # It means that the function will not be traced through and simply appear as a node in the graph.
61
+ if is_torch_fx_available():
62
+ if not is_torch_greater_or_equal_than_1_13:
63
+ import torch.fx
64
+
65
+ _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
66
+
67
+
68
+ logger = logging.get_logger(__name__)
69
+
70
+ _CONFIG_FOR_DOC = "LlamaConfig"
71
+
72
+ count_drop_head = 0
73
+ def _get_unpad_data(attention_mask):
74
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
75
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
76
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
77
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
78
+ return (
79
+ indices,
80
+ cu_seqlens,
81
+ max_seqlen_in_batch,
82
+ )
83
+
84
+
85
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
86
+ warnings.warn(
87
+ "Calling `transformers.models.llama.modeling_llama._prepare_4d_attention_mask` is deprecated and will be removed in v4.37. Use `transformers.modeling_attn_mask_utils._prepare_4d_attention_mask"
88
+ )
89
+ return _prepare_4d_attention_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
90
+
91
+
92
+ def _make_causal_mask(
93
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
94
+ ):
95
+ warnings.warn(
96
+ "Calling `transformers.models.llama.modeling_llama._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.llama.modeling_llama.AttentionMaskConverter._make_causal_mask"
97
+ )
98
+ return AttentionMaskConverter._make_causal_mask(
99
+ input_ids_shape=input_ids_shape, dtype=dtype, device=device, past_key_values_length=past_key_values_length
100
+ )
101
+
102
+
103
+ class LlamaRMSNorm(nn.Module):
104
+ def __init__(self, hidden_size, eps=1e-6):
105
+ """
106
+ LlamaRMSNorm is equivalent to T5LayerNorm
107
+ """
108
+ super().__init__()
109
+ self.weight = nn.Parameter(torch.ones(hidden_size))
110
+ self.variance_epsilon = eps
111
+
112
+ def forward(self, hidden_states):
113
+ input_dtype = hidden_states.dtype
114
+ hidden_states = hidden_states.to(torch.float32)
115
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
116
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
117
+ return self.weight * hidden_states.to(input_dtype)
118
+
119
+
120
+ ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
121
+
122
+
123
+ class LlamaRotaryEmbedding(nn.Module):
124
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
125
+ super().__init__()
126
+
127
+ self.dim = dim
128
+ self.max_position_embeddings = max_position_embeddings
129
+ self.base = base
130
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
131
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
132
+
133
+ # Build here to make `torch.jit.trace` work.
134
+ self._set_cos_sin_cache(
135
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
136
+ )
137
+
138
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
139
+ self.max_seq_len_cached = seq_len
140
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
141
+
142
+ freqs = torch.outer(t, self.inv_freq)
143
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
144
+ emb = torch.cat((freqs, freqs), dim=-1)
145
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
146
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
147
+
148
+ def forward(self, x, seq_len=None):
149
+ # x: [bs, num_attention_heads, seq_len, head_size]
150
+ if seq_len > self.max_seq_len_cached:
151
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
152
+
153
+ return (
154
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
155
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
156
+ )
157
+
158
+
159
+ class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
160
+ """LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
161
+
162
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
163
+ self.scaling_factor = scaling_factor
164
+ super().__init__(dim, max_position_embeddings, base, device)
165
+
166
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
167
+ self.max_seq_len_cached = seq_len
168
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
169
+ t = t / self.scaling_factor
170
+
171
+ freqs = torch.outer(t, self.inv_freq)
172
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
173
+ emb = torch.cat((freqs, freqs), dim=-1)
174
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
175
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
176
+
177
+
178
+ class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
179
+ """LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
180
+
181
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
182
+ self.scaling_factor = scaling_factor
183
+ super().__init__(dim, max_position_embeddings, base, device)
184
+
185
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
186
+ self.max_seq_len_cached = seq_len
187
+
188
+ if seq_len > self.max_position_embeddings:
189
+ base = self.base * (
190
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
191
+ ) ** (self.dim / (self.dim - 2))
192
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
193
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
194
+
195
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
196
+
197
+ freqs = torch.outer(t, self.inv_freq)
198
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
199
+ emb = torch.cat((freqs, freqs), dim=-1)
200
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
201
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
202
+
203
+
204
+ def rotate_half(x):
205
+ """Rotates half the hidden dims of the input."""
206
+ x1 = x[..., : x.shape[-1] // 2]
207
+ x2 = x[..., x.shape[-1] // 2 :]
208
+ return torch.cat((-x2, x1), dim=-1)
209
+
210
+
211
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
212
+ """Applies Rotary Position Embedding to the query and key tensors.
213
+
214
+ Args:
215
+ q (`torch.Tensor`): The query tensor.
216
+ k (`torch.Tensor`): The key tensor.
217
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
218
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
219
+ position_ids (`torch.Tensor`):
220
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
221
+ used to pass offsetted position ids when working with a KV-cache.
