zwt123home123 commited on
Commit
9f52557
·
verified ·
1 Parent(s): 8cb4895

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ examples/red-panda.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,897 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ pipeline_tag: image-text-to-text
4
+ library_name: transformers
5
+ base_model:
6
+ - OpenGVLab/InternViT-300M-448px
7
+ - microsoft/Phi-3-mini-128k-instruct
8
+ base_model_relation: merge
9
+ language:
10
+ - multilingual
11
+ tags:
12
+ - internvl
13
+ - vision
14
+ - ocr
15
+ - multi-image
16
+ - video
17
+ - custom_code
18
+ ---
19
+
20
+ # InternVL2-4B
21
+
22
+ [\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL) [\[🆕 Blog\]](https://internvl.github.io/blog/) [\[📜 InternVL 1.0 Paper\]](https://arxiv.org/abs/2312.14238) [\[📜 InternVL 1.5 Report\]](https://arxiv.org/abs/2404.16821)
23
+
24
+ [\[🗨️ Chat Demo\]](https://internvl.opengvlab.com/) [\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[🚀 Quick Start\]](#quick-start) [\[📖 中文解读\]](https://zhuanlan.zhihu.com/p/706547971) [\[📖 Documents\]](https://internvl.readthedocs.io/en/latest/)
25
+
26
+ [切换至中文版](#简介)
27
+
28
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/_mLpMwsav5eMeNcZdrIQl.png)
29
+
30
+ ## Introduction
31
+
32
+ We are excited to announce the release of InternVL 2.0, the latest addition to the InternVL series of multimodal large language models. InternVL 2.0 features a variety of **instruction-tuned models**, ranging from 1 billion to 108 billion parameters. This repository contains the instruction-tuned InternVL2-4B model.
33
+
34
+ Compared to the state-of-the-art open-source multimodal large language models, InternVL 2.0 surpasses most open-source models. It demonstrates competitive performance on par with proprietary commercial models across various capabilities, including document and chart comprehension, infographics QA, scene text understanding and OCR tasks, scientific and mathematical problem solving, as well as cultural understanding and integrated multimodal capabilities.
35
+
36
+ InternVL 2.0 is trained with an 8k context window and utilizes training data consisting of long texts, multiple images, and videos, significantly improving its ability to handle these types of inputs compared to InternVL 1.5. For more details, please refer to our [blog](https://internvl.github.io/blog/2024-07-02-InternVL-2.0/) and [GitHub](https://github.com/OpenGVLab/InternVL).
37
+
38
+ | Model Name | Vision Part | Language Part | HF Link | MS Link |
39
+ | :------------------: | :---------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------: | :--------------------------------------------------------------: | :--------------------------------------------------------------------: |
40
+ | InternVL2-1B | [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) | [Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-1B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-1B) |
41
+ | InternVL2-2B | [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) | [internlm2-chat-1_8b](https://huggingface.co/internlm/internlm2-chat-1_8b) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-2B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-2B) |
42
+ | InternVL2-4B | [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) | [Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-4B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-4B) |
43
+ | InternVL2-8B | [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) | [internlm2_5-7b-chat](https://huggingface.co/internlm/internlm2_5-7b-chat) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-8B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-8B) |
44
+ | InternVL2-26B | [InternViT-6B-448px-V1-5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) | [internlm2-chat-20b](https://huggingface.co/internlm/internlm2-chat-20b) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-26B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-26B) |
45
+ | InternVL2-40B | [InternViT-6B-448px-V1-5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) | [Nous-Hermes-2-Yi-34B](https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-40B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-40B) |
46
+ | InternVL2-Llama3-76B | [InternViT-6B-448px-V1-5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) | [Hermes-2-Theta-Llama-3-70B](https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-70B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-Llama3-76B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-Llama3-76B) |
47
+
48
+ ## Model Details
49
+
50
+ InternVL 2.0 is a multimodal large language model series, featuring models of various sizes. For each size, we release instruction-tuned models optimized for multimodal tasks. InternVL2-4B consists of [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px), an MLP projector, and [Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct).
51
+
52
+ ## Performance
53
+
54
+ ### Image Benchmarks
55
+
56
+ | Benchmark | PaliGemma-3B | Phi-3-Vision | Mini-InternVL-4B-1-5 | InternVL2-4B |
57
+ | :--------------------------: | :----------: | :----------: | :------------------: | :----------: |
58
+ | Model Size | 2.9B | 4.2B | 4.2B | 4.2B |
59
+ | | | | | |
60
+ | DocVQA<sub>test</sub> | - | - | 87.7 | 89.2 |
61
+ | ChartQA<sub>test</sub> | - | 81.4 | 81.0 | 81.5 |
62
+ | InfoVQA<sub>test</sub> | - | - | 64.6 | 67.0 |
63
+ | TextVQA<sub>val</sub> | 68.1 | 70.9 | 72.5 | 74.4 |
64
+ | OCRBench | 614 | 639 | 638 | 788 |
65
+ | MME<sub>sum</sub> | 1686.1 | 1508.0 | 2053.6 | 2064.1 |
66
+ | RealWorldQA | 55.2 | 58.8 | 60.1 | 60.7 |
67
+ | AI2D<sub>test</sub> | 68.3 | 76.7 | 76.9 | 78.9 |
68
+ | MMMU<sub>val</sub> | 34.9 | 40.4 / 46.1 | 43.3 / 45.1 | 47.0 / 47.9 |
69
+ | MMBench-EN<sub>test</sub> | 71.0 | 73.6 | 76.2 | 78.6 |
70
+ | MMBench-CN<sub>test</sub> | 63.6 | - | 70.3 | 73.9 |
71
+ | CCBench<sub>dev</sub> | 29.6 | 24.1 | 58.8 | 66.5 |
72
+ | MMVet<sub>GPT-4-0613</sub> | - | - | 46.7 | 55.7 |
73
+ | MMVet<sub>GPT-4-Turbo</sub> | 33.1 | 44.1 | 43.6 | 51.0 |
74
+ | SEED-Image | 69.6 | 70.9 | 72.5 | 73.7 |
75
+ | HallBench<sub>avg</sub> | 32.2 | 39.0 | 42.8 | 41.9 |
76
+ | MathVista<sub>testmini</sub> | 28.7 | 44.5 | 53.7 | 58.6 |
77
+ | OpenCompass<sub>avg</sub> | 46.6 | 53.6 | 56.2 | 60.6 |
78
+
79
+ - For more details and evaluation reproduction, please refer to our [Evaluation Guide](https://internvl.readthedocs.io/en/latest/internvl2.0/evaluation.html).
80
+
81
+ - We simultaneously use [InternVL](https://github.com/OpenGVLab/InternVL) and [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) repositories for model evaluation. Specifically, the results reported for DocVQA, ChartQA, InfoVQA, TextVQA, MME, AI2D, MMBench, CCBench, MMVet, and SEED-Image were tested using the InternVL repository. OCRBench, RealWorldQA, HallBench, and MathVista were evaluated using the VLMEvalKit.
82
+
83
+ - For MMMU, we report both the original scores (left side: evaluated using the InternVL codebase for InternVL series models, and sourced from technical reports or webpages for other models) and the VLMEvalKit scores (right side: collected from the OpenCompass leaderboard).
84
+
85
+ - Please note that evaluating the same model using different testing toolkits like [InternVL](https://github.com/OpenGVLab/InternVL) and [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) can result in slight differences, which is normal. Updates to code versions and variations in environment and hardware can also cause minor discrepancies in results.
86
+
87
+ ### Video Benchmarks
88
+
89
+ | Benchmark | VideoChat2-Phi3 | VideoChat2-HD-Mistral | Mini-InternVL-4B-1-5 | InternVL2-4B |
90
+ | :-------------------------: | :-------------: | :-------------------: | :------------------: | :----------: |
91
+ | Model Size | 4B | 7B | 4.2B | 4.2B |
92
+ | | | | | |
93
+ | MVBench | 55.1 | 60.4 | 46.9 | 63.7 |
94
+ | MMBench-Video<sub>8f</sub> | - | - | 1.06 | 1.10 |
95
+ | MMBench-Video<sub>16f</sub> | - | - | 1.10 | 1.18 |
96
+ | Video-MME<br>w/o subs | - | 42.3 | 50.2 | 51.4 |
97
+ | Video-MME<br>w subs | - | 54.6 | 52.7 | 53.4 |
98
+
99
+ - We evaluate our models on MVBench and Video-MME by extracting 16 frames from each video, and each frame was resized to a 448x448 image.
100
+
101
+ ### Grounding Benchmarks
102
+
103
+ | Model | avg. | RefCOCO<br>(val) | RefCOCO<br>(testA) | RefCOCO<br>(testB) | RefCOCO+<br>(val) | RefCOCO+<br>(testA) | RefCOCO+<br>(testB) | RefCOCO‑g<br>(val) | RefCOCO‑g<br>(test) |
104
+ | :----------------------------: | :--: | :--------------: | :----------------: | :----------------: | :---------------: | :-----------------: | :-----------------: | :----------------: | :-----------------: |
105
+ | UNINEXT-H<br>(Specialist SOTA) | 88.9 | 92.6 | 94.3 | 91.5 | 85.2 | 89.6 | 79.8 | 88.7 | 89.4 |
106
+ | | | | | | | | | | |
107
+ | Mini-InternVL-<br>Chat-2B-V1-5 | 75.8 | 80.7 | 86.7 | 72.9 | 72.5 | 82.3 | 60.8 | 75.6 | 74.9 |
108
+ | Mini-InternVL-<br>Chat-4B-V1-5 | 84.4 | 88.0 | 91.4 | 83.5 | 81.5 | 87.4 | 73.8 | 84.7 | 84.6 |
109
+ | InternVL‑Chat‑V1‑5 | 88.8 | 91.4 | 93.7 | 87.1 | 87.0 | 92.3 | 80.9 | 88.5 | 89.3 |
110
+ | | | | | | | | | | |
111
+ | InternVL2‑1B | 79.9 | 83.6 | 88.7 | 79.8 | 76.0 | 83.6 | 67.7 | 80.2 | 79.9 |
112
+ | InternVL2‑2B | 77.7 | 82.3 | 88.2 | 75.9 | 73.5 | 82.8 | 63.3 | 77.6 | 78.3 |
113
+ | InternVL2‑4B | 84.4 | 88.5 | 91.2 | 83.9 | 81.2 | 87.2 | 73.8 | 84.6 | 84.6 |
114
+ | InternVL2‑8B | 82.9 | 87.1 | 91.1 | 80.7 | 79.8 | 87.9 | 71.4 | 82.7 | 82.7 |
115
+ | InternVL2‑26B | 88.5 | 91.2 | 93.3 | 87.4 | 86.8 | 91.0 | 81.2 | 88.5 | 88.6 |
116
+ | InternVL2‑40B | 90.3 | 93.0 | 94.7 | 89.2 | 88.5 | 92.8 | 83.6 | 90.3 | 90.6 |
117
+ | InternVL2-<br>Llama3‑76B | 90.0 | 92.2 | 94.8 | 88.4 | 88.8 | 93.1 | 82.8 | 89.5 | 90.3 |
118
+
119
+ - We use the following prompt to evaluate InternVL's grounding ability: `Please provide the bounding box coordinates of the region this sentence describes: <ref>{}</ref>`
120
+
121
+ Limitations: Although we have made efforts to ensure the safety of the model during the training process and to encourage the model to generate text that complies with ethical and legal requirements, the model may still produce unexpected outputs due to its size and probabilistic generation paradigm. For example, the generated responses may contain biases, discrimination, or other harmful content. Please do not propagate such content. We are not responsible for any consequences resulting from the dissemination of harmful information.
122
+
123
+ ### Invitation to Evaluate InternVL
124
+
125
+ We welcome MLLM benchmark developers to assess our InternVL1.5 and InternVL2 series models. If you need to add your evaluation results here, please contact me at [wztxy89@163.com](mailto:wztxy89@163.com).
126
+
127
+ ## Quick Start
128
+
129
+ We provide an example code to run InternVL2-4B using `transformers`.
130
+
131
+ We also welcome you to experience the InternVL2 series models in our [online demo](https://internvl.opengvlab.com/).
132
+
133
+ > Please use transformers==4.37.2 to ensure the model works normally.
134
+
135
+ ### Model Loading
136
+
137
+ #### 16-bit (bf16 / fp16)
138
+
139
+ ```python
140
+ import torch
141
+ from transformers import AutoTokenizer, AutoModel
142
+ path = "OpenGVLab/InternVL2-4B"
143
+ model = AutoModel.from_pretrained(
144
+ path,
145
+ torch_dtype=torch.bfloat16,
146
+ low_cpu_mem_usage=True,
147
+ use_flash_attn=True,
148
+ trust_remote_code=True).eval().cuda()
149
+ ```
150
+
151
+ #### BNB 8-bit Quantization
152
+
153
+ ```python
154
+ import torch
155
+ from transformers import AutoTokenizer, AutoModel
156
+ path = "OpenGVLab/InternVL2-4B"
157
+ model = AutoModel.from_pretrained(
158
+ path,
159
+ torch_dtype=torch.bfloat16,
160
+ load_in_8bit=True,
161
+ low_cpu_mem_usage=True,
162
+ use_flash_attn=True,
163
+ trust_remote_code=True).eval()
164
+ ```
165
+
166
+ #### BNB 4-bit Quantization
167
+
168
+ ```python
169
+ import torch
170
+ from transformers import AutoTokenizer, AutoModel
171
+ path = "OpenGVLab/InternVL2-4B"
172
+ model = AutoModel.from_pretrained(
173
+ path,
174
+ torch_dtype=torch.bfloat16,
175
+ load_in_4bit=True,
176
+ low_cpu_mem_usage=True,
177
+ use_flash_attn=True,
178
+ trust_remote_code=True).eval()
179
+ ```
180
+
181
+ #### Multiple GPUs
182
+
183
+ The reason for writing the code this way is to avoid errors that occur during multi-GPU inference due to tensors not being on the same device. By ensuring that the first and last layers of the large language model (LLM) are on the same device, we prevent such errors.
184
+
185
+ ```python
186
+ import math
187
+ import torch
188
+ from transformers import AutoTokenizer, AutoModel
189
+
190
+ def split_model(model_name):
191
+ device_map = {}
192
+ world_size = torch.cuda.device_count()
193
+ num_layers = {
194
+ 'InternVL2-1B': 24, 'InternVL2-2B': 24, 'InternVL2-4B': 32, 'InternVL2-8B': 32,
195
+ 'InternVL2-26B': 48, 'InternVL2-40B': 60, 'InternVL2-Llama3-76B': 80}[model_name]
196
+ # Since the first GPU will be used for ViT, treat it as half a GPU.
197
+ num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
198
+ num_layers_per_gpu = [num_layers_per_gpu] * world_size
199
+ num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
200
+ layer_cnt = 0
201
+ for i, num_layer in enumerate(num_layers_per_gpu):
202
+ for j in range(num_layer):
203
+ device_map[f'language_model.model.layers.{layer_cnt}'] = i
204
+ layer_cnt += 1
205
+ device_map['vision_model'] = 0
206
+ device_map['mlp1'] = 0
207
+ device_map['language_model.model.tok_embeddings'] = 0
208
+ device_map['language_model.model.embed_tokens'] = 0
209
+ device_map['language_model.output'] = 0
210
+ device_map['language_model.model.norm'] = 0
211
+ device_map['language_model.lm_head'] = 0
212
+ device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
213
+
214
+ return device_map
215
+
216
+ path = "OpenGVLab/InternVL2-4B"
217
+ device_map = split_model('InternVL2-4B')
218
+ model = AutoModel.from_pretrained(
219
+ path,
220
+ torch_dtype=torch.bfloat16,
221
+ low_cpu_mem_usage=True,
222
+ use_flash_attn=True,
223
+ trust_remote_code=True,
224
+ device_map=device_map).eval()
225
+ ```
226
+
227
+ ### Inference with Transformers
228
+
229
+ ```python
230
+ import numpy as np
231
+ import torch
232
+ import torchvision.transforms as T
233
+ from decord import VideoReader, cpu
234
+ from PIL import Image
235
+ from torchvision.transforms.functional import InterpolationMode
236
+ from transformers import AutoModel, AutoTokenizer
237
+
238
+ IMAGENET_MEAN = (0.485, 0.456, 0.406)
239
+ IMAGENET_STD = (0.229, 0.224, 0.225)
240
+
241
+ def build_transform(input_size):
242
+ MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
243
+ transform = T.Compose([
244
+ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
245
+ T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
246
+ T.ToTensor(),
247
+ T.Normalize(mean=MEAN, std=STD)
248
+ ])
249
+ return transform
250
+
251
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
252
+ best_ratio_diff = float('inf')
253
+ best_ratio = (1, 1)
254
+ area = width * height
255
+ for ratio in target_ratios:
256
+ target_aspect_ratio = ratio[0] / ratio[1]
257
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
258
+ if ratio_diff < best_ratio_diff:
259
+ best_ratio_diff = ratio_diff
260
+ best_ratio = ratio
261
+ elif ratio_diff == best_ratio_diff:
262
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
263
+ best_ratio = ratio
264
+ return best_ratio
265
+
266
+ def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
267
+ orig_width, orig_height = image.size
268
+ aspect_ratio = orig_width / orig_height
269
+
270
+ # calculate the existing image aspect ratio
271
+ target_ratios = set(
272
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
273
+ i * j <= max_num and i * j >= min_num)
274
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
275
+
276
+ # find the closest aspect ratio to the target
277
+ target_aspect_ratio = find_closest_aspect_ratio(
278
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size)
279
+
280
+ # calculate the target width and height
281
+ target_width = image_size * target_aspect_ratio[0]
282
+ target_height = image_size * target_aspect_ratio[1]
283
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
284
+
285
+ # resize the image
286
+ resized_img = image.resize((target_width, target_height))
287
+ processed_images = []
288
+ for i in range(blocks):
289
+ box = (
290
+ (i % (target_width // image_size)) * image_size,
291
+ (i // (target_width // image_size)) * image_size,
292
+ ((i % (target_width // image_size)) + 1) * image_size,
293
+ ((i // (target_width // image_size)) + 1) * image_size
294
+ )
295
+ # split the image
296
+ split_img = resized_img.crop(box)
297
+ processed_images.append(split_img)
298
+ assert len(processed_images) == blocks
299
+ if use_thumbnail and len(processed_images) != 1:
300
+ thumbnail_img = image.resize((image_size, image_size))
301
+ processed_images.append(thumbnail_img)
302
+ return processed_images
303
+
304
+ def load_image(image_file, input_size=448, max_num=12):
305
+ image = Image.open(image_file).convert('RGB')
306
+ transform = build_transform(input_size=input_size)
307
+ images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
308
+ pixel_values = [transform(image) for image in images]
309
+ pixel_values = torch.stack(pixel_values)
310
+ return pixel_values
311
+
312
+ # If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section.
313
+ path = 'OpenGVLab/InternVL2-4B'
314
+ model = AutoModel.from_pretrained(
315
+ path,
316
+ torch_dtype=torch.bfloat16,
317
+ low_cpu_mem_usage=True,
318
+ use_flash_attn=True,
319
+ trust_remote_code=True).eval().cuda()
320
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
321
+
322
+ # set the max number of tiles in `max_num`
323
+ pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
324
+ generation_config = dict(max_new_tokens=1024, do_sample=True)
325
+
326
+ # pure-text conversation (纯文本对话)
327
+ question = 'Hello, who are you?'
328
+ response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
329
+ print(f'User: {question}\nAssistant: {response}')
330
+
331
+ question = 'Can you tell me a story?'
332
+ response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
333
+ print(f'User: {question}\nAssistant: {response}')
334
+
335
+ # single-image single-round conversation (单图单轮对话)
336
+ question = '<image>\nPlease describe the image shortly.'
337
+ response = model.chat(tokenizer, pixel_values, question, generation_config)
338
+ print(f'User: {question}\nAssistant: {response}')
339
+
340
+ # single-image multi-round conversation (单图多轮对话)
341
+ question = '<image>\nPlease describe the image in detail.'
342
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
343
+ print(f'User: {question}\nAssistant: {response}')
344
+
345
+ question = 'Please write a poem according to the image.'
346
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
347
+ print(f'User: {question}\nAssistant: {response}')
348
+
349
+ # multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
350
+ pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
351
+ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
352
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
353
+
354
+ question = '<image>\nDescribe the two images in detail.'
355
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
356
+ history=None, return_history=True)
357
+ print(f'User: {question}\nAssistant: {response}')
358
+
359
+ question = 'What are the similarities and differences between these two images.'
360
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
361
+ history=history, return_history=True)
362
+ print(f'User: {question}\nAssistant: {response}')
363
+
364
+ # multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
365
+ pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
366
+ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
367
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
368
+ num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
369
+
370
+ question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
371
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
372
+ num_patches_list=num_patches_list,
373
+ history=None, return_history=True)
374
+ print(f'User: {question}\nAssistant: {response}')
375
+
376
+ question = 'What are the similarities and differences between these two images.'
377
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
378
+ num_patches_list=num_patches_list,
379
+ history=history, return_history=True)
380
+ print(f'User: {question}\nAssistant: {response}')
381
+
382
+ # batch inference, single image per sample (单图批处理)
383
+ pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
384
+ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
385
+ num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
386
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
387
+
388
+ questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
389
+ responses = model.batch_chat(tokenizer, pixel_values,
390
+ num_patches_list=num_patches_list,
391
+ questions=questions,
392
+ generation_config=generation_config)
393
+ for question, response in zip(questions, responses):
394
+ print(f'User: {question}\nAssistant: {response}')
395
+
396
+ # video multi-round conversation (视频多轮对话)
397
+ def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
398
+ if bound:
399
+ start, end = bound[0], bound[1]
400
+ else:
401
+ start, end = -100000, 100000
402
+ start_idx = max(first_idx, round(start * fps))
403
+ end_idx = min(round(end * fps), max_frame)
404
+ seg_size = float(end_idx - start_idx) / num_segments
405
+ frame_indices = np.array([
406
+ int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
407
+ for idx in range(num_segments)
408
+ ])
409
+ return frame_indices
410
+
411
+ def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
412
+ vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
413
+ max_frame = len(vr) - 1
414
+ fps = float(vr.get_avg_fps())
415
+
416
+ pixel_values_list, num_patches_list = [], []
417
+ transform = build_transform(input_size=input_size)
418
+ frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
419
+ for frame_index in frame_indices:
420
+ img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
421
+ img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
422
+ pixel_values = [transform(tile) for tile in img]
423
+ pixel_values = torch.stack(pixel_values)
424
+ num_patches_list.append(pixel_values.shape[0])
425
+ pixel_values_list.append(pixel_values)
426
+ pixel_values = torch.cat(pixel_values_list)
427
+ return pixel_values, num_patches_list
428
+
429
+ video_path = './examples/red-panda.mp4'
430
+ pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
431
+ pixel_values = pixel_values.to(torch.bfloat16).cuda()
432
+ video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
433
+ question = video_prefix + 'What is the red panda doing?'
434
+ # Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
435
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
436
+ num_patches_list=num_patches_list, history=None, return_history=True)
437
+ print(f'User: {question}\nAssistant: {response}')
438
+
439
+ question = 'Describe this video in detail. Don\'t repeat.'
440
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
441
+ num_patches_list=num_patches_list, history=history, return_history=True)
442
+ print(f'User: {question}\nAssistant: {response}')
443
+ ```
444
+
445
+ #### Streaming output
446
+
447
+ Besides this method, you can also use the following code to get streamed output.
448
+
449
+ ```python
450
+ from transformers import TextIteratorStreamer
451
+ from threading import Thread
452
+
453
+ # Initialize the streamer
454
+ streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10)
455
+ # Define the generation configuration
456
+ generation_config = dict(max_new_tokens=1024, do_sample=False, streamer=streamer)
457
+ # Start the model chat in a separate thread
458
+ thread = Thread(target=model.chat, kwargs=dict(
459
+ tokenizer=tokenizer, pixel_values=pixel_values, question=question,
460
+ history=None, return_history=False, generation_config=generation_config,
461
+ ))
462
+ thread.start()
463
+
464
+ # Initialize an empty string to store the generated text
465
+ generated_text = ''
466
+ # Loop through the streamer to get the new text as it is generated
467
+ for new_text in streamer:
468
+ if new_text == model.conv_template.sep:
469
+ break
470
+ generated_text += new_text
471
+ print(new_text, end='', flush=True) # Print each new chunk of generated text on the same line
472
+ ```
473
+
474
+ ## Finetune
475
+
476
+ Many repositories now support fine-tuning of the InternVL series models, including [InternVL](https://github.com/OpenGVLab/InternVL), [SWIFT](https://github.com/modelscope/ms-swift), [XTurner](https://github.com/InternLM/xtuner), and others. Please refer to their documentation for more details on fine-tuning.
477
+
478
+ ## Deployment
479
+
480
+ ### LMDeploy
481
+
482
+ LMDeploy is a toolkit for compressing, deploying, and serving LLM, developed by the MMRazor and MMDeploy teams.
483
+
484
+ ```sh
485
+ pip install lmdeploy==0.5.3
486
+ ```
487
+
488
+ LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.
489
+
490
+ #### A 'Hello, world' example
491
+
492
+ ```python
493
+ from lmdeploy import pipeline, TurbomindEngineConfig
494
+ from lmdeploy.vl import load_image
495
+
496
+ model = 'OpenGVLab/InternVL2-4B'
497
+ image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
498
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
499
+ response = pipe(('describe this image', image))
500
+ print(response.text)
501
+ ```
502
+
503
+ If `ImportError` occurs while executing this case, please install the required dependency packages as prompted.
504
+
505
+ #### Multi-images inference
506
+
507
+ When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased.
508
+
509
+ > Warning: Due to the scarcity of multi-image conversation data, the performance on multi-image tasks may be unstable, and it may require multiple attempts to achieve satisfactory results.
510
+
511
+ ```python
512
+ from lmdeploy import pipeline, TurbomindEngineConfig
513
+ from lmdeploy.vl import load_image
514
+ from lmdeploy.vl.constants import IMAGE_TOKEN
515
+
516
+ model = 'OpenGVLab/InternVL2-4B'
517
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
518
+
519
+ image_urls=[
520
+ 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
521
+ 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg'
522
+ ]
523
+
524
+ images = [load_image(img_url) for img_url in image_urls]
525
+ # Numbering images improves multi-image conversations
526
+ response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
527
+ print(response.text)
528
+ ```
529
+
530
+ #### Batch prompts inference
531
+
532
+ Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
533
+
534
+ ```python
535
+ from lmdeploy import pipeline, TurbomindEngineConfig
536
+ from lmdeploy.vl import load_image
537
+
538
+ model = 'OpenGVLab/InternVL2-4B'
539
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
540
+
541
+ image_urls=[
542
+ "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
543
+ "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg"
544
+ ]
545
+ prompts = [('describe this image', load_image(img_url)) for img_url in image_urls]
546
+ response = pipe(prompts)
547
+ print(response)
548
+ ```
549
+
550
+ #### Multi-turn conversation
551
+
552
+ There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
553
+
554
+ ```python
555
+ from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
556
+ from lmdeploy.vl import load_image
557
+
558
+ model = 'OpenGVLab/InternVL2-4B'
559
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
560
+
561
+ image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
562
+ gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
563
+ sess = pipe.chat(('describe this image', image), gen_config=gen_config)
564
+ print(sess.response.text)
565
+ sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config)
566
+ print(sess.response.text)
567
+ ```
568
+
569
+ #### Service
570
+
571
+ LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
572
+
573
+ ```shell
574
+ lmdeploy serve api_server OpenGVLab/InternVL2-4B --backend turbomind --server-port 23333
575
+ ```
576
+
577
+ To use the OpenAI-style interface, you need to install OpenAI:
578
+
579
+ ```shell
580
+ pip install openai
581
+ ```
582
+
583
+ Then, use the code below to make the API call:
584
+
585
+ ```python
586
+ from openai import OpenAI
587
+
588
+ client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
589
+ model_name = client.models.list().data[0].id
590
+ response = client.chat.completions.create(
591
+ model=model_name,
592
+ messages=[{
593
+ 'role':
594
+ 'user',
595
+ 'content': [{
596
+ 'type': 'text',
597
+ 'text': 'describe this image',
598
+ }, {
599
+ 'type': 'image_url',
600
+ 'image_url': {
601
+ 'url':
602
+ 'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
603
+ },
604
+ }],
605
+ }],
606
+ temperature=0.8,
607
+ top_p=0.8)
608
+ print(response)
609
+ ```
610
+
611
+ ## License
612
+
613
+ This project is released under the MIT license.
614
+
615
+ ## Citation
616
+
617
+ If you find this project useful in your research, please consider citing:
618
+
619
+ ```BibTeX
620
+ @article{chen2023internvl,
621
+ title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
622
+ author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
623
+ journal={arXiv preprint arXiv:2312.14238},
624
+ year={2023}
625
+ }
626
+ @article{chen2024far,
627
+ title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
628
+ author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
629
+ journal={arXiv preprint arXiv:2404.16821},
630
+ year={2024}
631
+ }
632
+ ```
633
+
634
+ ## 简介
635
+
636
+ 我们很高兴宣布 InternVL 2.0 的发布,这是 InternVL 系列多模态大语言模型的最新版本。InternVL 2.0 提供了多种**指令微调**的模型,参数从 10 亿到 1080 亿不等。此仓库包含经过指令微调的 InternVL2-4B 模型。
637
+
638
+ 与最先进的开源多模态大语言模型相比,InternVL 2.0 超越了大多数开源模型。它在各种能力上表现出与闭源商业模型相媲美的竞争力,包括文档和图表理解、信息图表问答、场景文本理解和 OCR 任务、科学和数学问题解决,以及文化理解和综合多模态能力。
639
+
640
+ InternVL 2.0 使用 8k 上下文窗口进行训练,训练数据包含长文本、多图和视频数据,与 InternVL 1.5 相比,其处理这些类型输入的能力显著提高。更多详细信息,请参阅我们的博客和 GitHub。
641
+
642
+ | 模型名称 | 视觉部分 | 语言部分 | HF 链接 | MS 链接 |
643
+ | :------------------: | :---------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------: | :--------------------------------------------------------------: | :--------------------------------------------------------------------: |
644
+ | InternVL2-1B | [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) | [Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-1B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-1B) |
645
+ | InternVL2-2B | [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) | [internlm2-chat-1_8b](https://huggingface.co/internlm/internlm2-chat-1_8b) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-2B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-2B) |
646
+ | InternVL2-4B | [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) | [Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-4B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-4B) |
647
+ | InternVL2-8B | [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) | [internlm2_5-7b-chat](https://huggingface.co/internlm/internlm2_5-7b-chat) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-8B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-8B) |
648
+ | InternVL2-26B | [InternViT-6B-448px-V1-5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) | [internlm2-chat-20b](https://huggingface.co/internlm/internlm2-chat-20b) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-26B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-26B) |
649
+ | InternVL2-40B | [InternViT-6B-448px-V1-5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) | [Nous-Hermes-2-Yi-34B](https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-40B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-40B) |
650
+ | InternVL2-Llama3-76B | [InternViT-6B-448px-V1-5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) | [Hermes-2-Theta-Llama-3-70B](https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-70B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-Llama3-76B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-Llama3-76B) |
651
+
652
+ ## 模型细节
653
+
654
+ InternVL 2.0 是一个多模态大语言模型系列,包含各种规模的模型。对于每个规模的模型,我们都会发布针对多模态任务优化的指令微调模型。InternVL2-4B 包含 [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px)、一个 MLP 投影器和 [Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct)。
655
+
656
+ ## 性能测试
657
+
658
+ ### 图像相关评测
659
+
660
+ | 评测数据集 | PaliGemma-3B | Phi-3-Vision | Mini-InternVL-4B-1-5 | InternVL2-4B |
661
+ | :--------------------------: | :----------: | :----------: | :------------------: | :----------: |
662
+ | 模型大小 | 2.9B | 4.2B | 4.2B | 4.2B |
663
+ | | | | | |
664
+ | DocVQA<sub>test</sub> | - | - | 87.7 | 89.2 |
665
+ | ChartQA<sub>test</sub> | - | 81.4 | 81.0 | 81.5 |
666
+ | InfoVQA<sub>test</sub> | - | - | 64.6 | 67.0 |
667
+ | TextVQA<sub>val</sub> | 68.1 | 70.9 | 72.5 | 74.4 |
668
+ | OCRBench | 614 | 639 | 638 | 788 |
669
+ | MME<sub>sum</sub> | 1686.1 | 1508.0 | 2053.6 | 2064.1 |
670
+ | RealWorldQA | 55.2 | 58.8 | 60.1 | 60.7 |
671
+ | AI2D<sub>test</sub> | 68.3 | 76.7 | 76.9 | 78.9 |
672
+ | MMMU<sub>val</sub> | 34.9 | 40.4 / 46.1 | 43.3 / 45.1 | 47.0 / 47.9 |
673
+ | MMBench-EN<sub>test</sub> | 71.0 | 73.6 | 76.2 | 78.6 |
674
+ | MMBench-CN<sub>test</sub> | 63.6 | - | 70.3 | 73.9 |
675
+ | CCBench<sub>dev</sub> | 29.6 | 24.1 | 58.8 | 66.5 |
676
+ | MMVet<sub>GPT-4-0613</sub> | - | - | 46.7 | 55.7 |
677
+ | MMVet<sub>GPT-4-Turbo</sub> | 33.1 | 44.1 | 43.6 | 51.0 |
678
+ | SEED-Image | 69.6 | 70.9 | 72.5 | 73.7 |
679
+ | HallBench<sub>avg</sub> | 32.2 | 39.0 | 42.8 | 41.9 |
680
+ | MathVista<sub>testmini</sub> | 28.7 | 44.5 | 53.7 | 58.6 |
681
+ | OpenCompass<sub>avg</sub> | 46.6 | 53.6 | 56.2 | 60.6 |
682
+
683
+ - 关于更多的细节以及评测复现,请看我们的[评测指南](https://internvl.readthedocs.io/en/latest/internvl2.0/evaluation.html)。
684
+
685
+ - 我们同时使用 InternVL 和 VLMEvalKit 仓库进行模型评估。具体来说,DocVQA、ChartQA、InfoVQA、TextVQA、MME、AI2D、MMBench、CCBench、MMVet 和 SEED-Image 的结果是使用 InternVL 仓库测试的。OCRBench、RealWorldQA、HallBench 和 MathVista 是使用 VLMEvalKit 进行评估的。
686
+
687
+ - 对于MMMU,我们报告了原始分数(左侧:InternVL系列模型使用InternVL代码库评测,其他模型的分数来自其技术报告或网页)和VLMEvalKit分数(右侧:从OpenCompass排行榜收集)。
688
+
689
+ - 请注意,使用不同的测试工具包(如 InternVL 和 VLMEvalKit)评估同一模型可能会导致细微差异,这是正常的。代码版本的更新、环境和硬件的变化也可能导致结果的微小差异。