222
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
223
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
224
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
225
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
226
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
227
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
228
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
229
+ Returns:
230
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
231
+ """
232
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
233
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
234
+ q_embed = (q * cos) + (rotate_half(q) * sin)
235
+ k_embed = (k * cos) + (rotate_half(k) * sin)
236
+ return q_embed, k_embed
237
+
238
+
239
+ class LlamaMLP(nn.Module):
240
+ def __init__(self, config):
241
+ super().__init__()
242
+ self.config = config
243
+ self.hidden_size = config.hidden_size
244
+ self.intermediate_size = config.intermediate_size
245
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
246
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
247
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
248
+ self.act_fn = ACT2FN[config.hidden_act]
249
+
250
+ def forward(self, x):
251
+ '''
252
+ if self.config.pretraining_tp > 1:
253
+ slice = self.intermediate_size // self.config.pretraining_tp
254
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
255
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
256
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
257
+
258
+ gate_proj = torch.cat(
259
+ [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
260
+ )
261
+ up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
262
+
263
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
264
+ down_proj = [
265
+ F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
266
+ ]
267
+ down_proj = sum(down_proj)
268
+ else:
269
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
270
+ '''
271
+ factor = 4
272
+ gate_x = self.gate_proj(x)
273
+ gate_x[:,35:35+576,int(11008/factor):]=0 # 0.7
274
+ up_x = self.up_proj(x)
275
+ up_x[:,35:35+576,int(11008/factor):]=0
276
+ down_proj=self.down_proj(self.act_fn(gate_x)*up_x)
277
+ return down_proj
278
+
279
+
280
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
281
+ """
282
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
283
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
284
+ """
285
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
286
+ if n_rep == 1:
287
+ return hidden_states
288
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
289
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
290
+
291
+
292
+ class LlamaAttention(nn.Module):
293
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
294
+
295
+ def __init__(self, config: LlamaConfig, layer_idx: Optional[int] = None):
296
+ super().__init__()
297
+ self.config = config
298
+ self.layer_idx = layer_idx
299
+ if layer_idx is None:
300
+ logger.warning_once(
301
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
302
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
303
+ "when creating this class."
304
+ )
305
+
306
+ self.attention_dropout = config.attention_dropout
307
+ self.hidden_size = config.hidden_size
308
+ self.num_heads = config.num_attention_heads
309
+ self.head_dim = self.hidden_size // self.num_heads
310
+ self.num_key_value_heads = config.num_key_value_heads
311
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
312
+ self.max_position_embeddings = config.max_position_embeddings
313
+ self.rope_theta = config.rope_theta
314
+ self.is_causal = True
315
+
316
+ if (self.head_dim * self.num_heads) != self.hidden_size:
317
+ raise ValueError(
318
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
319
+ f" and `num_heads`: {self.num_heads})."
320
+ )
321
+
322
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
323
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
324
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
325
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
326
+ self._init_rope()
327
+ self.mask = torch.tensor(np.load("attn_weights_7b/headmask_16.npy")).cuda()
328
+ def _init_rope(self):
329
+ if self.config.rope_scaling is None:
330
+ self.rotary_emb = LlamaRotaryEmbedding(
331
+ self.head_dim,
332
+ max_position_embeddings=self.max_position_embeddings,
333
+ base=self.rope_theta,
334
+ )
335
+ else:
336
+ scaling_type = self.config.rope_scaling["type"]
337
+ scaling_factor = self.config.rope_scaling["factor"]
338
+ if scaling_type == "linear":
339
+ self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
340
+ self.head_dim,
341
+ max_position_embeddings=self.max_position_embeddings,
342
+ scaling_factor=scaling_factor,
343
+ base=self.rope_theta,
344
+ )
345
+ elif scaling_type == "dynamic":
346
+ self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
347
+ self.head_dim,
348
+ max_position_embeddings=self.max_position_embeddings,
349
+ scaling_factor=scaling_factor,
350
+ base=self.rope_theta,
351
+ )
352
+ else:
353
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
354
+
355
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
356
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
357
+
358
+ def forward(
359
+ self,
360
+ hidden_states: torch.Tensor,
361
+ attention_mask: Optional[torch.Tensor] = None,
362
+ position_ids: Optional[torch.LongTensor] = None,
363
+ past_key_value: Optional[Cache] = None,
364
+ output_attentions: bool = False,
365
+ use_cache: bool = False,
366
+ **kwargs,
367
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
368
+ if "padding_mask" in kwargs:
369
+ warnings.warn(
370
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
371
+ )
372
+
373
+ bsz, q_len, _ = hidden_states.size()
374
+
375
+ if self.config.pretraining_tp > 1:
376
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
377
+ query_slices = self.q_proj.weight.split(
378
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
379
+ )
380
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
381
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
382
+
383
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
384
+ query_states = torch.cat(query_states, dim=-1)
385
+
386
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
387
+ key_states = torch.cat(key_states, dim=-1)
388
+
389
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
390
+ value_states = torch.cat(value_states, dim=-1)
391
+
392
+ else:
393
+ query_states = self.q_proj(hidden_states)
394
+ key_states = self.k_proj(hidden_states)
395
+ value_states = self.v_proj(hidden_states)
396
+
397
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
398
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
399
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
400
+
401
+ kv_seq_len = key_states.shape[-2]
402
+ if past_key_value is not None:
403
+ if self.layer_idx is None:
404
+ raise ValueError(
405
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
406
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
407
+ "with a layer index."
408
+ )
409
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
410
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
411
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
412
+
413
+ if past_key_value is not None:
414
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
415
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
416
+
417
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
418
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
419
+ #attn = "local"
420
+ attn = "original"
421
+
422
+ if attn == "original":
423
+ import time
424
+ start = time.time()
425
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) #torch.Size([16, 40, 1752, 1752])
426
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
427
+ raise ValueError(
428
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
429
+ f" {attn_weights.size()}"
430
+ )
431
+
432
+ if attention_mask is not None:
433
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
434
+ raise ValueError(
435
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
436
+ )
437
+ attn_weights = attn_weights + attention_mask
438
+
439
+ # upcast attention to fp32
440
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
441
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
442
+
443
+ if attn_weights.shape[2]>1:
444
+ mask = self.mask[self.layer_idx].unsqueeze(1).unsqueeze(1).unsqueeze(0)
445
+ if self.layer_idx>=16:
446
+ mask=mask*0
447
+ attn_weights[:,:,:,35:35+576] = attn_weights[:,:,:,35:35+576]*mask.cuda()
448
+ else:
449
+
450
+ mask = self.mask[self.layer_idx].unsqueeze(1).unsqueeze(1)
451
+ if self.layer_idx>=16:
452
+ mask=mask*0
453
+ attn_weights[0,:,:1,35:35+576] = attn_weights[0,:,:1,35:35+576]*mask.cuda()
454
+
455
+ attn_output = torch.matmul(attn_weights, value_states)
456
+ end = time.time()
457
+ #print(end-start)
458
+
459
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
460
+ raise ValueError(
461
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
462
+ f" {attn_output.size()}"
463
+ )
464
+
465
+ attn_output = attn_output.transpose(1, 2).contiguous()
466
+ mask = self.mask[self.layer_idx].unsqueeze(0).unsqueeze(0).unsqueeze(-1)
467
+ attn_output[:,35:35+576,:,:] = attn_output[:,35:35+576,:,:] * mask.cuda()
468
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
469
+ if self.config.pretraining_tp > 1:
470
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
471
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
472
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
473
+ else:
474
+ attn_output = self.o_proj(attn_output)
475
+
476
+ if not output_attentions:
477
+ attn_weights = None
478
+
479
+ return attn_output, attn_weights, past_key_value
480
+
481
+
482
+ class LlamaFlashAttention2(LlamaAttention):
483
+ """
484
+ Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
485
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
486
+ flash attention and deal with padding tokens in case the input contains any of them.
487
+ """
488
+
489
+ def __init__(self, *args, **kwargs):
490
+ super().__init__(*args, **kwargs)
491
+
492
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
493
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
494
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
495
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
496
+
497
+ def forward(
498
+ self,
499
+ hidden_states: torch.Tensor,
500
+ attention_mask: Optional[torch.LongTensor] = None,
501
+ position_ids: Optional[torch.LongTensor] = None,
502
+ past_key_value: Optional[Cache] = None,
503
+ output_attentions: bool = False,
504
+ use_cache: bool = False,
505
+ **kwargs,
506
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
507
+ # LlamaFlashAttention2 attention does not support output_attentions
508
+ if "padding_mask" in kwargs:
509
+ warnings.warn(
510
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
511
+ )
512
+
513
+ # overwrite attention_mask with padding_mask
514
+ attention_mask = kwargs.pop("padding_mask")
515
+
516
+ output_attentions = False
517
+
518
+ bsz, q_len, _ = hidden_states.size()
519
+
520
+ query_states = self.q_proj(hidden_states)
521
+ key_states = self.k_proj(hidden_states)
522
+ value_states = self.v_proj(hidden_states)
523
+
524
+ # Flash attention requires the input to have the shape
525
+ # batch_size x seq_length x head_dim x hidden_dim
526
+ # therefore we just need to keep the original shape
527
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
528
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
529
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
530
+
531
+ kv_seq_len = key_states.shape[-2]
532
+ if past_key_value is not None:
533
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
534
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
535
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
536
+
537
+ if past_key_value is not None:
538
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
539
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
540
+
541
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
542
+ # to be able to avoid many of these transpose/reshape/view.
543
+ query_states = query_states.transpose(1, 2)
544
+ key_states = key_states.transpose(1, 2)
545
+ value_states = value_states.transpose(1, 2)
546
+
547
+ dropout_rate = self.attention_dropout if self.training else 0.0
548
+
549
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
550
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
551
+ # cast them back in the correct dtype just to be sure everything works as expected.
552
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
553
+ # in fp32. (LlamaRMSNorm handles it correctly)
554
+
555
+ input_dtype = query_states.dtype
556
+ if input_dtype == torch.float32:
557
+ # Handle the case where the model is quantized
558
+ if hasattr(self.config, "_pre_quantization_dtype"):
559
+ target_dtype = self.config._pre_quantization_dtype
560
+ else:
561
+ target_dtype = self.q_proj.weight.dtype
562
+
563
+ logger.warning_once(
564
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
565
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
566
+ f" {target_dtype}."
567
+ )
568
+
569
+ query_states = query_states.to(target_dtype)
570
+ key_states = key_states.to(target_dtype)
571
+ value_states = value_states.to(target_dtype)
572
+
573
+ attn_output = self._flash_attention_forward(
574
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
575
+ )
576
+
577
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
578
+ attn_output = self.o_proj(attn_output)
579
+
580
+ if not output_attentions:
581
+ attn_weights = None
582
+
583
+ return attn_output, attn_weights, past_key_value
584
+
585
+ def _flash_attention_forward(
586
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
587
+ ):
588
+ """
589
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
590
+ first unpad the input, then computes the attention scores and pad the final attention scores.
591
+
592
+ Args:
593
+ query_states (`torch.Tensor`):
594
+ Input query states to be passed to Flash Attention API
595
+ key_states (`torch.Tensor`):
596
+ Input key states to be passed to Flash Attention API
597
+ value_states (`torch.Tensor`):
598
+ Input value states to be passed to Flash Attention API
599
+ attention_mask (`torch.Tensor`):
600
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
601
+ position of padding tokens and 1 for the position of non-padding tokens.