690
+
691
+ ### 视频相关评测
692
+
693
+ | 评测数据集 | VideoChat2-Phi3 | VideoChat2-HD-Mistral | Mini-InternVL-4B-1-5 | InternVL2-4B |
694
+ | :-------------------------: | :-------------: | :-------------------: | :------------------: | :----------: |
695
+ | 模型大小 | 4B | 7B | 4.2B | 4.2B |
696
+ | | | | | |
697
+ | MVBench | 55.1 | 60.4 | 46.9 | 63.7 |
698
+ | MMBench-Video<sub>8f</sub> | - | - | 1.06 | 1.10 |
699
+ | MMBench-Video<sub>16f</sub> | - | - | 1.10 | 1.18 |
700
+ | Video-MME<br>w/o subs | - | 42.3 | 50.2 | 51.4 |
701
+ | Video-MME<br>w subs | - | 54.6 | 52.7 | 53.4 |
702
+
703
+ - 我们通过从每个视频中提取 16 帧来评估我们的模型在 MVBench 和 Video-MME 上的性能,每个视频帧被调整为 448x448 的图像。
704
+
705
+ ### 定位相关评测
706
+
707
+ | 模型 | avg. | RefCOCO<br>(val) | RefCOCO<br>(testA) | RefCOCO<br>(testB) | RefCOCO+<br>(val) | RefCOCO+<br>(testA) | RefCOCO+<br>(testB) | RefCOCO‑g<br>(val) | RefCOCO‑g<br>(test) |
708
+ | :----------------------------: | :--: | :--------------: | :----------------: | :----------------: | :---------------: | :-----------------: | :-----------------: | :----------------: | :-----------------: |
709
+ | UNINEXT-H<br>(Specialist SOTA) | 88.9 | 92.6 | 94.3 | 91.5 | 85.2 | 89.6 | 79.8 | 88.7 | 89.4 |
710
+ | | | | | | | | | | |
711
+ | Mini-InternVL-<br>Chat-2B-V1-5 | 75.8 | 80.7 | 86.7 | 72.9 | 72.5 | 82.3 | 60.8 | 75.6 | 74.9 |
712
+ | Mini-InternVL-<br>Chat-4B-V1-5 | 84.4 | 88.0 | 91.4 | 83.5 | 81.5 | 87.4 | 73.8 | 84.7 | 84.6 |
713
+ | InternVL‑Chat‑V1‑5 | 88.8 | 91.4 | 93.7 | 87.1 | 87.0 | 92.3 | 80.9 | 88.5 | 89.3 |
714
+ | | | | | | | | | | |
715
+ | InternVL2‑1B | 79.9 | 83.6 | 88.7 | 79.8 | 76.0 | 83.6 | 67.7 | 80.2 | 79.9 |
716
+ | InternVL2‑2B | 77.7 | 82.3 | 88.2 | 75.9 | 73.5 | 82.8 | 63.3 | 77.6 | 78.3 |
717
+ | InternVL2‑4B | 84.4 | 88.5 | 91.2 | 83.9 | 81.2 | 87.2 | 73.8 | 84.6 | 84.6 |
718
+ | InternVL2‑8B | 82.9 | 87.1 | 91.1 | 80.7 | 79.8 | 87.9 | 71.4 | 82.7 | 82.7 |
719
+ | InternVL2‑26B | 88.5 | 91.2 | 93.3 | 87.4 | 86.8 | 91.0 | 81.2 | 88.5 | 88.6 |
720
+ | InternVL2‑40B | 90.3 | 93.0 | 94.7 | 89.2 | 88.5 | 92.8 | 83.6 | 90.3 | 90.6 |
721
+ | InternVL2-<br>Llama3‑76B | 90.0 | 92.2 | 94.8 | 88.4 | 88.8 | 93.1 | 82.8 | 89.5 | 90.3 |
722
+
723
+ - 我们使用以下 Prompt 来评测 InternVL 的 Grounding 能力: `Please provide the bounding box coordinates of the region this sentence describes: <ref>{}</ref>`
724
+
725
+ 限制:尽管在训练过程中我们非常注重模型的安全性,尽力促使模型输出符合伦理和法律要求的文本,但受限于模型大小以及概率生成范式,模型可能会产生各种不符合预期的输出,例如回复内容包含偏见、歧视等有害内容,请勿传播这些内容。由于传播不良信息导致的任何后果,本项目不承担责任。
726
+
727
+ ### 邀请评测 InternVL
728
+
729
+ 我们欢迎各位 MLLM benchmark 的开发者对我们的 InternVL1.5 以及 InternVL2 系列模型进行评测。如果需要在此处添加评测结果,请与我联系([wztxy89@163.com](mailto:wztxy89@163.com))。
730
+
731
+ ## 快速启动
732
+
733
+ 我们提供了一个示例代码,用于使用 `transformers` 运行 InternVL2-4B。
734
+
735
+ 我们也欢迎你在我们的[在线demo](https://internvl.opengvlab.com/)中体验InternVL2的系列模型。
736
+
737
+ > 请使用 transformers==4.37.2 以确保模型正常运行。
738
+
739
+ 示例代码请[点击这里](#quick-start)。
740
+
741
+ ## 微调
742
+
743
+ 许多仓库现在都支持 InternVL 系列模型的微调,包括 [InternVL](https://github.com/OpenGVLab/InternVL)、[SWIFT](https://github.com/modelscope/ms-swift)、[XTurner](https://github.com/InternLM/xtuner) 等。请参阅它们的文档以获取更多微调细节。
744
+
745
+ ## 部署
746
+
747
+ ### LMDeploy
748
+
749
+ LMDeploy 是由 MMRazor 和 MMDeploy 团队开发的用于压缩、部署和服务大语言模型(LLM)的工具包。
750
+
751
+ ```sh
752
+ pip install lmdeploy==0.5.3
753
+ ```
754
+
755
+ LMDeploy 将多模态视觉-语言模型(VLM)的复杂推理过程抽象为一个易于使用的管道,类似于大语言模型(LLM)的推理管道。
756
+
757
+ #### 一个“你好,世界”示例
758
+
759
+ ```python
760
+ from lmdeploy import pipeline, TurbomindEngineConfig
761
+ from lmdeploy.vl import load_image
762
+
763
+ model = 'OpenGVLab/InternVL2-4B'
764
+ image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
765
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
766
+ response = pipe(('describe this image', image))
767
+ print(response.text)
768
+ ```
769
+
770
+ 如果在执行此示例时出现 `ImportError`,请按照提示安装所需的依赖包。
771
+
772
+ #### 多图像推理
773
+
774
+ 在处理多张图像时,可以将它们全部放入一个列表中。请注意,多张图像会导致输入 token 数量增加,因此通常需要增加上下文窗口的大小。
775
+
776
+ ```python
777
+ from lmdeploy import pipeline, TurbomindEngineConfig
778
+ from lmdeploy.vl import load_image
779
+ from lmdeploy.vl.constants import IMAGE_TOKEN
780
+
781
+ model = 'OpenGVLab/InternVL2-4B'
782
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
783
+
784
+ image_urls=[
785
+ 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
786
+ 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg'
787
+ ]
788
+
789
+ images = [load_image(img_url) for img_url in image_urls]
790
+ # Numbering images improves multi-image conversations
791
+ response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
792
+ print(response.text)
793
+ ```
794
+
795
+ #### 批量Prompt推理
796
+
797
+ 使用批量Prompt进行推理非常简单;只需将它们放在一个列表结构中:
798
+
799
+ ```python
800
+ from lmdeploy import pipeline, TurbomindEngineConfig
801
+ from lmdeploy.vl import load_image
802
+
803
+ model = 'OpenGVLab/InternVL2-4B'
804
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
805
+
806
+ image_urls=[
807
+ "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
808
+ "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg"
809
+ ]
810
+ prompts = [('describe this image', load_image(img_url)) for img_url in image_urls]
811
+ response = pipe(prompts)
812
+ print(response)
813
+ ```
814
+
815
+ #### 多轮对话
816
+
817
+ 使用管道进行多轮对话有两种方法。一种是根据 OpenAI 的格式构建消息并使用上述方法,另一种是使用 `pipeline.chat` 接口。
818
+
819
+ ```python
820
+ from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
821
+ from lmdeploy.vl import load_image
822
+
823
+ model = 'OpenGVLab/InternVL2-4B'
824
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
825
+
826
+ image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
827
+ gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
828
+ sess = pipe.chat(('describe this image', image), gen_config=gen_config)
829
+ print(sess.response.text)
830
+ sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config)
831
+ print(sess.response.text)
832
+ ```
833
+
834
+ #### API部署
835
+
836
+ LMDeploy 的 `api_server` 使模型能够通过一个命令轻松打包成服务。提供的 RESTful API 与 OpenAI 的接口兼容。以下是服务启动的示例:
837
+
838
+ ```shell
839
+ lmdeploy serve api_server OpenGVLab/InternVL2-4B --backend turbomind --server-port 23333
840
+ ```
841
+
842
+ 为了使用OpenAI风格的API接口,您需要安装OpenAI:
843
+
844
+ ```shell
845
+ pip install openai
846
+ ```
847
+
848
+ 然后,使用下面的代码进行API调用:
849
+
850
+ ```python
851
+ from openai import OpenAI
852
+
853
+ client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
854
+ model_name = client.models.list().data[0].id
855
+ response = client.chat.completions.create(
856
+ model=model_name,
857
+ messages=[{
858
+ 'role':
859
+ 'user',
860
+ 'content': [{
861
+ 'type': 'text',
862
+ 'text': 'describe this image',
863
+ }, {
864
+ 'type': 'image_url',
865
+ 'image_url': {
866
+ 'url':
867
+ 'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
868
+ },
869
+ }],
870
+ }],
871
+ temperature=0.8,
872
+ top_p=0.8)
873
+ print(response)
874
+ ```
875
+
876
+ ## 开源许可证
877
+
878
+ 该项目采用 MIT 许可证发布。
879
+
880
+ ## 引用
881
+
882
+ 如果您发现此项目对您的研究有用,可以考虑引用我们的论文:
883
+
884
+ ```BibTeX
885
+ @article{chen2023internvl,
886
+ title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
887
+ author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
888
+ journal={arXiv preprint arXiv:2312.14238},
889
+ year={2023}
890
+ }
891
+ @article{chen2024far,
892
+ title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
893
+ author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
894
+ journal={arXiv preprint arXiv:2404.16821},
895
+ year={2024}
896
+ }
897
+ ```
added_tokens.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 32019,
3
+ "</img>": 32012,
4
+ "</quad>": 32015,
5
+ "</ref>": 32017,
6
+ "<IMG_CONTEXT>": 32013,
7
+ "<box>": 32018,
8
+ "<img>": 32011,
9
+ "<quad>": 32014,
10
+ "<ref>": 32016,
11
+ "<|assistant|>": 32001,
12
+ "<|endoftext|>": 32000,
13
+ "<|end|>": 32007,
14
+ "<|placeholder1|>": 32002,
15
+ "<|placeholder2|>": 32003,
16
+ "<|placeholder3|>": 32004,
17
+ "<|placeholder4|>": 32005,
18
+ "<|placeholder5|>": 32008,
19
+ "<|placeholder6|>": 32009,
20
+ "<|system|>": 32006,
21
+ "<|user|>": 32010
22
+ }
config.json ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "architectures": [
4
+ "InternVLChatModel"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
8
+ "AutoModel": "modeling_internvl_chat.InternVLChatModel",
9
+ "AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
10
+ },
11
+ "downsample_ratio": 0.5,
12
+ "dynamic_image_size": true,
13
+ "force_image_size": 448,
14
+ "llm_config": {
15
+ "_name_or_path": "microsoft/Phi-3-mini-128k-instruct",
16
+ "add_cross_attention": false,
17
+ "architectures": [
18
+ "Phi3ForCausalLM"
19
+ ],
20
+ "attn_implementation": "flash_attention_2",
21
+ "attention_dropout": 0.0,
22
+ "auto_map": {
23
+ "AutoConfig": "configuration_phi3.Phi3Config",
24
+ "AutoModelForCausalLM": "modeling_phi3.Phi3ForCausalLM"
25
+ },
26
+ "bad_words_ids": null,
27
+ "begin_suppress_tokens": null,
28
+ "bos_token_id": 1,
29
+ "chunk_size_feed_forward": 0,
30
+ "cross_attention_hidden_size": null,
31
+ "decoder_start_token_id": null,
32
+ "diversity_penalty": 0.0,
33
+ "do_sample": false,
34
+ "early_stopping": false,
35
+ "embd_pdrop": 0.0,
36
+ "encoder_no_repeat_ngram_size": 0,
37
+ "eos_token_id": 32000,
38
+ "exponential_decay_length_penalty": null,
39
+ "finetuning_task": null,
40
+ "forced_bos_token_id": null,
41
+ "forced_eos_token_id": null,
42
+ "hidden_act": "silu",
43
+ "hidden_size": 3072,
44
+ "id2label": {
45
+ "0": "LABEL_0",
46
+ "1": "LABEL_1"
47
+ },
48
+ "initializer_range": 0.02,
49
+ "intermediate_size": 8192,
50
+ "is_decoder": false,
51
+ "is_encoder_decoder": false,
52
+ "label2id": {
53
+ "LABEL_0": 0,
54
+ "LABEL_1": 1
55
+ },
56
+ "length_penalty": 1.0,
57
+ "max_length": 20,
58
+ "max_position_embeddings": 131072,
59
+ "min_length": 0,
60
+ "model_type": "phi3",
61
+ "no_repeat_ngram_size": 0,
62
+ "num_attention_heads": 32,
63
+ "num_beam_groups": 1,
64
+ "num_beams": 1,
65
+ "num_hidden_layers": 32,
66
+ "num_key_value_heads": 32,
67
+ "num_return_sequences": 1,
68
+ "original_max_position_embeddings": 4096,
69
+ "output_attentions": false,
70
+ "output_hidden_states": false,
71
+ "output_scores": false,
72
+ "pad_token_id": 32000,
73
+ "prefix": null,
74
+ "problem_type": null,
75
+ "pruned_heads": {},
76
+ "remove_invalid_values": false,
77
+ "repetition_penalty": 1.0,
78
+ "resid_pdrop": 0.0,
79
+ "return_dict": true,
80
+ "return_dict_in_generate": false,
81
+ "rms_norm_eps": 1e-05,
82
+ "rope_scaling": {
83
+ "long_factor": [
84
+ 1.0299999713897705,
85
+ 1.0499999523162842,
86
+ 1.0499999523162842,
87
+ 1.0799999237060547,
88
+ 1.2299998998641968,
89
+ 1.2299998998641968,
90
+ 1.2999999523162842,
91
+ 1.4499999284744263,
92
+ 1.5999999046325684,
93
+ 1.6499998569488525,
94
+ 1.8999998569488525,
95
+ 2.859999895095825,
96
+ 3.68999981880188,
97
+ 5.419999599456787,
98
+ 5.489999771118164,
99
+ 5.489999771118164,
100
+ 9.09000015258789,
101
+ 11.579999923706055,
102
+ 15.65999984741211,
103
+ 15.769999504089355,
104
+ 15.789999961853027,
105
+ 18.360000610351562,
106
+ 21.989999771118164,
107
+ 23.079999923706055,
108
+ 30.009998321533203,
109
+ 32.35000228881836,
110
+ 32.590003967285156,
111
+ 35.56000518798828,
112
+ 39.95000457763672,
113
+ 53.840003967285156,
114
+ 56.20000457763672,
115
+ 57.95000457763672,
116
+ 59.29000473022461,
117
+ 59.77000427246094,
118
+ 59.920005798339844,
119
+ 61.190006256103516,
120
+ 61.96000671386719,
121
+ 62.50000762939453,
122
+ 63.3700065612793,
123
+ 63.48000717163086,
124
+ 63.48000717163086,
125
+ 63.66000747680664,
126
+ 63.850006103515625,
127
+ 64.08000946044922,
128
+ 64.760009765625,
129
+ 64.80001068115234,
130
+ 64.81001281738281,
131
+ 64.81001281738281
132
+ ],
133
+ "short_factor": [
134
+ 1.05,
135
+ 1.05,
136
+ 1.05,
137
+ 1.1,
138
+ 1.1,
139
+ 1.1500000000000001,
140
+ 1.2000000000000002,
141
+ 1.2500000000000002,
142
+ 1.3000000000000003,
143
+ 1.3500000000000003,
144
+ 1.5000000000000004,
145
+ 2.000000000000001,
146
+ 2.000000000000001,
147
+ 2.000000000000001,
148
+ 2.000000000000001,
149
+ 2.000000000000001,
150
+ 2.000000000000001,
151
+ 2.000000000000001,
152
+ 2.000000000000001,
153
+ 2.000000000000001,
154
+ 2.000000000000001,
155
+ 2.000000000000001,
156
+ 2.000000000000001,
157
+ 2.000000000000001,
158
+ 2.000000000000001,
159
+ 2.000000000000001,
160
+ 2.000000000000001,
161
+ 2.000000000000001,
162
+ 2.000000000000001,
163
+ 2.000000000000001,
164
+ 2.000000000000001,
165
+ 2.000000000000001,
166
+ 2.0500000000000007,
167
+ 2.0500000000000007,
168
+ 2.0500000000000007,
169
+ 2.1000000000000005,
170
+ 2.1000000000000005,
171
+ 2.1000000000000005,
172
+ 2.1500000000000004,
173
+ 2.1500000000000004,
174
+ 2.3499999999999996,
175
+ 2.549999999999999,
176
+ 2.5999999999999988,
177
+ 2.5999999999999988,
178
+ 2.7499999999999982,
179
+ 2.849999999999998,
180
+ 2.849999999999998,
181
+ 2.9499999999999975
182
+ ],
183
+ "type": "su"
184
+ },
185
+ "rope_theta": 10000.0,
186
+ "sep_token_id": null,
187
+ "sliding_window": 262144,
188
+ "suppress_tokens": null,
189
+ "task_specific_params": null,
190
+ "temperature": 1.0,
191
+ "tf_legacy_loss": false,
192
+ "tie_encoder_decoder": false,
193
+ "tie_word_embeddings": false,
194
+ "tokenizer_class": null,
195
+ "top_k": 50,
196
+ "top_p": 1.0,
197
+ "torch_dtype": "bfloat16",
198
+ "torchscript": false,
199
+ "transformers_version": "4.37.2",
200
+ "typical_p": 1.0,
201
+ "use_bfloat16": true,
202
+ "use_cache": true,
203
+ "vocab_size": 32020
204
+ },
205
+ "max_dynamic_patch": 12,
206
+ "min_dynamic_patch": 1,
207
+ "model_type": "internvl_chat",
208
+ "ps_version": "v2",
209
+ "select_layer": -1,
210
+ "template": "phi3-chat",
211
+ "torch_dtype": "bfloat16",
212
+ "use_backbone_lora": 0,
213
+ "use_llm_lora": 0,
214
+ "use_thumbnail": true,
215
+ "vision_config": {
216
+ "architectures": [
217
+ "InternVisionModel"
218
+ ],
219
+ "attention_dropout": 0.0,
220
+ "drop_path_rate": 0.0,
221
+ "dropout": 0.0,
222
+ "hidden_act": "gelu",
223
+ "hidden_size": 1024,
224
+ "image_size": 448,
225
+ "initializer_factor": 1.0,
226
+ "initializer_range": 0.02,
227
+ "intermediate_size": 4096,
228
+ "layer_norm_eps": 1e-06,
229
+ "model_type": "intern_vit_6b",
230
+ "norm_type": "layer_norm",
231
+ "num_attention_heads": 16,
232
+ "num_channels": 3,
233
+ "num_hidden_layers": 24,
234
+ "output_attentions": false,
235
+ "output_hidden_states": false,
236
+ "patch_size": 14,
237
+ "qk_normalization": false,
238
+ "qkv_bias": true,
239
+ "return_dict": true,
240
+ "torch_dtype": "bfloat16",
241
+ "transformers_version": "4.37.2",
242
+ "use_bfloat16": true,
243
+ "use_flash_attn": true
244
+ }
245
+ }
configuration_intern_vit.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ import os
7
+ from typing import Union
8
+
9
+ from transformers.configuration_utils import PretrainedConfig
10
+ from transformers.utils import logging
11
+
12
+ logger = logging.get_logger(__name__)
13
+
14
+
15
+ class InternVisionConfig(PretrainedConfig):
16
+ r"""
17
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
18
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
19
+
20
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
21
+ documentation from [`PretrainedConfig`] for more information.
22
+
23
+ Args:
24
+ num_channels (`int`, *optional*, defaults to 3):
25
+ Number of color channels in the input images (e.g., 3 for RGB).
26
+ patch_size (`int`, *optional*, defaults to 14):
27
+ The size (resolution) of each patch.
28
+ image_size (`int`, *optional*, defaults to 224):
29
+ The size (resolution) of each image.
30
+ qkv_bias (`bool`, *optional*, defaults to `False`):
31
+ Whether to add a bias to the queries and values in the self-attention layers.
32
+ hidden_size (`int`, *optional*, defaults to 3200):
33
+ Dimensionality of the encoder layers and the pooler layer.
34
+ num_attention_heads (`int`, *optional*, defaults to 25):
35
+ Number of attention heads for each attention layer in the Transformer encoder.
36
+ intermediate_size (`int`, *optional*, defaults to 12800):
37
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
38
+ qk_normalization (`bool`, *optional*, defaults to `True`):
39
+ Whether to normalize the queries and keys in the self-attention layers.
40
+ num_hidden_layers (`int`, *optional*, defaults to 48):
41
+ Number of hidden layers in the Transformer encoder.
42
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
43
+ Whether to use flash attention mechanism.
44
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
45
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
46
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
47
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
48
+ The epsilon used by the layer normalization layers.
49
+ dropout (`float`, *optional*, defaults to 0.0):
50
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
51
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
52
+ Dropout rate for stochastic depth.
53
+ attention_dropout (`float`, *optional*, defaults to 0.0):
54
+ The dropout ratio for the attention probabilities.
55
+ initializer_range (`float`, *optional*, defaults to 0.02):
56
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
57
+ initializer_factor (`float`, *optional*, defaults to 0.1):
58
+ A factor for layer scale.
59
+ """
60
+
61
+ model_type = 'intern_vit_6b'
62
+
63
+ def __init__(
64
+ self,
65
+ num_channels=3,
66
+ patch_size=14,
67
+ image_size=224,
68
+ qkv_bias=False,
69
+ hidden_size=3200,
70
+ num_attention_heads=25,
71
+ intermediate_size=12800,
72
+ qk_normalization=True,
73
+ num_hidden_layers=48,
74
+ use_flash_attn=True,
75
+ hidden_act='gelu',
76
+ norm_type='rms_norm',
77
+ layer_norm_eps=1e-6,
78
+ dropout=0.0,
79
+ drop_path_rate=0.0,
80
+ attention_dropout=0.0,
81
+ initializer_range=0.02,
82
+ initializer_factor=0.1,
83
+ **kwargs,
84
+ ):
85
+ super().__init__(**kwargs)
86
+
87
+ self.hidden_size = hidden_size
88
+ self.intermediate_size = intermediate_size
89
+ self.dropout = dropout
90
+ self.drop_path_rate = drop_path_rate
91
+ self.num_hidden_layers = num_hidden_layers
92
+ self.num_attention_heads = num_attention_heads
93
+ self.num_channels = num_channels
94
+ self.patch_size = patch_size
95
+ self.image_size = image_size
96
+ self.initializer_range = initializer_range
97
+ self.initializer_factor = initializer_factor
98
+ self.attention_dropout = attention_dropout
99
+ self.layer_norm_eps = layer_norm_eps
100
+ self.hidden_act = hidden_act
101
+ self.norm_type = norm_type
102
+ self.qkv_bias = qkv_bias
103
+ self.qk_normalization = qk_normalization
104
+ self.use_flash_attn = use_flash_attn
105
+
106
+ @classmethod
107
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
108
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
109
+
110
+ if 'vision_config' in config_dict:
111
+ config_dict = config_dict['vision_config']
112
+
113
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
114
+ logger.warning(
115
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
116
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
117
+ )
118
+
119
+ return cls.from_dict(config_dict, **kwargs)
configuration_internvl_chat.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import copy
8
+
9
+ from transformers import AutoConfig, LlamaConfig
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ from .configuration_intern_vit import InternVisionConfig
14
+ from .configuration_phi3 import Phi3Config
15
+
16
+ logger = logging.get_logger(__name__)
17
+
18
+
19
+ class InternVLChatConfig(PretrainedConfig):
20
+ model_type = 'internvl_chat'
21
+ is_composition = True
22
+
23
+ def __init__(
24
+ self,
25
+ vision_config=None,
26
+ llm_config=None,
27
+ use_backbone_lora=0,
28
+ use_llm_lora=0,
29
+ select_layer=-1,
30
+ force_image_size=None,
31
+ downsample_ratio=0.5,
32
+ template=None,
33
+ dynamic_image_size=False,
34
+ use_thumbnail=False,
35
+ ps_version='v1',
36
+ min_dynamic_patch=1,
37
+ max_dynamic_patch=6,
38
+ **kwargs):
39
+ super().__init__(**kwargs)
40
+
41
+ if vision_config is None:
42
+ vision_config = {}
43
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
44
+
45
+ if llm_config is None:
46
+ llm_config = {}
47
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
48
+
49
+ self.vision_config = InternVisionConfig(**vision_config)
50
+ if llm_config['architectures'][0] == 'LlamaForCausalLM':
51
+ self.llm_config = LlamaConfig(**llm_config)
52
+ elif llm_config['architectures'][0] == 'Phi3ForCausalLM':
53
+ self.llm_config = Phi3Config(**llm_config)
54
+ else:
55
+ raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
56
+ self.use_backbone_lora = use_backbone_lora
57
+ self.use_llm_lora = use_llm_lora
58
+ self.select_layer = select_layer
59
+ self.force_image_size = force_image_size
60
+ self.downsample_ratio = downsample_ratio
61
+ self.template = template
62
+ self.dynamic_image_size = dynamic_image_size
63
+ self.use_thumbnail = use_thumbnail
64
+ self.ps_version = ps_version # pixel shuffle version
65
+ self.min_dynamic_patch = min_dynamic_patch
66
+ self.max_dynamic_patch = max_dynamic_patch
67
+
68
+ logger.info(f'vision_select_layer: {self.select_layer}')
69
+ logger.info(f'ps_version: {self.ps_version}')
70
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
71
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
72
+
73
+ def to_dict(self):
74
+ """
75
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
76
+
77
+ Returns:
78
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
79
+ """
80
+ output = copy.deepcopy(self.__dict__)
81
+ output['vision_config'] = self.vision_config.to_dict()
82
+ output['llm_config'] = self.llm_config.to_dict()
83
+ output['model_type'] = self.__class__.model_type
84
+ output['use_backbone_lora'] = self.use_backbone_lora
85
+ output['use_llm_lora'] = self.use_llm_lora
86
+ output['select_layer'] = self.select_layer
87
+ output['force_image_size'] = self.force_image_size
88
+ output['downsample_ratio'] = self.downsample_ratio
89
+ output['template'] = self.template
90
+ output['dynamic_image_size'] = self.dynamic_image_size
91
+ output['use_thumbnail'] = self.use_thumbnail
92
+ output['ps_version'] = self.ps_version
93
+ output['min_dynamic_patch'] = self.min_dynamic_patch
94
+ output['max_dynamic_patch'] = self.max_dynamic_patch
95
+
96
+ return output
configuration_phi3.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License atd
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ """ Phi-3 model configuration"""
16
+
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = {
24
+ 'microsoft/Phi-3-mini-4k-instruct': 'https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json',
25
+ 'microsoft/Phi-3-mini-128k-instruct': 'https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json',
26
+ }
27
+
28
+
29
+ class Phi3Config(PretrainedConfig):
30
+ r"""
31
+ This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
32
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
33
+ defaults will yield a similar configuration to that of the
34
+ [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
35
+
36
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
37
+ documentation from [`PretrainedConfig`] for more information.
38
+
39
+ Args:
40
+ vocab_size (`int`, *optional*, defaults to 32064):
41
+ Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
42
+ `inputs_ids` passed when calling [`Phi3Model`].
43
+ hidden_size (`int`, *optional*, defaults to 3072):
44
+ Dimension of the hidden representations.
45
+ intermediate_size (`int`, *optional*, defaults to 8192):
46
+ Dimension of the MLP representations.
47
+ num_hidden_layers (`int`, *optional*, defaults to 32):
48
+ Number of hidden layers in the Transformer decoder.
49
+ num_attention_heads (`int`, *optional*, defaults to 32):
50
+ Number of attention heads for each attention layer in the Transformer decoder.
51
+ num_key_value_heads (`int`, *optional*):
52
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
53
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
54
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
55
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
56
+ by meanpooling all the original heads within that group. For more details checkout [this
57
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
58
+ `num_attention_heads`.
59
+ resid_pdrop (`float`, *optional*, defaults to 0.0):
60
+ Dropout probability for mlp outputs.
61
+ embd_pdrop (`int`, *optional*, defaults to 0.0):
62
+ The dropout ratio for the embeddings.
63
+ attention_dropout (`float`, *optional*, defaults to 0.0):
64
+ The dropout ratio after computing the attention scores.
65
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
66
+ The non-linear activation function (function or string) in the decoder.
67
+ max_position_embeddings (`int`, *optional*, defaults to 4096):
68
+ The maximum sequence length that this model might ever be used with.
69
+ original_max_position_embeddings (`int`, *optional*, defaults to 4096):
70
+ The maximum sequence length that this model was trained with. This is used to determine the size of the
71
+ original RoPE embeddings when using long scaling.
72
+ initializer_range (`float`, *optional*, defaults to 0.02):
73
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
74
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
75
+ The epsilon value used for the RMSNorm.
76
+ use_cache (`bool`, *optional*, defaults to `True`):
77
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
78
+ relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
79
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
80
+ Whether to tie weight embeddings
81
+ rope_theta (`float`, *optional*, defaults to 10000.0):
82
+ The base period of the RoPE embeddings.
83
+ rope_scaling (`dict`, *optional*):
84
+ The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
85
+ contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be either `su` or `yarn` and
86
+ the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
87
+ divided by the number of attention heads divided by 2.
88
+ bos_token_id (`int`, *optional*, defaults to 1):
89
+ The id of the "beginning-of-sequence" token.
90
+ eos_token_id (`int`, *optional*, defaults to 32000):
91
+ The id of the "end-of-sequence" token.
92
+ pad_token_id (`int`, *optional*, defaults to 32000):
93
+ The id of the padding token.
94
+ sliding_window (`int`, *optional*):
95
+ Sliding window attention window size. If `None`, no sliding window is applied.
96
+
97
+ Example:
98
+
99
+ ```python
100
+ >>> from transformers import Phi3Model, Phi3Config
101
+
102
+ >>> # Initializing a Phi-3 style configuration
103
+ >>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
104
+
105
+ >>> # Initializing a model from the configuration
106
+ >>> model = Phi3Model(configuration)
107
+
108
+ >>> # Accessing the model configuration
109
+ >>> configuration = model.config
110
+ ```"""
111
+
112
+ model_type = 'phi3'
113
+ keys_to_ignore_at_inference = ['past_key_values']
114
+
115
+ def __init__(
116
+ self,
117
+ vocab_size=32064,
118
+ hidden_size=3072,
119
+ intermediate_size=8192,
120
+ num_hidden_layers=32,
121
+ num_attention_heads=32,
122
+ num_key_value_heads=None,
123
+ resid_pdrop=0.0,
124
+ embd_pdrop=0.0,
125
+ attention_dropout=0.0,
126
+ hidden_act='silu',
127
+ max_position_embeddings=4096,
128
+ original_max_position_embeddings=4096,
129
+ initializer_range=0.02,
130
+ rms_norm_eps=1e-5,
131
+ use_cache=True,
132
+ tie_word_embeddings=False,
133
+ rope_theta=10000.0,
134
+ rope_scaling=None,
135
+ bos_token_id=1,
136
+ eos_token_id=32000,
137
+ pad_token_id=32000,
138
+ sliding_window=None,
139
+ **kwargs,
140
+ ):
141
+ self.vocab_size = vocab_size
142
+ self.hidden_size = hidden_size
143
+ self.intermediate_size = intermediate_size
144
+ self.num_hidden_layers = num_hidden_layers
145
+ self.num_attention_heads = num_attention_heads
146
+
147
+ if num_key_value_heads is None:
148
+ num_key_value_heads = num_attention_heads
149
+
150
+ self.num_key_value_heads = num_key_value_heads
151
+ self.resid_pdrop = resid_pdrop
152
+ self.embd_pdrop = embd_pdrop
153
+ self.attention_dropout = attention_dropout
154
+ self.hidden_act = hidden_act
155
+ self.max_position_embeddings = max_position_embeddings
156
+ self.original_max_position_embeddings = original_max_position_embeddings
157
+ self.initializer_range = initializer_range
158
+ self.rms_norm_eps = rms_norm_eps
159
+ self.use_cache = use_cache
160
+ self.rope_theta = rope_theta
161
+ self.rope_scaling = rope_scaling
162
+ self._rope_scaling_validation()
163
+ self.sliding_window = sliding_window
164
+
165
+ super().__init__(
166
+ bos_token_id=bos_token_id,
167
+ eos_token_id=eos_token_id,
168
+ pad_token_id=pad_token_id,
169
+ tie_word_embeddings=tie_word_embeddings,
170
+ **kwargs,
171
+ )
172
+
173
+ def _rope_scaling_validation(self):
174
+ """
175
+ Validate the `rope_scaling` configuration.
176
+ """
177
+ if self.rope_scaling is None:
178
+ return
179
+
180
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
181
+ raise ValueError(
182
+ '`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, '
183
+ f'got {self.rope_scaling}'
184
+ )
185
+ rope_scaling_type = self.rope_scaling.get('type', None)
186
+ rope_scaling_short_factor = self.rope_scaling.get('short_factor', None)
187
+ rope_scaling_long_factor = self.rope_scaling.get('long_factor', None)
188
+ if rope_scaling_type is None or rope_scaling_type not in ['su', 'yarn']:
189
+ raise ValueError(f"`rope_scaling`'s type field must be one of ['su', 'yarn'], got {rope_scaling_type}")
190
+ if not (
191
+ isinstance(rope_scaling_short_factor, list)
192
+ and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
193
+ ):
194
+ raise ValueError(
195
+ f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
196
+ )
197
+ if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
198
+ raise ValueError(
199
+ f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
200
+ )
201
+ if not (
202
+ isinstance(rope_scaling_long_factor, list)
203
+ and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
204
+ ):
205
+ raise ValueError(
206
+ f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
207
+ )
208
+ if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
209
+ raise ValueError(
210
+ f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
211
+ )
conversation.py ADDED
@@ -0,0 +1,393 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Conversation prompt templates.
3
+
4
+ We kindly request that you import fastchat instead of copying this file if you wish to use it.
5
+ If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
6
+ """
7
+
8
+ import dataclasses
9
+ from enum import IntEnum, auto
10
+ from typing import Any, Dict, List, Tuple, Union
11
+
12
+
13
+ class SeparatorStyle(IntEnum):
14
+ """Separator styles."""
15
+
16
+ ADD_COLON_SINGLE = auto()
17
+ ADD_COLON_TWO = auto()
18
+ ADD_COLON_SPACE_SINGLE = auto()
19
+ NO_COLON_SINGLE = auto()
20
+ NO_COLON_TWO = auto()
21
+ ADD_NEW_LINE_SINGLE = auto()
22
+ LLAMA2 = auto()
23
+ CHATGLM = auto()
24
+ CHATML = auto()
25
+ CHATINTERN = auto()
26
+ DOLLY = auto()
27
+ RWKV = auto()
28
+ PHOENIX = auto()
29
+ ROBIN = auto()
30
+ FALCON_CHAT = auto()
31
+ CHATGLM3 = auto()
32
+ INTERNVL_ZH = auto()
33
+ MPT = auto()
34
+
35
+
36
+ @dataclasses.dataclass
37
+ class Conversation:
38
+ """A class that manages prompt templates and keeps all conversation history."""
39
+
40
+ # The name of this template
41
+ name: str
42
+ # The template of the system prompt
43
+ system_template: str = '{system_message}'
44
+ # The system message
45
+ system_message: str = ''
46
+ # The names of two roles
47
+ roles: Tuple[str] = ('USER', 'ASSISTANT')
48
+ # All messages. Each item is (role, message).
49
+ messages: List[List[str]] = ()
50
+ # The number of few shot examples
51
+ offset: int = 0
52
+ # The separator style and configurations
53
+ sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
54
+ sep: str = '\n'
55
+ sep2: str = None
56
+ # Stop criteria (the default one is EOS token)
57
+ stop_str: Union[str, List[str]] = None
58
+ # Stops generation if meeting any token in this list
59
+ stop_token_ids: List[int] = None
60
+
61
+ def get_prompt(self) -> str:
62
+ """Get the prompt for generation."""
63
+ system_prompt = self.system_template.format(system_message=self.system_message)
64
+ if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
65
+ ret = system_prompt + self.sep
66
+ for role, message in self.messages:
67
+ if message:
68
+ ret += role + ': ' + message + self.sep
69
+ else:
70
+ ret += role + ':'
71
+ return ret
72
+ elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
73
+ seps = [self.sep, self.sep2]
74
+ ret = system_prompt + seps[0]
75
+ for i, (role, message) in enumerate(self.messages):
76
+ if message:
77
+ ret += role + ': ' + message + seps[i % 2]
78
+ else:
79
+ ret += role + ':'
80
+ return ret
81
+ elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
82
+ ret = system_prompt + self.sep
83
+ for role, message in self.messages:
84
+ if message:
85
+ ret += role + ': ' + message + self.sep
86
+ else:
87
+ ret += role + ': ' # must be end with a space
88
+ return ret
89
+ elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
90
+ ret = '' if system_prompt == '' else system_prompt + self.sep
91
+ for role, message in self.messages:
92
+ if message:
93
+ ret += role + '\n' + message + self.sep
94
+ else:
95
+ ret += role + '\n'
96
+ return ret
97
+ elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
98
+ ret = system_prompt
99
+ for role, message in self.messages:
100
+ if message:
101
+ ret += role + message + self.sep
102
+ else:
103
+ ret += role
104
+ return ret
105
+ elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
106
+ seps = [self.sep, self.sep2]
107
+ ret = system_prompt
108
+ for i, (role, message) in enumerate(self.messages):
109
+ if message:
110
+ ret += role + message + seps[i % 2]
111
+ else:
112
+ ret += role
113
+ return ret
114
+ elif self.sep_style == SeparatorStyle.RWKV:
115
+ ret = system_prompt
116
+ for i, (role, message) in enumerate(self.messages):
117
+ if message:
118
+ ret += (
119
+ role
120
+ + ': '
121
+ + message.replace('\r\n', '\n').replace('\n\n', '\n')
122
+ )
123
+ ret += '\n\n'
124
+ else:
125
+ ret += role + ':'
126
+ return ret
127
+ elif self.sep_style == SeparatorStyle.LLAMA2:
128
+ seps = [self.sep, self.sep2]
129
+ if self.system_message:
130
+ ret = system_prompt
131
+ else:
132
+ ret = '[INST] '
133
+ for i, (role, message) in enumerate(self.messages):
134
+ tag = self.roles[i % 2]
135
+ if message:
136
+ if i == 0:
137
+ ret += message + ' '
138
+ else:
139
+ ret += tag + ' ' + message + seps[i % 2]
140
+ else:
141
+ ret += tag
142
+ return ret
143
+ elif self.sep_style == SeparatorStyle.CHATGLM:
144
+ # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
145
+ # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
146
+ round_add_n = 1 if self.name == 'chatglm2' else 0
147
+ if system_prompt:
148
+ ret = system_prompt + self.sep
149
+ else:
150
+ ret = ''
151
+
152
+ for i, (role, message) in enumerate(self.messages):
153
+ if i % 2 == 0:
154
+ ret += f'[Round {i//2 + round_add_n}]{self.sep}'
155
+
156
+ if message:
157
+ ret += f'{role}:{message}{self.sep}'
158
+ else:
159
+ ret += f'{role}:'
160
+ return ret
161
+ elif self.sep_style == SeparatorStyle.CHATML:
162
+ ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
163
+ for role, message in self.messages:
164
+ if message:
165
+ ret += role + '\n' + message + self.sep + '\n'
166
+ else:
167
+ ret += role + '\n'
168
+ return ret
169
+ elif self.sep_style == SeparatorStyle.CHATGLM3:
170
+ ret = ''
171
+ if self.system_message:
172
+ ret += system_prompt
173
+ for role, message in self.messages:
174
+ if message:
175
+ ret += role + '\n' + ' ' + message
176
+ else:
177
+ ret += role
178
+ return ret
179
+ elif self.sep_style == SeparatorStyle.CHATINTERN:
180
+ # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
181
+ seps = [self.sep, self.sep2]
182
+ ret = system_prompt
183
+ for i, (role, message) in enumerate(self.messages):
184
+ # if i % 2 == 0:
185
+ # ret += "<s>"
186
+ if message:
187
+ ret += role + ':' + message + seps[i % 2] + '\n'
188
+ else:
189
+ ret += role + ':'
190
+ return ret
191
+ elif self.sep_style == SeparatorStyle.DOLLY:
192
+ seps = [self.sep, self.sep2]
193
+ ret = system_prompt
194
+ for i, (role, message) in enumerate(self.messages):
195
+ if message:
196
+ ret += role + ':\n' + message + seps[i % 2]
197
+ if i % 2 == 1:
198
+ ret += '\n\n'
199
+ else:
200
+ ret += role + ':\n'
201
+ return ret
202
+ elif self.sep_style == SeparatorStyle.PHOENIX:
203
+ ret = system_prompt
204
+ for role, message in self.messages:
205
+ if message:
206
+ ret += role + ': ' + '<s>' + message + '</s>'
207
+ else:
208
+ ret += role + ': ' + '<s>'
209
+ return ret
210
+ elif self.sep_style == SeparatorStyle.ROBIN:
211
+ ret = system_prompt + self.sep
212
+ for role, message in self.messages:
213
+ if message:
214
+ ret += role + ':\n' + message + self.sep
215
+ else:
216
+ ret += role + ':\n'
217
+ return ret
218
+ elif self.sep_style == SeparatorStyle.FALCON_CHAT:
219
+ ret = ''
220
+ if self.system_message:
221
+ ret += system_prompt + self.sep
222
+ for role, message in self.messages:
223
+ if message:
224
+ ret += role + ': ' + message + self.sep
225
+ else:
226
+ ret += role + ':'
227
+
228
+ return ret
229
+ elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
230
+ seps = [self.sep, self.sep2]
231
+ ret = self.system_message + seps[0]
232
+ for i, (role, message) in enumerate(self.messages):
233
+ if message:
234
+ ret += role + ': ' + message + seps[i % 2]
235
+ else:
236
+ ret += role + ':'
237
+ return ret
238
+ elif self.sep_style == SeparatorStyle.MPT:
239
+ ret = system_prompt + self.sep
240
+ for role, message in self.messages:
241
+ if message:
242
+ if type(message) is tuple:
243
+ message, _, _ = message
244
+ ret += role + message + self.sep
245
+ else:
246
+ ret += role
247
+ return ret
248
+ else:
249
+ raise ValueError(f'Invalid style: {self.sep_style}')
250
+
251
+ def set_system_message(self, system_message: str):
252
+ """Set the system message."""