602
+ dropout (`int`, *optional*):
603
+ Attention dropout
604
+ softmax_scale (`float`, *optional*):
605
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
606
+ """
607
+ if not self._flash_attn_uses_top_left_mask:
608
+ causal = self.is_causal
609
+ else:
610
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
611
+ causal = self.is_causal and query_length != 1
612
+
613
+ # Contains at least one padding token in the sequence
614
+ if attention_mask is not None:
615
+ batch_size = query_states.shape[0]
616
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
617
+ query_states, key_states, value_states, attention_mask, query_length
618
+ )
619
+
620
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
621
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
622
+
623
+ attn_output_unpad = flash_attn_varlen_func(
624
+ query_states,
625
+ key_states,
626
+ value_states,
627
+ cu_seqlens_q=cu_seqlens_q,
628
+ cu_seqlens_k=cu_seqlens_k,
629
+ max_seqlen_q=max_seqlen_in_batch_q,
630
+ max_seqlen_k=max_seqlen_in_batch_k,
631
+ dropout_p=dropout,
632
+ softmax_scale=softmax_scale,
633
+ causal=causal,
634
+ )
635
+
636
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
637
+ else:
638
+ attn_output = flash_attn_func(
639
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
640
+ )
641
+
642
+ return attn_output
643
+
644
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
645
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
646
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
647
+
648
+ key_layer = index_first_axis(
649
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
650
+ )
651
+ value_layer = index_first_axis(
652
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
653
+ )
654
+ if query_length == kv_seq_len:
655
+ query_layer = index_first_axis(
656
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
657
+ )
658
+ cu_seqlens_q = cu_seqlens_k
659
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
660
+ indices_q = indices_k
661
+ elif query_length == 1:
662
+ max_seqlen_in_batch_q = 1
663
+ cu_seqlens_q = torch.arange(
664
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
665
+ ) # There is a memcpy here, that is very bad.
666
+ indices_q = cu_seqlens_q[:-1]
667
+ query_layer = query_layer.squeeze(1)
668
+ else:
669
+ # The -q_len: slice assumes left padding.
670
+ attention_mask = attention_mask[:, -query_length:]
671
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
672
+
673
+ return (
674
+ query_layer,
675
+ key_layer,
676
+ value_layer,
677
+ indices_q,
678
+ (cu_seqlens_q, cu_seqlens_k),
679
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
680
+ )
681
+
682
+
683
+ class LlamaSdpaAttention(LlamaAttention):
684
+ """
685
+ Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
686
+ `LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
687
+ SDPA API.
688
+ """
689
+
690
+ # Adapted from LlamaAttention.forward
691
+ def forward(
692
+ self,
693
+ hidden_states: torch.Tensor,
694
+ attention_mask: Optional[torch.Tensor] = None,
695
+ position_ids: Optional[torch.LongTensor] = None,
696
+ past_key_value: Optional[Cache] = None,
697
+ output_attentions: bool = False,
698
+ use_cache: bool = False,
699
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
700
+ if output_attentions:
701
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
702
+ logger.warning_once(
703
+ "LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
704
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
705
+ )
706
+ return super().forward(
707
+ hidden_states=hidden_states,
708
+ attention_mask=attention_mask,
709
+ position_ids=position_ids,
710
+ past_key_value=past_key_value,
711
+ output_attentions=output_attentions,
712
+ use_cache=use_cache,
713
+ )
714
+
715
+ bsz, q_len, _ = hidden_states.size()
716
+
717
+ query_states = self.q_proj(hidden_states)
718
+ key_states = self.k_proj(hidden_states)
719
+ value_states = self.v_proj(hidden_states)
720
+
721
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
722
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
723
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
724
+
725
+ kv_seq_len = key_states.shape[-2]
726
+ if past_key_value is not None:
727
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
728
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
729
+
730
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
731
+
732
+ if past_key_value is not None:
733
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
734
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
735
+
736
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
737
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
738
+
739
+ if attention_mask is not None:
740
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
741
+ raise ValueError(
742
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
743
+ )
744
+
745
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
746
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
747
+ if query_states.device.type == "cuda" and attention_mask is not None:
748
+ query_states = query_states.contiguous()
749
+ key_states = key_states.contiguous()
750
+ value_states = value_states.contiguous()
751
+
752
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
753
+ query_states,
754
+ key_states,
755
+ value_states,
756
+ attn_mask=attention_mask,
757
+ dropout_p=self.attention_dropout if self.training else 0.0,
758
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
759
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
760
+ )
761
+
762
+ attn_output = attn_output.transpose(1, 2).contiguous()
763
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
764
+
765
+ attn_output = self.o_proj(attn_output)
766
+
767
+ return attn_output, None, past_key_value
768
+
769
+
770
+ LLAMA_ATTENTION_CLASSES = {
771
+ "eager": LlamaAttention,
772
+ "flash_attention_2": LlamaFlashAttention2,
773
+ "sdpa": LlamaSdpaAttention,
774
+ }
775
+
776
+
777
+ class LlamaDecoderLayer(nn.Module):
778
+ def __init__(self, config: LlamaConfig, layer_idx: int):
779
+ super().__init__()
780
+ self.hidden_size = config.hidden_size
781
+ config._attn_implementation="eager"
782
+ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
783
+
784
+ self.mlp = LlamaMLP(config)
785
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
786
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
787
+ self.attention_mask_local = self.local_mask(5)
788
+
789
+ def local_mask(self,window):
790
+ height, width = 24, 24
791
+ num_pixels = height * width
792
+
793
+ # Generate grid of positions
794
+ rows = torch.arange(height)
795
+ cols = torch.arange(width)
796
+ grid_r, grid_c = torch.meshgrid(rows, cols, indexing='ij') # Shape: (24, 24)
797
+ positions = torch.stack([grid_r.flatten(), grid_c.flatten()], dim=1) # Shape: (576, 2)
798
+
799
+ # Compute pairwise differences between positions
800
+ positions_i = positions.unsqueeze(1) # Shape: (576, 1, 2)
801
+ positions_j = positions.unsqueeze(0) # Shape: (1, 576, 2)
802
+ delta = positions_i - positions_j # Shape: (576, 576, 2)
803
+ delta_abs = delta.abs() # Absolute differences
804
+
805
+ # Create neighbor mask for 3x3 neighborhood
806
+ neighbor_mask = (delta_abs[..., 0] <= int((window-1)/2)) & (delta_abs[..., 1] <= int((window-1)/2)) # Shape: (576, 576)
807
+
808
+ # Initialize the attention mask
809
+ attention_mask = torch.full((num_pixels, num_pixels), float('-inf'))
810
+ attention_mask[neighbor_mask] = 0.0 # Set 3x3 neighborhood to 0, others to -inf
811
+ return attention_mask
812
+
813
+ def forward(
814
+ self,
815
+ hidden_states: torch.Tensor,
816
+ attention_mask: Optional[torch.Tensor] = None,
817
+ position_ids: Optional[torch.LongTensor] = None,
818
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
819
+ output_attentions: Optional[bool] = False,
820
+ use_cache: Optional[bool] = False,
821
+ **kwargs,
822
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
823
+ """
824
+ Args:
825
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
826
+ attention_mask (`torch.FloatTensor`, *optional*):
827
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
828
+ query_sequence_length, key_sequence_length)` if default attention is used.
829
+ output_attentions (`bool`, *optional*):
830
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
831
+ returned tensors for more detail.
832
+ use_cache (`bool`, *optional*):
833
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
834
+ (see `past_key_values`).
835
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
836
+ """
837
+ if "padding_mask" in kwargs:
838
+ warnings.warn(
839
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
840
+ )
841
+ residual = hidden_states
842
+
843
+ hidden_states = self.input_layernorm(hidden_states)
844
+
845
+ attention_mask = attention_mask.clone()
846
+
847
+ offset=35
848
+ #import pdb; pdb.set_trace()
849
+ if attention_mask.shape[2]>576:
850
+ attention_mask[:,:,offset:offset+576,offset:offset+576]=self.attention_mask_local
851
+
852
+ # import pdb; pdb.set_trace()
853
+ attention_mask=attention_mask.clone()
854
+
855
+ # Self Attention
856
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
857
+ hidden_states=hidden_states,
858
+ attention_mask=attention_mask,
859
+ position_ids=position_ids,
860
+ past_key_value=past_key_value,
861
+ output_attentions=output_attentions,
862
+ use_cache=use_cache,
863
+ **kwargs,
864
+ )
865
+ hidden_states = residual + hidden_states
866
+
867
+ # Fully Connected
868
+ residual = hidden_states
869
+ hidden_states = self.post_attention_layernorm(hidden_states)
870
+ hidden_states = self.mlp(hidden_states)
871
+ hidden_states = residual + hidden_states
872
+
873
+ outputs = (hidden_states,)
874
+
875
+ if output_attentions:
876
+ outputs += (self_attn_weights,)
877
+
878
+ if use_cache:
879
+ outputs += (present_key_value,)
880
+
881
+ return outputs
882
+
883
+
884
+ LLAMA_START_DOCSTRING = r"""
885
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
886
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
887
+ etc.)
888
+
889
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
890
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
891
+ and behavior.
892
+
893
+ Parameters:
894
+ config ([`LlamaConfig`]):
895
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
896
+ load the weights associated with the model, only the configuration. Check out the
897
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
898
+ """
899
+
900
+
901
+ @add_start_docstrings(
902
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
903
+ LLAMA_START_DOCSTRING,
904
+ )
905
+ class LlamaPreTrainedModel(PreTrainedModel):
906
+ config_class = LlamaConfig
907
+ base_model_prefix = "model"
908
+ supports_gradient_checkpointing = True
909
+ _no_split_modules = ["LlamaDecoderLayer"]
910
+ _skip_keys_device_placement = "past_key_values"
911
+ _supports_flash_attn_2 = True
912
+ _supports_sdpa = True
913
+ _supports_cache_class = True
914
+
915
+ def _init_weights(self, module):
916
+ std = self.config.initializer_range
917
+ if isinstance(module, nn.Linear):
918
+ module.weight.data.normal_(mean=0.0, std=std)
919
+ if module.bias is not None:
920
+ module.bias.data.zero_()
921
+ elif isinstance(module, nn.Embedding):
922
+ module.weight.data.normal_(mean=0.0, std=std)
923
+ if module.padding_idx is not None:
924
+ module.weight.data[module.padding_idx].zero_()
925
+
926
+
927
+ LLAMA_INPUTS_DOCSTRING = r"""
928
+ Args:
929
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
930
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
931
+ it.
932
+
933
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
934
+ [`PreTrainedTokenizer.__call__`] for details.
935
+
936
+ [What are input IDs?](../glossary#input-ids)
937
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
938
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
939
+
940
+ - 1 for tokens that are **not masked**,
941
+ - 0 for tokens that are **masked**.
942
+
943
+ [What are attention masks?](../glossary#attention-mask)
944
+
945
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
946
+ [`PreTrainedTokenizer.__call__`] for details.
947
+
948
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
949
+ `past_key_values`).
950
+
951
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
952
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
953
+ information on the default strategy.
954
+
955
+ - 1 indicates the head is **not masked**,
956
+ - 0 indicates the head is **masked**.
957
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
958
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
959
+ config.n_positions - 1]`.
960
+
961
+ [What are position IDs?](../glossary#position-ids)
962
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
963
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
964
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
965
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
966
+
967
+ Two formats are allowed:
968
+ - a [`~cache_utils.Cache`] instance;
969
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
970
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
971
+ cache format.
972
+
973
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
974
+ legacy cache format will be returned.