253
+ self.system_message = system_message
254
+
255
+ def append_message(self, role: str, message: str):
256
+ """Append a new message."""
257
+ self.messages.append([role, message])
258
+
259
+ def update_last_message(self, message: str):
260
+ """Update the last output.
261
+
262
+ The last message is typically set to be None when constructing the prompt,
263
+ so we need to update it in-place after getting the response from a model.
264
+ """
265
+ self.messages[-1][1] = message
266
+
267
+ def to_gradio_chatbot(self):
268
+ """Convert the conversation to gradio chatbot format."""
269
+ ret = []
270
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
271
+ if i % 2 == 0:
272
+ ret.append([msg, None])
273
+ else:
274
+ ret[-1][-1] = msg
275
+ return ret
276
+
277
+ def to_openai_api_messages(self):
278
+ """Convert the conversation to OpenAI chat completion format."""
279
+ ret = [{'role': 'system', 'content': self.system_message}]
280
+
281
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
282
+ if i % 2 == 0:
283
+ ret.append({'role': 'user', 'content': msg})
284
+ else:
285
+ if msg is not None:
286
+ ret.append({'role': 'assistant', 'content': msg})
287
+ return ret
288
+
289
+ def copy(self):
290
+ return Conversation(
291
+ name=self.name,
292
+ system_template=self.system_template,
293
+ system_message=self.system_message,
294
+ roles=self.roles,
295
+ messages=[[x, y] for x, y in self.messages],
296
+ offset=self.offset,
297
+ sep_style=self.sep_style,
298
+ sep=self.sep,
299
+ sep2=self.sep2,
300
+ stop_str=self.stop_str,
301
+ stop_token_ids=self.stop_token_ids,
302
+ )
303
+
304
+ def dict(self):
305
+ return {
306
+ 'template_name': self.name,
307
+ 'system_message': self.system_message,
308
+ 'roles': self.roles,
309
+ 'messages': self.messages,
310
+ 'offset': self.offset,
311
+ }
312
+
313
+
314
+ # A global registry for all conversation templates
315
+ conv_templates: Dict[str, Conversation] = {}
316
+
317
+
318
+ def register_conv_template(template: Conversation, override: bool = False):
319
+ """Register a new conversation template."""
320
+ if not override:
321
+ assert (
322
+ template.name not in conv_templates
323
+ ), f'{template.name} has been registered.'
324
+
325
+ conv_templates[template.name] = template
326
+
327
+
328
+ def get_conv_template(name: str) -> Conversation:
329
+ """Get a conversation template."""
330
+ return conv_templates[name].copy()
331
+
332
+
333
+ # Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
334
+ # is that during training, the preprocessing function for the Hermes-2 template doesn't add
335
+ # <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
336
+ # Therefore, they are completely equivalent during inference.
337
+ register_conv_template(
338
+ Conversation(
339
+ name='Hermes-2',
340
+ system_template='<|im_start|>system\n{system_message}',
341
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
342
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
343
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
344
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
345
+ sep_style=SeparatorStyle.MPT,
346
+ sep='<|im_end|>',
347
+ stop_token_ids=[
348
+ 2,
349
+ 6,
350
+ 7,
351
+ 8,
352
+ ],
353
+ stop_str='<|endoftext|>',
354
+ )
355
+ )
356
+
357
+
358
+ register_conv_template(
359
+ Conversation(
360
+ name='internlm2-chat',
361
+ system_template='<|im_start|>system\n{system_message}',
362
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
363
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
364
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
365
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
366
+ sep_style=SeparatorStyle.MPT,
367
+ sep='<|im_end|>',
368
+ stop_token_ids=[
369
+ 2,
370
+ 92543,
371
+ 92542
372
+ ]
373
+ )
374
+ )
375
+
376
+
377
+ register_conv_template(
378
+ Conversation(
379
+ name='phi3-chat',
380
+ system_template='<|system|>\n{system_message}',
381
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
382
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
383
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
384
+ roles=('<|user|>\n', '<|assistant|>\n'),
385
+ sep_style=SeparatorStyle.MPT,
386
+ sep='<|end|>',
387
+ stop_token_ids=[
388
+ 2,
389
+ 32000,
390
+ 32007
391
+ ]
392
+ )
393
+ )
examples/image1.jpg ADDED
examples/image2.jpg ADDED
examples/red-panda.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d921c07bb97224d65a37801541d246067f0d506f08723ffa1ad85c217907ccb8
3
+ size 1867237
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.37.2",
4
+ "eos_token_id": [
5
+ 2,
6
+ 32000,
7
+ 32007
8
+ ]
9
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d49faea2fab060381af9c6902a1ae9593797cffdc6317394b62b6bc97a80f35
3
+ size 4957392176
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe85c0ab7ff42c3760870e1168f4de677f8177cbf4b43abde850e1d7ad16348a
3
+ size 3336385864
model.safetensors.index.json ADDED
@@ -0,0 +1,548 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 8293711872
4
+ },
5
+ "weight_map": {
6
+ "language_model.lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "language_model.model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "language_model.model.layers.0.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
13
+ "language_model.model.layers.0.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
14
+ "language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
15
+ "language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
16
+ "language_model.model.layers.1.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
17
+ "language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
18
+ "language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
19
+ "language_model.model.layers.1.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
20
+ "language_model.model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "language_model.model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "language_model.model.layers.10.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
23
+ "language_model.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
24
+ "language_model.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
25
+ "language_model.model.layers.10.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
26
+ "language_model.model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
27
+ "language_model.model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
28
+ "language_model.model.layers.11.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
29
+ "language_model.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
30
+ "language_model.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
31
+ "language_model.model.layers.11.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
32
+ "language_model.model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "language_model.model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
+ "language_model.model.layers.12.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
35
+ "language_model.model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "language_model.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
37
+ "language_model.model.layers.12.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
38
+ "language_model.model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
39
+ "language_model.model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
40
+ "language_model.model.layers.13.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
41
+ "language_model.model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
42
+ "language_model.model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
43
+ "language_model.model.layers.13.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
44
+ "language_model.model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "language_model.model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "language_model.model.layers.14.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
47
+ "language_model.model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "language_model.model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
49
+ "language_model.model.layers.14.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
50
+ "language_model.model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
51
+ "language_model.model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
52
+ "language_model.model.layers.15.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
53
+ "language_model.model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
54
+ "language_model.model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
55
+ "language_model.model.layers.15.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
56
+ "language_model.model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "language_model.model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
+ "language_model.model.layers.16.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
59
+ "language_model.model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
60
+ "language_model.model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
61
+ "language_model.model.layers.16.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
62
+ "language_model.model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "language_model.model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
64
+ "language_model.model.layers.17.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
65
+ "language_model.model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
66
+ "language_model.model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
67
+ "language_model.model.layers.17.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
68
+ "language_model.model.layers.18.input_layernorm.weight": "model-00002-of-00002.safetensors",
69
+ "language_model.model.layers.18.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
70
+ "language_model.model.layers.18.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
71
+ "language_model.model.layers.18.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
72
+ "language_model.model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
73
+ "language_model.model.layers.18.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
74
+ "language_model.model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
75
+ "language_model.model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
76
+ "language_model.model.layers.19.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
77
+ "language_model.model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
78
+ "language_model.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
79
+ "language_model.model.layers.19.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
80
+ "language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "language_model.model.layers.2.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
83
+ "language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
84
+ "language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
85
+ "language_model.model.layers.2.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
86
+ "language_model.model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
87
+ "language_model.model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
88
+ "language_model.model.layers.20.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
89
+ "language_model.model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
90
+ "language_model.model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
91
+ "language_model.model.layers.20.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
92
+ "language_model.model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
93
+ "language_model.model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
94
+ "language_model.model.layers.21.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
95
+ "language_model.model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
96
+ "language_model.model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
97
+ "language_model.model.layers.21.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
98
+ "language_model.model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
99
+ "language_model.model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
100
+ "language_model.model.layers.22.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
101
+ "language_model.model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
102
+ "language_model.model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
103
+ "language_model.model.layers.22.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
104
+ "language_model.model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
105
+ "language_model.model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
106
+ "language_model.model.layers.23.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
107
+ "language_model.model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
108
+ "language_model.model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
109
+ "language_model.model.layers.23.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
110
+ "language_model.model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
111
+ "language_model.model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
112
+ "language_model.model.layers.24.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
113
+ "language_model.model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
114
+ "language_model.model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
115
+ "language_model.model.layers.24.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
116
+ "language_model.model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
117
+ "language_model.model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
118
+ "language_model.model.layers.25.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
119
+ "language_model.model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
120
+ "language_model.model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
121
+ "language_model.model.layers.25.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
122
+ "language_model.model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
123
+ "language_model.model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
124
+ "language_model.model.layers.26.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
125
+ "language_model.model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
126
+ "language_model.model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
127
+ "language_model.model.layers.26.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
128
+ "language_model.model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
129
+ "language_model.model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
130
+ "language_model.model.layers.27.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
131
+ "language_model.model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
132
+ "language_model.model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
133
+ "language_model.model.layers.27.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
134
+ "language_model.model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
135
+ "language_model.model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
136
+ "language_model.model.layers.28.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
137
+ "language_model.model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
138
+ "language_model.model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
139
+ "language_model.model.layers.28.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
140
+ "language_model.model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
141
+ "language_model.model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
142
+ "language_model.model.layers.29.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
143
+ "language_model.model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
144
+ "language_model.model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
145
+ "language_model.model.layers.29.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
146
+ "language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
147
+ "language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
148
+ "language_model.model.layers.3.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
149
+ "language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
150
+ "language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
151
+ "language_model.model.layers.3.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
152
+ "language_model.model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
153
+ "language_model.model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
154
+ "language_model.model.layers.30.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
155
+ "language_model.model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
156
+ "language_model.model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
157
+ "language_model.model.layers.30.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
158
+ "language_model.model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
159
+ "language_model.model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
160
+ "language_model.model.layers.31.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
161
+ "language_model.model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
162
+ "language_model.model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
163
+ "language_model.model.layers.31.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
164
+ "language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
+ "language_model.model.layers.4.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
167
+ "language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
168
+ "language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
169
+ "language_model.model.layers.4.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
170
+ "language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
171
+ "language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
172
+ "language_model.model.layers.5.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
173
+ "language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
174
+ "language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
175
+ "language_model.model.layers.5.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
176
+ "language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
177
+ "language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
178
+ "language_model.model.layers.6.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
179
+ "language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
180
+ "language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
181
+ "language_model.model.layers.6.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
182
+ "language_model.model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
183
+ "language_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
184
+ "language_model.model.layers.7.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
185
+ "language_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
186
+ "language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
187
+ "language_model.model.layers.7.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
188
+ "language_model.model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "language_model.model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
+ "language_model.model.layers.8.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
191
+ "language_model.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
192
+ "language_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
193
+ "language_model.model.layers.8.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
194
+ "language_model.model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
195
+ "language_model.model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
196
+ "language_model.model.layers.9.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
197
+ "language_model.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
198
+ "language_model.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
199
+ "language_model.model.layers.9.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
200
+ "language_model.model.norm.weight": "model-00002-of-00002.safetensors",
201
+ "mlp1.0.bias": "model-00002-of-00002.safetensors",
202
+ "mlp1.0.weight": "model-00002-of-00002.safetensors",
203
+ "mlp1.1.bias": "model-00002-of-00002.safetensors",
204
+ "mlp1.1.weight": "model-00002-of-00002.safetensors",
205
+ "mlp1.3.bias": "model-00002-of-00002.safetensors",
206
+ "mlp1.3.weight": "model-00002-of-00002.safetensors",
207
+ "vision_model.embeddings.class_embedding": "model-00001-of-00002.safetensors",
208
+ "vision_model.embeddings.patch_embedding.bias": "model-00001-of-00002.safetensors",
209
+ "vision_model.embeddings.patch_embedding.weight": "model-00001-of-00002.safetensors",
210
+ "vision_model.embeddings.position_embedding": "model-00001-of-00002.safetensors",
211
+ "vision_model.encoder.layers.0.attn.proj.bias": "model-00001-of-00002.safetensors",
212
+ "vision_model.encoder.layers.0.attn.proj.weight": "model-00001-of-00002.safetensors",
213
+ "vision_model.encoder.layers.0.attn.qkv.bias": "model-00001-of-00002.safetensors",
214
+ "vision_model.encoder.layers.0.attn.qkv.weight": "model-00001-of-00002.safetensors",
215
+ "vision_model.encoder.layers.0.ls1": "model-00001-of-00002.safetensors",
216
+ "vision_model.encoder.layers.0.ls2": "model-00001-of-00002.safetensors",
217
+ "vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00002.safetensors",
218
+ "vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
219
+ "vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00002.safetensors",
220
+ "vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
221
+ "vision_model.encoder.layers.0.norm1.bias": "model-00001-of-00002.safetensors",
222
+ "vision_model.encoder.layers.0.norm1.weight": "model-00001-of-00002.safetensors",
223
+ "vision_model.encoder.layers.0.norm2.bias": "model-00001-of-00002.safetensors",
224
+ "vision_model.encoder.layers.0.norm2.weight": "model-00001-of-00002.safetensors",
225
+ "vision_model.encoder.layers.1.attn.proj.bias": "model-00001-of-00002.safetensors",
226
+ "vision_model.encoder.layers.1.attn.proj.weight": "model-00001-of-00002.safetensors",
227
+ "vision_model.encoder.layers.1.attn.qkv.bias": "model-00001-of-00002.safetensors",
228
+ "vision_model.encoder.layers.1.attn.qkv.weight": "model-00001-of-00002.safetensors",
229
+ "vision_model.encoder.layers.1.ls1": "model-00001-of-00002.safetensors",
230
+ "vision_model.encoder.layers.1.ls2": "model-00001-of-00002.safetensors",
231
+ "vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00002.safetensors",
232
+ "vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
233
+ "vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00002.safetensors",
234
+ "vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
235
+ "vision_model.encoder.layers.1.norm1.bias": "model-00001-of-00002.safetensors",
236
+ "vision_model.encoder.layers.1.norm1.weight": "model-00001-of-00002.safetensors",
237
+ "vision_model.encoder.layers.1.norm2.bias": "model-00001-of-00002.safetensors",
238
+ "vision_model.encoder.layers.1.norm2.weight": "model-00001-of-00002.safetensors",
239
+ "vision_model.encoder.layers.10.attn.proj.bias": "model-00001-of-00002.safetensors",
240
+ "vision_model.encoder.layers.10.attn.proj.weight": "model-00001-of-00002.safetensors",
241
+ "vision_model.encoder.layers.10.attn.qkv.bias": "model-00001-of-00002.safetensors",
242
+ "vision_model.encoder.layers.10.attn.qkv.weight": "model-00001-of-00002.safetensors",
243
+ "vision_model.encoder.layers.10.ls1": "model-00001-of-00002.safetensors",
244
+ "vision_model.encoder.layers.10.ls2": "model-00001-of-00002.safetensors",
245
+ "vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00002.safetensors",
246
+ "vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
247
+ "vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00002.safetensors",
248
+ "vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
249
+ "vision_model.encoder.layers.10.norm1.bias": "model-00001-of-00002.safetensors",
250
+ "vision_model.encoder.layers.10.norm1.weight": "model-00001-of-00002.safetensors",
251
+ "vision_model.encoder.layers.10.norm2.bias": "model-00001-of-00002.safetensors",
252
+ "vision_model.encoder.layers.10.norm2.weight": "model-00001-of-00002.safetensors",
253
+ "vision_model.encoder.layers.11.attn.proj.bias": "model-00001-of-00002.safetensors",
254
+ "vision_model.encoder.layers.11.attn.proj.weight": "model-00001-of-00002.safetensors",
255
+ "vision_model.encoder.layers.11.attn.qkv.bias": "model-00001-of-00002.safetensors",
256