975
+
976
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
977
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
978
+ of shape `(batch_size, sequence_length)`.
979
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
980
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
981
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
982
+ model's internal embedding lookup matrix.
983
+ use_cache (`bool`, *optional*):
984
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
985
+ `past_key_values`).
986
+ output_attentions (`bool`, *optional*):
987
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
988
+ tensors for more detail.
989
+ output_hidden_states (`bool`, *optional*):
990
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
991
+ more detail.
992
+ return_dict (`bool`, *optional*):
993
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
994
+ """
995
+
996
+
997
+ @add_start_docstrings(
998
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
999
+ LLAMA_START_DOCSTRING,
1000
+ )
1001
+ class LlamaModel(LlamaPreTrainedModel):
1002
+ """
1003
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
1004
+
1005
+ Args:
1006
+ config: LlamaConfig
1007
+ """
1008
+
1009
+ def __init__(self, config: LlamaConfig):
1010
+ super().__init__(config)
1011
+ self.padding_idx = config.pad_token_id
1012
+ self.vocab_size = config.vocab_size
1013
+
1014
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1015
+ self.layers = nn.ModuleList(
1016
+ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
1017
+ )
1018
+ self._use_sdpa = config._attn_implementation == "sdpa"
1019
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
1020
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1021
+
1022
+ self.gradient_checkpointing = False
1023
+ # Initialize weights and apply final processing
1024
+ self.post_init()
1025
+
1026
+ def get_input_embeddings(self):
1027
+ return self.embed_tokens
1028
+
1029
+ def set_input_embeddings(self, value):
1030
+ self.embed_tokens = value
1031
+
1032
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1033
+ def forward(
1034
+ self,
1035
+ input_ids: torch.LongTensor = None,
1036
+ attention_mask: Optional[torch.Tensor] = None,
1037
+ position_ids: Optional[torch.LongTensor] = None,
1038
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1039
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1040
+ use_cache: Optional[bool] = None,
1041
+ output_attentions: Optional[bool] = None,
1042
+ output_hidden_states: Optional[bool] = None,
1043
+ return_dict: Optional[bool] = None,
1044
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1045
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1046
+ output_hidden_states = (
1047
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1048
+ )
1049
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1050
+
1051
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1052
+
1053
+ # retrieve input_ids and inputs_embeds
1054
+ if input_ids is not None and inputs_embeds is not None:
1055
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1056
+ elif input_ids is not None:
1057
+ batch_size, seq_length = input_ids.shape[:2]
1058
+ elif inputs_embeds is not None:
1059
+ batch_size, seq_length = inputs_embeds.shape[:2]
1060
+ else:
1061
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1062
+
1063
+ if self.gradient_checkpointing and self.training:
1064
+ if use_cache:
1065
+ logger.warning_once(
1066
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1067
+ )
1068
+ use_cache = False
1069
+
1070
+ past_key_values_length = 0
1071
+ if use_cache:
1072
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1073
+ if use_legacy_cache:
1074
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1075
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1076
+
1077
+ if position_ids is None:
1078
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1079
+ position_ids = torch.arange(
1080
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1081
+ )
1082
+ position_ids = position_ids.unsqueeze(0)
1083
+
1084
+ if inputs_embeds is None:
1085
+ inputs_embeds = self.embed_tokens(input_ids)
1086
+
1087
+ if self._use_flash_attention_2:
1088
+ # 2d mask is passed through the layers
1089
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1090
+ elif self._use_sdpa and not output_attentions:
1091
+ # output_attentions=True can not be supported when using SDPA, and we fall back on
1092
+ # the manual implementation that requires a 4D causal mask in all cases.
1093
+ attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
1094
+ attention_mask,
1095
+ (batch_size, seq_length),
1096
+ inputs_embeds,
1097
+ past_key_values_length,
1098
+ )
1099
+ else:
1100
+ # 4d mask is passed through the layers
1101
+ attention_mask = _prepare_4d_causal_attention_mask(
1102
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
1103
+ )
1104
+
1105
+ # embed positions
1106
+ hidden_states = inputs_embeds
1107
+
1108
+ # decoder layers
1109
+ all_hidden_states = () if output_hidden_states else None
1110
+ all_self_attns = () if output_attentions else None
1111
+ next_decoder_cache = None
1112
+ import time
1113
+ start = time.time()
1114
+ for i, decoder_layer in enumerate(self.layers):
1115
+ if output_hidden_states:
1116
+ all_hidden_states += (hidden_states,)
1117
+ #import pdb; pdb.set_trace()
1118
+ if self.gradient_checkpointing and self.training:
1119
+ layer_outputs = self._gradient_checkpointing_func(
1120
+ decoder_layer.__call__,
1121
+ hidden_states,
1122
+ attention_mask,
1123
+ position_ids,
1124
+ past_key_values,
1125
+ output_attentions,
1126
+ use_cache,
1127
+ )
1128
+ else:
1129
+ layer_outputs = decoder_layer(
1130
+ hidden_states,
1131
+ attention_mask=attention_mask,
1132
+ position_ids=position_ids,
1133
+ past_key_value=past_key_values,
1134
+ output_attentions=output_attentions,
1135
+ use_cache=use_cache,
1136
+ )
1137
+
1138
+ hidden_states = layer_outputs[0]
1139
+
1140
+ if use_cache:
1141