+ "vision_model.encoder.layers.11.attn.qkv.weight": "model-00001-of-00002.safetensors",
257
+ "vision_model.encoder.layers.11.ls1": "model-00001-of-00002.safetensors",
258
+ "vision_model.encoder.layers.11.ls2": "model-00001-of-00002.safetensors",
259
+ "vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00002.safetensors",
260
+ "vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
261
+ "vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00002.safetensors",
262
+ "vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
263
+ "vision_model.encoder.layers.11.norm1.bias": "model-00001-of-00002.safetensors",
264
+ "vision_model.encoder.layers.11.norm1.weight": "model-00001-of-00002.safetensors",
265
+ "vision_model.encoder.layers.11.norm2.bias": "model-00001-of-00002.safetensors",
266
+ "vision_model.encoder.layers.11.norm2.weight": "model-00001-of-00002.safetensors",
267
+ "vision_model.encoder.layers.12.attn.proj.bias": "model-00001-of-00002.safetensors",
268
+ "vision_model.encoder.layers.12.attn.proj.weight": "model-00001-of-00002.safetensors",
269
+ "vision_model.encoder.layers.12.attn.qkv.bias": "model-00001-of-00002.safetensors",
270
+ "vision_model.encoder.layers.12.attn.qkv.weight": "model-00001-of-00002.safetensors",
271
+ "vision_model.encoder.layers.12.ls1": "model-00001-of-00002.safetensors",
272
+ "vision_model.encoder.layers.12.ls2": "model-00001-of-00002.safetensors",
273
+ "vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00002.safetensors",
274
+ "vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
275
+ "vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00002.safetensors",
276
+ "vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
277
+ "vision_model.encoder.layers.12.norm1.bias": "model-00001-of-00002.safetensors",
278
+ "vision_model.encoder.layers.12.norm1.weight": "model-00001-of-00002.safetensors",
279
+ "vision_model.encoder.layers.12.norm2.bias": "model-00001-of-00002.safetensors",
280
+ "vision_model.encoder.layers.12.norm2.weight": "model-00001-of-00002.safetensors",
281
+ "vision_model.encoder.layers.13.attn.proj.bias": "model-00001-of-00002.safetensors",
282
+ "vision_model.encoder.layers.13.attn.proj.weight": "model-00001-of-00002.safetensors",
283
+ "vision_model.encoder.layers.13.attn.qkv.bias": "model-00001-of-00002.safetensors",
284
+ "vision_model.encoder.layers.13.attn.qkv.weight": "model-00001-of-00002.safetensors",
285
+ "vision_model.encoder.layers.13.ls1": "model-00001-of-00002.safetensors",
286
+ "vision_model.encoder.layers.13.ls2": "model-00001-of-00002.safetensors",
287
+ "vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00002.safetensors",
288
+ "vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
289
+ "vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00002.safetensors",
290
+ "vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
291
+ "vision_model.encoder.layers.13.norm1.bias": "model-00001-of-00002.safetensors",
292
+ "vision_model.encoder.layers.13.norm1.weight": "model-00001-of-00002.safetensors",
293
+ "vision_model.encoder.layers.13.norm2.bias": "model-00001-of-00002.safetensors",
294
+ "vision_model.encoder.layers.13.norm2.weight": "model-00001-of-00002.safetensors",
295
+ "vision_model.encoder.layers.14.attn.proj.bias": "model-00001-of-00002.safetensors",
296
+ "vision_model.encoder.layers.14.attn.proj.weight": "model-00001-of-00002.safetensors",
297
+ "vision_model.encoder.layers.14.attn.qkv.bias": "model-00001-of-00002.safetensors",
298
+ "vision_model.encoder.layers.14.attn.qkv.weight": "model-00001-of-00002.safetensors",
299
+ "vision_model.encoder.layers.14.ls1": "model-00001-of-00002.safetensors",
300
+ "vision_model.encoder.layers.14.ls2": "model-00001-of-00002.safetensors",
301
+ "vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00002.safetensors",
302
+ "vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
303
+ "vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00002.safetensors",
304
+ "vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
305
+ "vision_model.encoder.layers.14.norm1.bias": "model-00001-of-00002.safetensors",
306
+ "vision_model.encoder.layers.14.norm1.weight": "model-00001-of-00002.safetensors",
307
+ "vision_model.encoder.layers.14.norm2.bias": "model-00001-of-00002.safetensors",
308
+ "vision_model.encoder.layers.14.norm2.weight": "model-00001-of-00002.safetensors",
309
+ "vision_model.encoder.layers.15.attn.proj.bias": "model-00001-of-00002.safetensors",
310
+ "vision_model.encoder.layers.15.attn.proj.weight": "model-00001-of-00002.safetensors",
311
+ "vision_model.encoder.layers.15.attn.qkv.bias": "model-00001-of-00002.safetensors",
312
+ "vision_model.encoder.layers.15.attn.qkv.weight": "model-00001-of-00002.safetensors",
313
+ "vision_model.encoder.layers.15.ls1": "model-00001-of-00002.safetensors",
314
+ "vision_model.encoder.layers.15.ls2": "model-00001-of-00002.safetensors",
315
+ "vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00002.safetensors",
316
+ "vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
317
+ "vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00002.safetensors",
318
+ "vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
319
+ "vision_model.encoder.layers.15.norm1.bias": "model-00001-of-00002.safetensors",
320
+ "vision_model.encoder.layers.15.norm1.weight": "model-00001-of-00002.safetensors",
321
+ "vision_model.encoder.layers.15.norm2.bias": "model-00001-of-00002.safetensors",
322
+ "vision_model.encoder.layers.15.norm2.weight": "model-00001-of-00002.safetensors",
323
+ "vision_model.encoder.layers.16.attn.proj.bias": "model-00001-of-00002.safetensors",
324
+ "vision_model.encoder.layers.16.attn.proj.weight": "model-00001-of-00002.safetensors",
325
+ "vision_model.encoder.layers.16.attn.qkv.bias": "model-00001-of-00002.safetensors",
326
+ "vision_model.encoder.layers.16.attn.qkv.weight": "model-00001-of-00002.safetensors",
327
+ "vision_model.encoder.layers.16.ls1": "model-00001-of-00002.safetensors",
328
+ "vision_model.encoder.layers.16.ls2": "model-00001-of-00002.safetensors",
329
+ "vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00002.safetensors",
330
+ "vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
331
+ "vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00002.safetensors",
332
+ "vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
333
+ "vision_model.encoder.layers.16.norm1.bias": "model-00001-of-00002.safetensors",
334
+ "vision_model.encoder.layers.16.norm1.weight": "model-00001-of-00002.safetensors",
335
+ "vision_model.encoder.layers.16.norm2.bias": "model-00001-of-00002.safetensors",
336
+ "vision_model.encoder.layers.16.norm2.weight": "model-00001-of-00002.safetensors",
337
+ "vision_model.encoder.layers.17.attn.proj.bias": "model-00001-of-00002.safetensors",
338
+ "vision_model.encoder.layers.17.attn.proj.weight": "model-00001-of-00002.safetensors",
339
+ "vision_model.encoder.layers.17.attn.qkv.bias": "model-00001-of-00002.safetensors",
340
+ "vision_model.encoder.layers.17.attn.qkv.weight": "model-00001-of-00002.safetensors",
341
+ "vision_model.encoder.layers.17.ls1": "model-00001-of-00002.safetensors",
342
+ "vision_model.encoder.layers.17.ls2": "model-00001-of-00002.safetensors",
343
+ "vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00002.safetensors",
344
+ "vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
345
+ "vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00002.safetensors",
346
+ "vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
347
+ "vision_model.encoder.layers.17.norm1.bias": "model-00001-of-00002.safetensors",
348
+ "vision_model.encoder.layers.17.norm1.weight": "model-00001-of-00002.safetensors",
349
+ "vision_model.encoder.layers.17.norm2.bias": "model-00001-of-00002.safetensors",
350
+ "vision_model.encoder.layers.17.norm2.weight": "model-00001-of-00002.safetensors",
351
+ "vision_model.encoder.layers.18.attn.proj.bias": "model-00001-of-00002.safetensors",
352
+ "vision_model.encoder.layers.18.attn.proj.weight": "model-00001-of-00002.safetensors",
353
+ "vision_model.encoder.layers.18.attn.qkv.bias": "model-00001-of-00002.safetensors",
354
+ "vision_model.encoder.layers.18.attn.qkv.weight": "model-00001-of-00002.safetensors",
355
+ "vision_model.encoder.layers.18.ls1": "model-00001-of-00002.safetensors",
356
+ "vision_model.encoder.layers.18.ls2": "model-00001-of-00002.safetensors",
357
+ "vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00002.safetensors",
358
+ "vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
359
+ "vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00002.safetensors",
360
+ "vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
361
+ "vision_model.encoder.layers.18.norm1.bias": "model-00001-of-00002.safetensors",
362
+ "vision_model.encoder.layers.18.norm1.weight": "model-00001-of-00002.safetensors",
363
+ "vision_model.encoder.layers.18.norm2.bias": "model-00001-of-00002.safetensors",
364
+ "vision_model.encoder.layers.18.norm2.weight": "model-00001-of-00002.safetensors",
365
+ "vision_model.encoder.layers.19.attn.proj.bias": "model-00001-of-00002.safetensors",
366
+ "vision_model.encoder.layers.19.attn.proj.weight": "model-00001-of-00002.safetensors",
367
+ "vision_model.encoder.layers.19.attn.qkv.bias": "model-00001-of-00002.safetensors",
368
+ "vision_model.encoder.layers.19.attn.qkv.weight": "model-00001-of-00002.safetensors",
369
+ "vision_model.encoder.layers.19.ls1": "model-00001-of-00002.safetensors",
370
+ "vision_model.encoder.layers.19.ls2": "model-00001-of-00002.safetensors",
371
+ "vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00002.safetensors",
372
+ "vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
373
+ "vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00002.safetensors",
374
+ "vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
375
+ "vision_model.encoder.layers.19.norm1.bias": "model-00001-of-00002.safetensors",
376
+ "vision_model.encoder.layers.19.norm1.weight": "model-00001-of-00002.safetensors",
377
+ "vision_model.encoder.layers.19.norm2.bias": "model-00001-of-00002.safetensors",
378
+ "vision_model.encoder.layers.19.norm2.weight": "model-00001-of-00002.safetensors",
379
+ "vision_model.encoder.layers.2.attn.proj.bias": "model-00001-of-00002.safetensors",
380
+ "vision_model.encoder.layers.2.attn.proj.weight": "model-00001-of-00002.safetensors",
381
+ "vision_model.encoder.layers.2.attn.qkv.bias": "model-00001-of-00002.safetensors",
382
+ "vision_model.encoder.layers.2.attn.qkv.weight": "model-00001-of-00002.safetensors",
383
+ "vision_model.encoder.layers.2.ls1": "model-00001-of-00002.safetensors",
384
+ "vision_model.encoder.layers.2.ls2": "model-00001-of-00002.safetensors",
385
+ "vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00002.safetensors",
386
+ "vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
387
+ "vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00002.safetensors",
388
+ "vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
389
+ "vision_model.encoder.layers.2.norm1.bias": "model-00001-of-00002.safetensors",
390
+ "vision_model.encoder.layers.2.norm1.weight": "model-00001-of-00002.safetensors",
391
+ "vision_model.encoder.layers.2.norm2.bias": "model-00001-of-00002.safetensors",
392
+ "vision_model.encoder.layers.2.norm2.weight": "model-00001-of-00002.safetensors",
393
+ "vision_model.encoder.layers.20.attn.proj.bias": "model-00001-of-00002.safetensors",
394
+ "vision_model.encoder.layers.20.attn.proj.weight": "model-00001-of-00002.safetensors",
395
+ "vision_model.encoder.layers.20.attn.qkv.bias": "model-00001-of-00002.safetensors",
396
+ "vision_model.encoder.layers.20.attn.qkv.weight": "model-00001-of-00002.safetensors",
397
+ "vision_model.encoder.layers.20.ls1": "model-00001-of-00002.safetensors",
398
+ "vision_model.encoder.layers.20.ls2": "model-00001-of-00002.safetensors",
399
+ "vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00002.safetensors",
400
+ "vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
401
+ "vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00002.safetensors",
402
+ "vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
403
+ "vision_model.encoder.layers.20.norm1.bias": "model-00001-of-00002.safetensors",
404
+ "vision_model.encoder.layers.20.norm1.weight": "model-00001-of-00002.safetensors",
405
+ "vision_model.encoder.layers.20.norm2.bias": "model-00001-of-00002.safetensors",
406
+ "vision_model.encoder.layers.20.norm2.weight": "model-00001-of-00002.safetensors",
407
+ "vision_model.encoder.layers.21.attn.proj.bias": "model-00001-of-00002.safetensors",
408
+ "vision_model.encoder.layers.21.attn.proj.weight": "model-00001-of-00002.safetensors",
409
+ "vision_model.encoder.layers.21.attn.qkv.bias": "model-00001-of-00002.safetensors",
410
+ "vision_model.encoder.layers.21.attn.qkv.weight": "model-00001-of-00002.safetensors",
411
+ "vision_model.encoder.layers.21.ls1": "model-00001-of-00002.safetensors",
412
+ "vision_model.encoder.layers.21.ls2": "model-00001-of-00002.safetensors",
413
+ "vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00002.safetensors",
414
+ "vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
415
+ "vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00002.safetensors",
416
+ "vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
417
+ "vision_model.encoder.layers.21.norm1.bias": "model-00001-of-00002.safetensors",
418
+ "vision_model.encoder.layers.21.norm1.weight": "model-00001-of-00002.safetensors",
419
+ "vision_model.encoder.layers.21.norm2.bias": "model-00001-of-00002.safetensors",
420
+ "vision_model.encoder.layers.21.norm2.weight": "model-00001-of-00002.safetensors",
421
+ "vision_model.encoder.layers.22.attn.proj.bias": "model-00001-of-00002.safetensors",
422
+ "vision_model.encoder.layers.22.attn.proj.weight": "model-00001-of-00002.safetensors",
423
+ "vision_model.encoder.layers.22.attn.qkv.bias": "model-00001-of-00002.safetensors",
424
+ "vision_model.encoder.layers.22.attn.qkv.weight": "model-00001-of-00002.safetensors",
425
+ "vision_model.encoder.layers.22.ls1": "model-00001-of-00002.safetensors",
426
+ "vision_model.encoder.layers.22.ls2": "model-00001-of-00002.safetensors",
427
+ "vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00002.safetensors",
428
+ "vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
429
+ "vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00002.safetensors",
430
+ "vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
431
+ "vision_model.encoder.layers.22.norm1.bias": "model-00001-of-00002.safetensors",
432
+ "vision_model.encoder.layers.22.norm1.weight": "model-00001-of-00002.safetensors",
433
+ "vision_model.encoder.layers.22.norm2.bias": "model-00001-of-00002.safetensors",
434
+ "vision_model.encoder.layers.22.norm2.weight": "model-00001-of-00002.safetensors",
435
+ "vision_model.encoder.layers.23.attn.proj.bias": "model-00001-of-00002.safetensors",
436
+ "vision_model.encoder.layers.23.attn.proj.weight": "model-00001-of-00002.safetensors",
437
+ "vision_model.encoder.layers.23.attn.qkv.bias": "model-00001-of-00002.safetensors",
438
+ "vision_model.encoder.layers.23.attn.qkv.weight": "model-00001-of-00002.safetensors",
439
+ "vision_model.encoder.layers.23.ls1": "model-00001-of-00002.safetensors",
440
+ "vision_model.encoder.layers.23.ls2": "model-00001-of-00002.safetensors",
441
+ "vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00002.safetensors",
442
+ "vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
443
+ "vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00002.safetensors",
444
+ "vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
445
+ "vision_model.encoder.layers.23.norm1.bias": "model-00001-of-00002.safetensors",
446
+ "vision_model.encoder.layers.23.norm1.weight": "model-00001-of-00002.safetensors",
447
+ "vision_model.encoder.layers.23.norm2.bias": "model-00001-of-00002.safetensors",
448
+ "vision_model.encoder.layers.23.norm2.weight": "model-00001-of-00002.safetensors",
449
+ "vision_model.encoder.layers.3.attn.proj.bias": "model-00001-of-00002.safetensors",
450
+ "vision_model.encoder.layers.3.attn.proj.weight": "model-00001-of-00002.safetensors",
451
+ "vision_model.encoder.layers.3.attn.qkv.bias": "model-00001-of-00002.safetensors",
452
+ "vision_model.encoder.layers.3.attn.qkv.weight": "model-00001-of-00002.safetensors",
453
+ "vision_model.encoder.layers.3.ls1": "model-00001-of-00002.safetensors",
454
+ "vision_model.encoder.layers.3.ls2": "model-00001-of-00002.safetensors",
455
+ "vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00002.safetensors",
456
+ "vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
457
+ "vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00002.safetensors",
458
+ "vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
459
+ "vision_model.encoder.layers.3.norm1.bias": "model-00001-of-00002.safetensors",
460
+ "vision_model.encoder.layers.3.norm1.weight": "model-00001-of-00002.safetensors",
461
+ "vision_model.encoder.layers.3.norm2.bias": "model-00001-of-00002.safetensors",
462
+ "vision_model.encoder.layers.3.norm2.weight": "model-00001-of-00002.safetensors",
463
+ "vision_model.encoder.layers.4.attn.proj.bias": "model-00001-of-00002.safetensors",
464
+ "vision_model.encoder.layers.4.attn.proj.weight": "model-00001-of-00002.safetensors",
465
+ "vision_model.encoder.layers.4.attn.qkv.bias": "model-00001-of-00002.safetensors",
466
+ "vision_model.encoder.layers.4.attn.qkv.weight": "model-00001-of-00002.safetensors",
467
+ "vision_model.encoder.layers.4.ls1": "model-00001-of-00002.safetensors",
468
+ "vision_model.encoder.layers.4.ls2": "model-00001-of-00002.safetensors",
469
+ "vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00002.safetensors",
470
+ "vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
471
+ "vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00002.safetensors",
472
+ "vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
473
+ "vision_model.encoder.layers.4.norm1.bias": "model-00001-of-00002.safetensors",
474
+ "vision_model.encoder.layers.4.norm1.weight": "model-00001-of-00002.safetensors",
475
+ "vision_model.encoder.layers.4.norm2.bias": "model-00001-of-00002.safetensors",
476
+ "vision_model.encoder.layers.4.norm2.weight": "model-00001-of-00002.safetensors",
477
+ "vision_model.encoder.layers.5.attn.proj.bias": "model-00001-of-00002.safetensors",
478
+ "vision_model.encoder.layers.5.attn.proj.weight": "model-00001-of-00002.safetensors",
479
+ "vision_model.encoder.layers.5.attn.qkv.bias": "model-00001-of-00002.safetensors",
480
+ "vision_model.encoder.layers.5.attn.qkv.weight": "model-00001-of-00002.safetensors",
481
+ "vision_model.encoder.layers.5.ls1": "model-00001-of-00002.safetensors",
482
+ "vision_model.encoder.layers.5.ls2": "model-00001-of-00002.safetensors",
483
+ "vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00002.safetensors",
484
+ "vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
485
+ "vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00002.safetensors",
486
+ "vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
487
+ "vision_model.encoder.layers.5.norm1.bias": "model-00001-of-00002.safetensors",
488
+ "vision_model.encoder.layers.5.norm1.weight": "model-00001-of-00002.safetensors",
489
+ "vision_model.encoder.layers.5.norm2.bias": "model-00001-of-00002.safetensors",
490
+ "vision_model.encoder.layers.5.norm2.weight": "model-00001-of-00002.safetensors",
491
+ "vision_model.encoder.layers.6.attn.proj.bias": "model-00001-of-00002.safetensors",
492
+ "vision_model.encoder.layers.6.attn.proj.weight": "model-00001-of-00002.safetensors",
493
+ "vision_model.encoder.layers.6.attn.qkv.bias": "model-00001-of-00002.safetensors",
494
+ "vision_model.encoder.layers.6.attn.qkv.weight": "model-00001-of-00002.safetensors",
495
+ "vision_model.encoder.layers.6.ls1": "model-00001-of-00002.safetensors",
496
+ "vision_model.encoder.layers.6.ls2": "model-00001-of-00002.safetensors",
497
+ "vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00002.safetensors",
498
+ "vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
499
+ "vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00002.safetensors",
500
+ "vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
501
+ "vision_model.encoder.layers.6.norm1.bias": "model-00001-of-00002.safetensors",
502
+ "vision_model.encoder.layers.6.norm1.weight": "model-00001-of-00002.safetensors",
503
+ "vision_model.encoder.layers.6.norm2.bias": "model-00001-of-00002.safetensors",
504
+ "vision_model.encoder.layers.6.norm2.weight": "model-00001-of-00002.safetensors",
505
+ "vision_model.encoder.layers.7.attn.proj.bias": "model-00001-of-00002.safetensors",
506
+ "vision_model.encoder.layers.7.attn.proj.weight": "model-00001-of-00002.safetensors",
507
+ "vision_model.encoder.layers.7.attn.qkv.bias": "model-00001-of-00002.safetensors",
508
+ "vision_model.encoder.layers.7.attn.qkv.weight": "model-00001-of-00002.safetensors",
509
+ "vision_model.encoder.layers.7.ls1": "model-00001-of-00002.safetensors",
510
+ "vision_model.encoder.layers.7.ls2": "model-00001-of-00002.safetensors",
511
+ "vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00002.safetensors",
512
+ "vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
513
+ "vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00002.safetensors",
514
+ "vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
515
+ "vision_model.encoder.layers.7.norm1.bias": "model-00001-of-00002.safetensors",
516
+ "vision_model.encoder.layers.7.norm1.weight": "model-00001-of-00002.safetensors",
517
+ "vision_model.encoder.layers.7.norm2.bias": "model-00001-of-00002.safetensors",
518
+ "vision_model.encoder.layers.7.norm2.weight": "model-00001-of-00002.safetensors",
519
+ "vision_model.encoder.layers.8.attn.proj.bias": "model-00001-of-00002.safetensors",
520
+ "vision_model.encoder.layers.8.attn.proj.weight": "model-00001-of-00002.safetensors",
521
+ "vision_model.encoder.layers.8.attn.qkv.bias": "model-00001-of-00002.safetensors",
522
+ "vision_model.encoder.layers.8.attn.qkv.weight": "model-00001-of-00002.safetensors",
523
+ "vision_model.encoder.layers.8.ls1": "model-00001-of-00002.safetensors",
524
+ "vision_model.encoder.layers.8.ls2": "model-00001-of-00002.safetensors",
525
+ "vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00002.safetensors",
526
+ "vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
527
+ "vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00002.safetensors",
528
+ "vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
529
+ "vision_model.encoder.layers.8.norm1.bias": "model-00001-of-00002.safetensors",
530
+ "vision_model.encoder.layers.8.norm1.weight": "model-00001-of-00002.safetensors",
531
+ "vision_model.encoder.layers.8.norm2.bias": "model-00001-of-00002.safetensors",
532
+ "vision_model.encoder.layers.8.norm2.weight": "model-00001-of-00002.safetensors",
533
+ "vision_model.encoder.layers.9.attn.proj.bias": "model-00001-of-00002.safetensors",
534
+ "vision_model.encoder.layers.9.attn.proj.weight": "model-00001-of-00002.safetensors",
535
+ "vision_model.encoder.layers.9.attn.qkv.bias": "model-00001-of-00002.safetensors",
536
+ "vision_model.encoder.layers.9.attn.qkv.weight": "model-00001-of-00002.safetensors",
537
+ "vision_model.encoder.layers.9.ls1": "model-00001-of-00002.safetensors",
538
+ "vision_model.encoder.layers.9.ls2": "model-00001-of-00002.safetensors",
539
+ "vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00002.safetensors",
540
+ "vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
541
+ "vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00002.safetensors",
542
+ "vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00002.safetensors",
543
+ "vision_model.encoder.layers.9.norm1.bias": "model-00001-of-00002.safetensors",
544
+ "vision_model.encoder.layers.9.norm1.weight": "model-00001-of-00002.safetensors",
545
+ "vision_model.encoder.layers.9.norm2.bias": "model-00001-of-00002.safetensors",
546
+ "vision_model.encoder.layers.9.norm2.weight": "model-00001-of-00002.safetensors"
547
+ }
548
+ }
modeling_intern_vit.py ADDED
@@ -0,0 +1,429 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ from typing import Optional, Tuple, Union
7
+
8
+ import torch
9
+ import torch.nn.functional as F
10
+ import torch.utils.checkpoint
11
+ from einops import rearrange
12
+ from timm.models.layers import DropPath
13
+ from torch import nn
14
+ from transformers.activations import ACT2FN
15
+ from transformers.modeling_outputs import (BaseModelOutput,
16
+ BaseModelOutputWithPooling)
17
+ from transformers.modeling_utils import PreTrainedModel
18
+ from transformers.utils import logging
19
+
20
+ from .configuration_intern_vit import InternVisionConfig
21
+
22
+ try:
23
+ from flash_attn.bert_padding import pad_input, unpad_input
24
+ from flash_attn.flash_attn_interface import \
25
+ flash_attn_varlen_qkvpacked_func
26
+ has_flash_attn = True
27
+ except:
28
+ print('FlashAttention2 is not installed.')
29
+ has_flash_attn = False
30
+
31
+ logger = logging.get_logger(__name__)
32
+
33
+
34
+ class FlashAttention(nn.Module):
35
+ """Implement the scaled dot product attention with softmax.
36
+ Arguments
37
+ ---------
38
+ softmax_scale: The temperature to use for the softmax attention.
39
+ (default: 1/sqrt(d_keys) where d_keys is computed at
40
+ runtime)
41
+ attention_dropout: The dropout rate to apply to the attention
42
+ (default: 0.0)
43
+ """
44
+
45
+ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
46
+ super().__init__()
47
+ self.softmax_scale = softmax_scale
48
+ self.dropout_p = attention_dropout
49
+
50
+ def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
51
+ max_s=None, need_weights=False):
52
+ """Implements the multihead softmax attention.
53
+ Arguments
54
+ ---------
55
+ qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
56
+ if unpadded: (nnz, 3, h, d)
57
+ key_padding_mask: a bool tensor of shape (B, S)
58
+ """
59
+ assert not need_weights
60
+ assert qkv.dtype in [torch.float16, torch.bfloat16]
61
+ assert qkv.is_cuda
62
+
63
+ if cu_seqlens is None:
64
+ batch_size = qkv.shape[0]
65
+ seqlen = qkv.shape[1]
66
+ if key_padding_mask is None:
67
+ qkv = rearrange(qkv, 'b s ... -> (b s) ...')
68
+ max_s = seqlen
69
+ cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
70
+ device=qkv.device)
71
+ output = flash_attn_varlen_qkvpacked_func(
72
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
73
+ softmax_scale=self.softmax_scale, causal=causal
74
+ )
75
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
76
+ else:
77
+ nheads = qkv.shape[-2]
78
+ x = rearrange(qkv, 'b s three h d -> b s (three h d)')
79
+ x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
80
+ x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
81
+ output_unpad = flash_attn_varlen_qkvpacked_func(
82
+ x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
83
+ softmax_scale=self.softmax_scale, causal=causal
84
+ )
85
+ output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
86
+ indices, batch_size, seqlen),
87
+ 'b s (h d) -> b s h d', h=nheads)
88
+ else:
89
+ assert max_s is not None
90
+ output = flash_attn_varlen_qkvpacked_func(
91
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
92
+ softmax_scale=self.softmax_scale, causal=causal
93
+ )
94
+
95
+ return output, None
96
+
97
+
98
+ class InternRMSNorm(nn.Module):
99
+ def __init__(self, hidden_size, eps=1e-6):
100
+ super().__init__()
101
+ self.weight = nn.Parameter(torch.ones(hidden_size))
102
+ self.variance_epsilon = eps
103
+
104
+ def forward(self, hidden_states):
105
+ input_dtype = hidden_states.dtype
106
+ hidden_states = hidden_states.to(torch.float32)
107
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
108
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
109
+ return self.weight * hidden_states.to(input_dtype)
110
+
111
+
112
+ try:
113
+ from apex.normalization import FusedRMSNorm
114
+
115
+ InternRMSNorm = FusedRMSNorm # noqa
116
+
117
+ logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
118
+ except ImportError:
119
+ # using the normal InternRMSNorm
120
+ pass
121
+ except Exception:
122
+ logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
123
+ pass
124
+
125
+
126
+ NORM2FN = {
127
+ 'rms_norm': InternRMSNorm,
128
+ 'layer_norm': nn.LayerNorm,
129
+ }
130
+
131
+
132
+ class InternVisionEmbeddings(nn.Module):
133
+ def __init__(self, config: InternVisionConfig):
134
+ super().__init__()
135
+ self.config = config
136
+ self.embed_dim = config.hidden_size
137
+ self.image_size = config.image_size
138
+ self.patch_size = config.patch_size
139
+
140
+ self.class_embedding = nn.Parameter(
141
+ torch.randn(1, 1, self.embed_dim),
142
+ )
143
+
144
+ self.patch_embedding = nn.Conv2d(
145
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
146
+ )
147
+
148
+ self.num_patches = (self.image_size // self.patch_size) ** 2
149
+ self.num_positions = self.num_patches + 1
150
+
151
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
152
+
153
+ def _get_pos_embed(self, pos_embed, H, W):
154
+ target_dtype = pos_embed.dtype
155
+ pos_embed = pos_embed.float().reshape(
156
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
157
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
158
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
159
+ return pos_embed
160
+
161
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
162
+ target_dtype = self.patch_embedding.weight.dtype
163
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
164
+ batch_size, _, height, width = patch_embeds.shape
165
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
166
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
167
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
168
+ position_embedding = torch.cat([
169
+ self.position_embedding[:, :1, :],
170
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
171
+ ], dim=1)
172
+ embeddings = embeddings + position_embedding.to(target_dtype)
173
+ return embeddings
174
+
175
+
176
+ class InternAttention(nn.Module):
177
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
178
+
179
+ def __init__(self, config: InternVisionConfig):
180
+ super().__init__()
181
+ self.config = config
182
+ self.embed_dim = config.hidden_size
183
+ self.num_heads = config.num_attention_heads
184
+ self.use_flash_attn = config.use_flash_attn and has_flash_attn
185
+ if config.use_flash_attn and not has_flash_attn:
186
+ print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
187
+ self.head_dim = self.embed_dim // self.num_heads
188
+ if self.head_dim * self.num_heads != self.embed_dim:
189
+ raise ValueError(
190
+ f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
191
+ f' {self.num_heads}).'
192
+ )
193
+
194
+ self.scale = self.head_dim ** -0.5
195
+ self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
196
+ self.attn_drop = nn.Dropout(config.attention_dropout)
197
+ self.proj_drop = nn.Dropout(config.dropout)
198
+
199
+ self.qk_normalization = config.qk_normalization
200
+
201
+ if self.qk_normalization:
202
+ self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
203
+ self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
204
+
205
+ if self.use_flash_attn:
206
+ self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
207
+ self.proj = nn.Linear(self.embed_dim, self.embed_dim)
208
+
209
+ def _naive_attn(self, x):
210
+ B, N, C = x.shape
211
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
212
+ q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
213
+
214
+ if self.qk_normalization:
215
+ B_, H_, N_, D_ = q.shape
216
+ q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
217
+ k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
218
+
219
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
220
+ attn = attn.softmax(dim=-1)
221
+ attn = self.attn_drop(attn)
222
+
223
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
224
+ x = self.proj(x)
225
+ x = self.proj_drop(x)
226
+ return x
227
+
228
+ def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
229
+ qkv = self.qkv(x)
230
+ qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
231
+
232
+ if self.qk_normalization:
233
+ q, k, v = qkv.unbind(2)
234
+ q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
235
+ k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
236
+ qkv = torch.stack([q, k, v], dim=2)
237
+
238
+ context, _ = self.inner_attn(
239
+ qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
240
+ )
241
+ outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
242
+ outs = self.proj_drop(outs)
243
+ return outs
244
+
245
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
246
+ x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
247
+ return x
248
+
249
+
250
+ class InternMLP(nn.Module):
251
+ def __init__(self, config: InternVisionConfig):
252
+ super().__init__()
253
+ self.config = config
254
+ self.act = ACT2FN[config.hidden_act]
255
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
256
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
257
+
258
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
259
+ hidden_states = self.fc1(hidden_states)
260
+ hidden_states = self.act(hidden_states)
261
+ hidden_states = self.fc2(hidden_states)
262
+ return hidden_states
263
+
264
+
265
+ class InternVisionEncoderLayer(nn.Module):
266
+ def __init__(self, config: InternVisionConfig, drop_path_rate: float):
267
+ super().__init__()
268
+ self.embed_dim = config.hidden_size
269
+ self.intermediate_size = config.intermediate_size
270
+ self.norm_type = config.norm_type
271
+
272
+ self.attn = InternAttention(config)
273
+ self.mlp = InternMLP(config)
274
+ self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
275
+ self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
276
+
277
+ self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
278
+ self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
279
+ self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
280
+ self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
281
+
282
+ def forward(
283
+ self,
284
+ hidden_states: torch.Tensor,
285
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
286
+ """
287
+ Args:
288
+ hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
289
+ """
290
+ hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1)
291
+
292
+ hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2)
293
+
294
+ return hidden_states
295
+
296
+
297
+ class InternVisionEncoder(nn.Module):
298
+ """
299
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
300
+ [`InternEncoderLayer`].
301
+
302
+ Args:
303
+ config (`InternConfig`):
304
+ The corresponding vision configuration for the `InternEncoder`.
305
+ """
306
+
307
+ def __init__(self, config: InternVisionConfig):
308
+ super().__init__()
309
+ self.config = config
310
+ # stochastic depth decay rule
311
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
312
+ self.layers = nn.ModuleList([
313
+ InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
314
+ self.gradient_checkpointing = True
315
+
316
+ def forward(
317
+ self,
318
+ inputs_embeds,
319
+ output_hidden_states: Optional[bool] = None,
320
+ return_dict: Optional[bool] = None,
321
+ ) -> Union[Tuple, BaseModelOutput]:
322
+ r"""
323
+ Args:
324
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
325
+ Embedded representation of the inputs. Should be float, not int tokens.
326
+ output_hidden_states (`bool`, *optional*):
327
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
328
+ for more detail.