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1142
+
1143
+ if output_attentions:
1144
+ all_self_attns += (layer_outputs[1],)
1145
+ end = time.time()
1146
+ # print(end-start, len(self.layers))
1147
+ hidden_states = self.norm(hidden_states)
1148
+
1149
+ # add hidden states from the last decoder layer
1150
+ if output_hidden_states:
1151
+ all_hidden_states += (hidden_states,)
1152
+
1153
+ next_cache = None
1154
+ if use_cache:
1155
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1156
+ if not return_dict:
1157
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1158
+ return BaseModelOutputWithPast(
1159
+ last_hidden_state=hidden_states,
1160
+ past_key_values=next_cache,
1161
+ hidden_states=all_hidden_states,
1162
+ attentions=all_self_attns,
1163
+ )
1164
+
1165
+
1166
+ class LlamaForCausalLM(LlamaPreTrainedModel):
1167
+ _tied_weights_keys = ["lm_head.weight"]
1168
+
1169
+ def __init__(self, config):
1170
+ super().__init__(config)
1171
+ self.model = LlamaModel(config)
1172
+ self.vocab_size = config.vocab_size
1173
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1174
+
1175
+ # Initialize weights and apply final processing
1176
+ self.post_init()
1177
+
1178
+ def get_input_embeddings(self):
1179
+ return self.model.embed_tokens
1180
+
1181
+ def set_input_embeddings(self, value):
1182
+ self.model.embed_tokens = value
1183
+
1184
+ def get_output_embeddings(self):
1185
+ return self.lm_head
1186
+
1187
+ def set_output_embeddings(self, new_embeddings):
1188
+ self.lm_head = new_embeddings
1189
+
1190
+ def set_decoder(self, decoder):
1191
+ self.model = decoder
1192
+
1193
+ def get_decoder(self):
1194
+ return self.model
1195
+
1196
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1197
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1198
+ def forward(
1199
+ self,
1200
+ input_ids: torch.LongTensor = None,
1201
+ attention_mask: Optional[torch.Tensor] = None,
1202
+ position_ids: Optional[torch.LongTensor] = None,
1203
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1204
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1205
+ labels: Optional[torch.LongTensor] = None,
1206
+ use_cache: Optional[bool] = None,
1207
+ output_attentions: Optional[bool] = None,
1208
+ output_hidden_states: Optional[bool] = None,
1209
+ return_dict: Optional[bool] = None,
1210
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1211
+ r"""
1212
+ Args:
1213
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1214
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1215
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1216
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1217
+
1218
+ Returns:
1219
+
1220
+ Example:
1221
+
1222
+ ```python
1223
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
1224
+
1225
+ >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1226
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1227
+
1228
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1229
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1230
+
1231
+ >>> # Generate
1232
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1233
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1234
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1235
+ ```"""
1236
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1237
+ output_hidden_states = (
1238
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1239
+ )
1240
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1241
+
1242
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1243
+ outputs = self.model(
1244
+ input_ids=input_ids,
1245
+ attention_mask=attention_mask,
1246
+ position_ids=position_ids,
1247
+ past_key_values=past_key_values,
1248
+ inputs_embeds=inputs_embeds,
1249
+ use_cache=use_cache,
1250
+ output_attentions=output_attentions,
1251
+ output_hidden_states=output_hidden_states,
1252
+ return_dict=return_dict,
1253
+ )
1254
+
1255
+ hidden_states = outputs[0]
1256
+ if self.config.pretraining_tp > 1:
1257
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1258
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
1259
+ logits = torch.cat(logits, dim=-1)
1260
+ else:
1261
+ logits = self.lm_head(hidden_states)
1262
+ logits = logits.float()
1263
+
1264
+ loss = None
1265
+ if labels is not None:
1266
+ # Shift so that tokens < n predict n
1267
+ shift_logits = logits[..., :-1, :].contiguous()
1268
+ shift_labels = labels[..., 1:].contiguous()
1269
+ # Flatten the tokens
1270
+ loss_fct = CrossEntropyLoss()
1271
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1272
+ shift_labels = shift_labels.view(-1)
1273
+ # Enable model parallelism
1274
+ shift_labels = shift_labels.to(shift_logits.device)
1275
+ loss = loss_fct(shift_logits, shift_labels)
1276
+
1277
+ if not return_dict:
1278
+ output = (logits,) + outputs[1:]
1279
+ return (loss,) + output if loss is not None else output
1280
+
1281
+ return CausalLMOutputWithPast(
1282
+ loss=loss,
1283
+ logits=logits,
1284
+ past_key_values=outputs.past_key_values,
1285
+ hidden_states=outputs.hidden_states,
1286
+ attentions=outputs.attentions,
1287
+ )
1288
+
1289
+ def prepare_inputs_for_generation(
1290
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1291
+ ):
1292
+ if past_key_values is not None:
1293
+ if isinstance(past_key_values, Cache):
1294
+ cache_length = past_key_values.get_seq_length()
1295
+ past_length = past_key_values.seen_tokens
1296
+ max_cache_length = past_key_values.get_max_length()
1297
+ else:
1298
+ cache_length = past_length = past_key_values[0][0].shape[2]
1299
+ max_cache_length = None
1300
+
1301
+ # Keep only the unprocessed tokens:
1302
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1303
+ # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
1304
+ # input)
1305
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1306
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1307
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1308
+ # input_ids based on the past_length.
1309
+ elif past_length < input_ids.shape[1]:
1310
+ input_ids = input_ids[:, past_length:]
1311
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1312
+
1313
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1314
+ if (
1315
+ max_cache_length is not None
1316
+ and attention_mask is not None
1317
+ and cache_length + input_ids.shape[1] > max_cache_length
1318
+ ):
1319
+ attention_mask = attention_mask[:, -max_cache_length:]
1320
+
1321
+ position_ids = kwargs.get("position_ids", None)
1322
+ if attention_mask is not None and position_ids is None:
1323
+ # create position_ids on the fly for batch generation
1324
+ position_ids = attention_mask.long().cumsum(-1) - 1
1325
+ position_ids.masked_fill_(attention_mask == 0, 1)
1326
+ if past_key_values:
1327
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1328
+
1329
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1330
+ if inputs_embeds is not None and past_key_values is None:
1331
+ model_inputs = {"inputs_embeds": inputs_embeds}
1332
+ else:
1333
+ model_inputs = {"input_ids": input_ids}
1334
+
1335
+ model_inputs.update(
1336
+ {
1337
+ "position_ids": position_ids,
1338
+ "past_key_values": past_key_values,
1339
+ "use_cache": kwargs.get("use_cache"),
1340
+ "attention_mask": attention_mask,
1341
+ }
1342
+ )
1343
+ return model_inputs
1344
+
1345
+ @staticmethod
1346
+ def _reorder_cache(past_key_values, beam_idx):
1347
+ reordered_past = ()
1348
+ for layer_past in past_key_values:
1349
+ reordered_past += (
1350
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1351
+ )
1352
+ return reordered_past
1353
+
1354
+
1355
+ @add_start_docstrings(
1356
+ """
1357
+ The LLaMa Model transformer with a sequence classification head on top (linear layer).
1358
+
1359
+ [`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1360
+ (e.g. GPT-2) do.
1361
+
1362
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1363
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1364
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1365
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1366
+ each row of the batch).
1367
+ """,
1368
+ LLAMA_START_DOCSTRING,
1369
+ )
1370
+ class LlamaForSequenceClassification(LlamaPreTrainedModel):
1371
+ def __init__(self, config):
1372
+ super().__init__(config)
1373
+ self.num_labels = config.num_labels
1374
+ self.model = LlamaModel(config)
1375
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1376
+
1377
+ # Initialize weights and apply final processing
1378
+ self.post_init()
1379
+
1380
+ def get_input_embeddings(self):
1381
+ return self.model.embed_tokens
1382
+
1383
+ def set_input_embeddings(self, value):
1384
+ self.model.embed_tokens = value
1385
+
1386
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1387
+ def forward(
1388
+ self,
1389
+ input_ids: torch.LongTensor = None,
1390
+ attention_mask: Optional[torch.Tensor] = None,
1391
+ position_ids: Optional[torch.LongTensor] = None,
1392
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1393
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1394
+ labels: Optional[torch.LongTensor] = None,
1395
+ use_cache: Optional[bool] = None,
1396
+ output_attentions: Optional[bool] = None,
1397
+ output_hidden_states: Optional[bool] = None,
1398
+ return_dict: Optional[bool] = None,
1399
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1400
+ r"""
1401
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1402
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1403
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1404
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1405
+ """
1406
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1407
+
1408
+ transformer_outputs = self.model(
1409
+ input_ids,
1410
+ attention_mask=attention_mask,
1411
+ position_ids=position_ids,
1412
+ past_key_values=past_key_values,
1413
+ inputs_embeds=inputs_embeds,
1414
+ use_cache=use_cache,
1415
+ output_attentions=output_attentions,
1416
+ output_hidden_states=output_hidden_states,
1417
+ return_dict=return_dict,
1418
+ )
1419
+ hidden_states = transformer_outputs[0]
1420
+ logits = self.score(hidden_states)
1421
+
1422
+ if input_ids is not None:
1423
+ batch_size = input_ids.shape[0]
1424
+ else:
1425
+ batch_size = inputs_embeds.shape[0]
1426
+
1427
+ if self.config.pad_token_id is None and batch_size != 1:
1428
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1429
+ if self.config.pad_token_id is None:
1430
+ sequence_lengths = -1
1431
+ else:
1432
+ if input_ids is not None:
1433
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
1434
+ logits.device
1435
+ )
1436
+ else:
1437
+ sequence_lengths = -1
1438
+
1439
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1440
+
1441
+ loss = None
1442
+ if labels is not None:
1443
+ labels = labels.to(logits.device)
1444
+ if self.config.problem_type is None:
1445
+ if self.num_labels == 1:
1446
+ self.config.problem_type = "regression"
1447
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1448
+ self.config.problem_type = "single_label_classification"
1449
+ else:
1450
+ self.config.problem_type = "multi_label_classification"
1451
+
1452
+ if self.config.problem_type == "regression":
1453
+ loss_fct = MSELoss()
1454
+ if self.num_labels == 1:
1455
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1456
+ else:
1457
+ loss = loss_fct(pooled_logits, labels)
1458
+ elif self.config.problem_type == "single_label_classification":
1459
+ loss_fct = CrossEntropyLoss()
1460
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1461
+ elif self.config.problem_type == "multi_label_classification":
1462
+ loss_fct = BCEWithLogitsLoss()
1463
+ loss = loss_fct(pooled_logits, labels)
1464
+ if not return_dict:
1465
+ output = (pooled_logits,) + transformer_outputs[1:]
1466
+ return ((loss,) + output) if loss is not None else output
1467
+
1468
+ return SequenceClassifierOutputWithPast(
1469
+ loss=loss,
1470
+ logits=pooled_logits,
1471
+ past_key_values=transformer_outputs.past_key_values,
1472
+ hidden_states=transformer_outputs.hidden_states,
1473
+ attentions=transformer_outputs.attentions,
1474
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "bos_token": "<s>",
31
+ "clean_up_tokenization_spaces": false,
32
+ "eos_token": "</s>",
33
+ "legacy": false,
34
+ "model_max_length": 1560,
35
+ "pad_token": "<unk>",
36
+ "padding_side": "right",
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false
42
+ }
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38026d559e629dc71d596081563ef7381074156009464f5458542758a9d4cc11
3
+ size 6840