329
+ return_dict (`bool`, *optional*):
330
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
331
+ """
332
+ output_hidden_states = (
333
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
334
+ )
335
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
336
+
337
+ encoder_states = () if output_hidden_states else None
338
+ hidden_states = inputs_embeds
339
+
340
+ for idx, encoder_layer in enumerate(self.layers):
341
+ if output_hidden_states:
342
+ encoder_states = encoder_states + (hidden_states,)
343
+ if self.gradient_checkpointing and self.training:
344
+ layer_outputs = torch.utils.checkpoint.checkpoint(
345
+ encoder_layer,
346
+ hidden_states)
347
+ else:
348
+ layer_outputs = encoder_layer(
349
+ hidden_states,
350
+ )
351
+ hidden_states = layer_outputs
352
+
353
+ if output_hidden_states:
354
+ encoder_states = encoder_states + (hidden_states,)
355
+
356
+ if not return_dict:
357
+ return tuple(v for v in [hidden_states, encoder_states] if v is not None)
358
+ return BaseModelOutput(
359
+ last_hidden_state=hidden_states, hidden_states=encoder_states
360
+ )
361
+
362
+
363
+ class InternVisionModel(PreTrainedModel):
364
+ main_input_name = 'pixel_values'
365
+ _supports_flash_attn_2 = True
366
+ config_class = InternVisionConfig
367
+ _no_split_modules = ['InternVisionEncoderLayer']
368
+
369
+ def __init__(self, config: InternVisionConfig):
370
+ super().__init__(config)
371
+ self.config = config
372
+
373
+ self.embeddings = InternVisionEmbeddings(config)
374
+ self.encoder = InternVisionEncoder(config)
375
+
376
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
377
+ pos_emb = self.embeddings.position_embedding
378
+ _, num_positions, embed_dim = pos_emb.shape
379
+ cls_emb = pos_emb[:, :1, :]
380
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
381
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
382
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
383
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
384
+ self.embeddings.position_embedding = nn.Parameter(pos_emb)
385
+ self.embeddings.image_size = new_size
386
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
387
+
388
+ def get_input_embeddings(self):
389
+ return self.embeddings
390
+
391
+ def forward(
392
+ self,
393
+ pixel_values: Optional[torch.FloatTensor] = None,
394
+ output_hidden_states: Optional[bool] = None,
395
+ return_dict: Optional[bool] = None,
396
+ pixel_embeds: Optional[torch.FloatTensor] = None,
397
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
398
+ output_hidden_states = (
399
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
400
+ )
401
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
402
+
403
+ if pixel_values is None and pixel_embeds is None:
404
+ raise ValueError('You have to specify pixel_values or pixel_embeds')
405
+
406
+ if pixel_embeds is not None:
407
+ hidden_states = pixel_embeds
408
+ else:
409
+ if len(pixel_values.shape) == 4:
410
+ hidden_states = self.embeddings(pixel_values)
411
+ else:
412
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
413
+ encoder_outputs = self.encoder(
414
+ inputs_embeds=hidden_states,
415
+ output_hidden_states=output_hidden_states,
416
+ return_dict=return_dict,
417
+ )
418
+ last_hidden_state = encoder_outputs.last_hidden_state
419
+ pooled_output = last_hidden_state[:, 0, :]
420
+
421
+ if not return_dict:
422
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
423
+
424
+ return BaseModelOutputWithPooling(
425
+ last_hidden_state=last_hidden_state,
426
+ pooler_output=pooled_output,
427
+ hidden_states=encoder_outputs.hidden_states,
428
+ attentions=encoder_outputs.attentions,
429
+ )
modeling_internvl_chat.py ADDED
@@ -0,0 +1,365 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ import warnings
7
+ from typing import Any, List, Optional, Tuple, Union
8
+ import os
9
+ import torch.utils.checkpoint
10
+ import transformers
11
+ from torch import nn
12
+ from torch.nn import CrossEntropyLoss
13
+ from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
14
+ LlamaTokenizer)
15
+ from transformers.modeling_outputs import CausalLMOutputWithPast
16
+ from transformers.modeling_utils import PreTrainedModel
17
+ from transformers.utils import ModelOutput, logging
18
+
19
+ from .configuration_internvl_chat import InternVLChatConfig
20
+ from .conversation import get_conv_template
21
+ from .modeling_intern_vit import InternVisionModel, has_flash_attn
22
+ from .modeling_phi3 import Phi3ForCausalLM
23
+ import os
24
+ logger = logging.get_logger(__name__)
25
+
26
+ image_token_num = 0
27
+
28
+ def version_cmp(v1, v2, op='eq'):
29
+ import operator
30
+
31
+ from packaging import version
32
+ op_func = getattr(operator, op)
33
+ return op_func(version.parse(v1), version.parse(v2))
34
+
35
+
36
+ class InternVLChatModel(PreTrainedModel):
37
+ config_class = InternVLChatConfig
38
+ main_input_name = 'pixel_values'
39
+ base_model_prefix = 'language_model'
40
+ _supports_flash_attn_2 = True
41
+ _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'Phi3DecoderLayer']
42
+
43
+ def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
44
+ super().__init__(config)
45
+
46
+ assert version_cmp(transformers.__version__, '4.36.2', 'ge')
47
+ image_size = config.force_image_size or config.vision_config.image_size
48
+ patch_size = config.vision_config.patch_size
49
+ self.patch_size = patch_size
50
+ self.select_layer = config.select_layer
51
+ self.template = config.template
52
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
53
+ self.downsample_ratio = config.downsample_ratio
54
+ self.ps_version = config.ps_version
55
+ use_flash_attn = use_flash_attn if has_flash_attn else False
56
+ use_flash_attn = False
57
+ config.vision_config.use_flash_attn = True if use_flash_attn else False
58
+ config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
59
+
60
+
61
+
62
+ logger.info(f'num_image_token: {self.num_image_token}')
63
+ logger.info(f'ps_version: {self.ps_version}')
64
+ if vision_model is not None:
65
+ self.vision_model = vision_model
66
+ else:
67
+ self.vision_model = InternVisionModel(config.vision_config)
68
+ if language_model is not None:
69
+ self.language_model = language_model
70
+ else:
71
+ if config.llm_config.architectures[0] == 'LlamaForCausalLM':
72
+ self.language_model = LlamaForCausalLM(config.llm_config)
73
+ elif config.llm_config.architectures[0] == 'Phi3ForCausalLM':
74
+ self.language_model = Phi3ForCausalLM(config.llm_config)
75
+ else:
76
+ raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
77
+
78
+ vit_hidden_size = config.vision_config.hidden_size
79
+ llm_hidden_size = config.llm_config.hidden_size
80
+
81
+ self.mlp1 = nn.Sequential(
82
+ nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
83
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
84
+ nn.GELU(),
85
+ nn.Linear(llm_hidden_size, llm_hidden_size)
86
+ )
87
+
88
+ self.img_context_token_id = None
89
+ self.conv_template = get_conv_template(self.template)
90
+ self.system_message = self.conv_template.system_message
91
+
92
+
93
+ def forward(
94
+ self,
95
+ pixel_values: torch.FloatTensor,
96
+ input_ids: torch.LongTensor = None,
97
+ attention_mask: Optional[torch.Tensor] = None,
98
+ position_ids: Optional[torch.LongTensor] = None,
99
+ image_flags: Optional[torch.LongTensor] = None,
100
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
101
+ labels: Optional[torch.LongTensor] = None,
102
+ use_cache: Optional[bool] = None,
103
+ output_attentions: Optional[bool] = None,
104
+ output_hidden_states: Optional[bool] = None,
105
+ return_dict: Optional[bool] = None,
106
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
107
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
108
+ # import pdb; pdb.set_trace()
109
+ image_flags = image_flags.squeeze(-1)
110
+ input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
111
+
112
+ vit_embeds = self.extract_feature(pixel_values)
113
+ vit_embeds = vit_embeds[image_flags == 1]
114
+ vit_batch_size = pixel_values.shape[0]
115
+
116
+ B, N, C = input_embeds.shape
117
+ input_embeds = input_embeds.reshape(B * N, C)
118
+
119
+ if torch.distributed.get_rank() == 0:
120
+ print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
121
+
122
+ input_ids = input_ids.reshape(B * N)
123
+ selected = (input_ids == self.img_context_token_id)
124
+ try:
125
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
126
+ except Exception as e:
127
+ vit_embeds = vit_embeds.reshape(-1, C)
128
+ print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
129
+ f'vit_embeds.shape={vit_embeds.shape}')
130
+ n_token = selected.sum()
131
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
132
+
133
+ input_embeds = input_embeds.reshape(B, N, C)
134
+
135
+ outputs = self.language_model(
136
+ inputs_embeds=input_embeds,
137
+ attention_mask=attention_mask,
138
+ position_ids=position_ids,
139
+ past_key_values=past_key_values,
140
+ use_cache=use_cache,
141
+ output_attentions=output_attentions,
142
+ output_hidden_states=output_hidden_states,
143
+ return_dict=return_dict,
144
+ )
145
+ logits = outputs.logits
146
+
147
+ loss = None
148
+ if labels is not None:
149
+ # Shift so that tokens < n predict n
150
+ shift_logits = logits[..., :-1, :].contiguous()
151
+ shift_labels = labels[..., 1:].contiguous()
152
+ # Flatten the tokens
153
+ loss_fct = CrossEntropyLoss()
154
+ shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
155
+ shift_labels = shift_labels.view(-1)
156
+ # Enable model parallelism
157
+ shift_labels = shift_labels.to(shift_logits.device)
158
+ loss = loss_fct(shift_logits, shift_labels)
159
+
160
+ if not return_dict:
161
+ output = (logits,) + outputs[1:]
162
+ return (loss,) + output if loss is not None else output
163
+
164
+ return CausalLMOutputWithPast(
165
+ loss=loss,
166
+ logits=logits,
167
+ past_key_values=outputs.past_key_values,
168
+ hidden_states=outputs.hidden_states,
169
+ attentions=outputs.attentions,
170
+ )
171
+
172
+ def pixel_shuffle(self, x, scale_factor=0.5):
173
+ n, w, h, c = x.size()
174
+ # N, W, H, C --> N, W, H * scale, C // scale
175
+ x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
176
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
177
+ x = x.permute(0, 2, 1, 3).contiguous()
178
+ # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
179
+ x = x.view(n, int(h * scale_factor), int(w * scale_factor),
180
+ int(c / (scale_factor * scale_factor)))
181
+ if self.ps_version == 'v1':
182
+ warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
183
+ 'which results in a transposed image.')
184
+ else:
185
+ x = x.permute(0, 2, 1, 3).contiguous()
186
+ return x
187
+
188
+ def extract_feature(self, pixel_values):
189
+ if self.select_layer == -1:
190
+ vit_embeds = self.vision_model(
191
+ pixel_values=pixel_values,
192
+ output_hidden_states=False,
193
+ return_dict=True).last_hidden_state
194
+ else:
195
+ vit_embeds = self.vision_model(
196
+ pixel_values=pixel_values,
197
+ output_hidden_states=True,
198
+ return_dict=True).hidden_states[self.select_layer]
199
+ vit_embeds = vit_embeds[:, 1:, :]
200
+
201
+ h = w = int(vit_embeds.shape[1] ** 0.5)
202
+
203
+ os.environ['IMAGE_H'] = str(h)
204
+
205
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
206
+ vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
207
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
208
+ vit_embeds = self.mlp1(vit_embeds)
209
+ return vit_embeds
210
+
211
+ def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
212
+ history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
213
+ IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
214
+ if history is not None or return_history:
215
+ print('Now multi-turn chat is not supported in batch_chat.')
216
+ raise NotImplementedError
217
+
218
+ if image_counts is not None:
219
+ num_patches_list = image_counts
220
+ print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
221
+
222
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
223
+ self.img_context_token_id = img_context_token_id
224
+
225
+ if verbose and pixel_values is not None:
226
+ image_bs = pixel_values.shape[0]
227
+ print(f'dynamic ViT batch size: {image_bs}')
228
+
229
+ queries = []
230
+ for idx, num_patches in enumerate(num_patches_list):
231
+ question = questions[idx]
232
+ if pixel_values is not None and '<image>' not in question:
233
+ question = '<image>\n' + question
234
+ template = get_conv_template(self.template)
235
+ template.system_message = self.system_message
236
+ template.append_message(template.roles[0], question)
237
+ template.append_message(template.roles[1], None)
238
+ query = template.get_prompt()
239
+
240
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
241
+ query = query.replace('<image>', image_tokens, 1)
242
+ queries.append(query)
243
+
244
+ tokenizer.padding_side = 'left'
245
+ model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
246
+ input_ids = model_inputs['input_ids'].to(self.device)
247
+ attention_mask = model_inputs['attention_mask'].to(self.device)
248
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
249
+ generation_config['eos_token_id'] = eos_token_id
250
+ generation_output = self.generate(
251
+ pixel_values=pixel_values,
252
+ input_ids=input_ids,
253
+ attention_mask=attention_mask,
254
+ **generation_config
255
+ )
256
+ responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
257
+ responses = [response.split(template.sep)[0].strip() for response in responses]
258
+ return responses
259
+
260
+ def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
261
+ num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
262
+ verbose=False):
263
+
264
+ if history is None and pixel_values is not None and '<image>' not in question:
265
+ question = '<image>\n' + question
266
+
267
+ if num_patches_list is None:
268
+ num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
269
+ assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
270
+
271
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
272
+ self.img_context_token_id = img_context_token_id
273
+
274
+ template = get_conv_template(self.template)
275
+ template.system_message = self.system_message
276
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
277
+
278
+ history = [] if history is None else history
279
+ for (old_question, old_answer) in history:
280
+ template.append_message(template.roles[0], old_question)
281
+ template.append_message(template.roles[1], old_answer)
282
+ template.append_message(template.roles[0], question)
283
+ template.append_message(template.roles[1], None)
284
+ query = template.get_prompt()
285
+
286
+ if verbose and pixel_values is not None:
287
+ image_bs = pixel_values.shape[0]
288
+ print(f'dynamic ViT batch size: {image_bs}')
289
+
290
+ for num_patches in num_patches_list:
291
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
292
+ query = query.replace('<image>', image_tokens, 1)
293
+
294
+ model_inputs = tokenizer(query, return_tensors='pt')
295
+ input_ids = model_inputs['input_ids'].to(self.device)
296
+ attention_mask = model_inputs['attention_mask'].to(self.device)
297
+ generation_config['eos_token_id'] = eos_token_id
298
+ generation_output = self.generate(
299
+ pixel_values=pixel_values,
300
+ input_ids=input_ids,
301
+ attention_mask=attention_mask,
302
+ **generation_config
303
+ )
304
+ response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
305
+ response = response.split(template.sep)[0].strip()
306
+ history.append((question, response))
307
+ if return_history:
308
+ return response, history
309
+ else:
310
+ query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
311
+ query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
312
+ if verbose:
313
+ print(query_to_print, response)
314
+ return response
315
+
316
+ @torch.no_grad()
317
+ def generate(
318
+ self,
319
+ pixel_values: Optional[torch.FloatTensor] = None,
320
+ input_ids: Optional[torch.FloatTensor] = None,
321
+ attention_mask: Optional[torch.LongTensor] = None,
322
+ visual_features: Optional[torch.FloatTensor] = None,
323
+ generation_config: Optional[GenerationConfig] = None,
324
+ output_hidden_states: Optional[bool] = None,
325
+ return_dict: Optional[bool] = None,
326
+ **generate_kwargs,
327
+ ) -> torch.LongTensor:
328
+
329
+ assert self.img_context_token_id is not None
330
+ # global image_token_num
331
+ if pixel_values is not None:
332
+ if visual_features is not None:
333
+ vit_embeds = visual_features
334
+ else:
335
+ vit_embeds = self.extract_feature(pixel_values)
336
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
337
+ B, N, C = input_embeds.shape
338
+ input_embeds = input_embeds.reshape(B * N, C)
339
+
340
+ input_ids = input_ids.reshape(B * N)
341
+ selected = (input_ids == self.img_context_token_id)
342
+ assert selected.sum() != 0
343
+
344
+ input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
345
+
346
+ image_token_num = vit_embeds.shape[0] * vit_embeds.shape[1]
347
+ os.environ['IMAGE_TOKEN_NUM'] = str(image_token_num)
348
+
349
+ input_embeds = input_embeds.reshape(B, N, C)
350
+ else:
351
+ image_token_num = 0
352
+ os.environ['IMAGE_TOKEN_NUM'] = str(image_token_num)
353
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
354
+ # import pdb; pdb.set_trace()
355
+ outputs = self.language_model.generate(
356
+ inputs_embeds=input_embeds,
357
+ attention_mask=attention_mask,
358
+ generation_config=generation_config,
359
+ output_hidden_states=output_hidden_states,
360
+ return_dict=return_dict,
361
+ use_cache=True,
362
+ **generate_kwargs,
363
+ )
364
+
365
+ return outputs
modeling_phi3.py ADDED
@@ -0,0 +1,1680 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ """ PyTorch Phi-3 model."""
16
+
17
+ import inspect
18
+ import math
19
+ import warnings
20
+ from typing import List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.nn.functional as F
24
+ import torch.utils.checkpoint
25
+ from torch import nn
26
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
27
+ from transformers.activations import ACT2FN
28
+ from transformers.cache_utils import Cache, DynamicCache
29
+ from transformers.modeling_attn_mask_utils import \
30
+ _prepare_4d_causal_attention_mask
31
+ from transformers.modeling_outputs import (BaseModelOutputWithPast,
32
+ CausalLMOutputWithPast,
33
+ SequenceClassifierOutputWithPast,
34
+ TokenClassifierOutput)
35
+ from transformers.modeling_utils import PreTrainedModel
36
+ from transformers.utils import (add_code_sample_docstrings,
37
+ add_start_docstrings,
38
+ add_start_docstrings_to_model_forward,
39
+ is_flash_attn_2_available,
40
+ is_flash_attn_greater_or_equal_2_10, logging,
41
+ replace_return_docstrings)
42
+
43
+ from .configuration_phi3 import Phi3Config
44
+ import os
45
+ logger = logging.get_logger(__name__)
46
+
47
+ # Transformers scans dependencies in the modeling file, causing issues on conditional loading. The regex only ignores try/catch blocks, but not if statements
48
+ # if is_flash_attn_2_available():
49
+ _flash_supports_window_size = False
50
+ try:
51
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
52
+ from flash_attn.bert_padding import (index_first_axis, pad_input, # noqa
53
+ unpad_input)
54
+
55
+ _flash_supports_window_size = 'window_size' in list(inspect.signature(flash_attn_func).parameters)
56
+ has_flash_attn = True
57
+ except ImportError as error:
58
+ logger.warning(
59
+ f'`flash-attention` package not found, consider installing for better performance: {error}.'
60
+ )
61
+ if not _flash_supports_window_size:
62
+ logger.warning(
63
+ "Current `flash-attenton` does not support `window_size`. Either upgrade or use `attn_implementation='eager'`."
64
+ )
65
+ has_flash_attn = False
66
+
67
+ _CHECKPOINT_FOR_DOC = 'microsoft/Phi-3-mini-4k-instruct'
68
+ _CONFIG_FOR_DOC = 'Phi3Config'
69
+
70
+ PHI3_PRETRAINED_MODEL_ARCHIVE_LIST = [
71
+ 'microsoft/Phi-3-mini-4k-instruct',
72
+ 'microsoft/Phi-3-mini-128k-instruct',
73
+ # See all Phi-3 models at https://huggingface.co/models?filter=Phi-3
74
+ ]
75
+
76
+
77
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Phi3
78
+ class Phi3RMSNorm(nn.Module):
79
+ def __init__(self, hidden_size, eps=1e-6):
80
+ """
81
+ Phi3RMSNorm is equivalent to T5LayerNorm
82
+ """
83
+ super().__init__()
84
+ self.weight = nn.Parameter(torch.ones(hidden_size))
85
+ self.variance_epsilon = eps
86
+
87
+ def forward(self, hidden_states):
88
+ input_dtype = hidden_states.dtype
89
+ hidden_states = hidden_states.to(torch.float32)
90
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
91
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
92
+ return self.weight * hidden_states.to(input_dtype)
93
+
94
+
95
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
96
+ def _get_unpad_data(attention_mask):
97
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
98
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
99
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
100
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
101
+ return (
102
+ indices,
103
+ cu_seqlens,
104
+ max_seqlen_in_batch,
105
+ )
106
+
107
+
108
+ # Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with gemma->phi3, Gemma->Phi3
109
+ class Phi3RotaryEmbedding(nn.Module):
110
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
111
+ super().__init__()
112
+
113
+ self.dim = dim
114
+ self.max_position_embeddings = max_position_embeddings
115
+ self.base = base
116
+ self.register_buffer('inv_freq', None, persistent=False)
117
+
118
+ @torch.no_grad()
119
+ def forward(self, x, position_ids, seq_len=None):
120
+ # x: [bs, num_attention_heads, seq_len, head_size]
121
+ if self.inv_freq is None:
122
+ self.inv_freq = 1.0 / (
123
+ self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
124
+ )
125
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
126
+ position_ids_expanded = position_ids[:, None, :].float()
127
+ # Force float32 since bfloat16 loses precision on long contexts
128
+ # See https://github.com/huggingface/transformers/pull/29285
129
+ device_type = x.device.type
130
+ device_type = device_type if isinstance(device_type, str) and device_type != 'mps' else 'cpu'
131
+ with torch.autocast(device_type=device_type, enabled=False):
132
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
133
+ emb = torch.cat((freqs, freqs), dim=-1)
134
+ cos = emb.cos()
135
+ sin = emb.sin()
136
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
137
+
138
+
139
+ class Phi3SuScaledRotaryEmbedding(Phi3RotaryEmbedding):
140
+ def __init__(self, dim, config, device=None):
141
+ super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
142
+
143
+ self.short_factor = config.rope_scaling['short_factor']
144
+ self.long_factor = config.rope_scaling['long_factor']
145
+ self.original_max_position_embeddings = config.original_max_position_embeddings
146
+
147
+ @torch.no_grad()
148
+ def forward(self, x, position_ids, seq_len=None):
149
+ seq_len = torch.max(position_ids) + 1
150
+ if seq_len > self.original_max_position_embeddings:
151
+ ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
152
+ else:
153
+ ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
154
+
155
+ inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
156
+ self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
157
+
158
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
159
+ position_ids_expanded = position_ids[:, None, :].float()
160
+
161
+ # Force float32 since bfloat16 loses precision on long contexts
162
+ # See https://github.com/huggingface/transformers/pull/29285
163
+ device_type = x.device.type
164
+ device_type = device_type if isinstance(device_type, str) and device_type != 'mps' else 'cpu'
165
+ with torch.autocast(device_type=device_type, enabled=False):
166
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
167
+ emb = torch.cat((freqs, freqs), dim=-1)
168
+
169
+ scale = self.max_position_embeddings / self.original_max_position_embeddings
170
+ if scale <= 1.0:
171
+ scaling_factor = 1.0
172
+ else:
173
+ scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings))
174
+
175
+ cos = emb.cos() * scaling_factor
176
+ sin = emb.sin() * scaling_factor
177
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
178
+
179
+
180
+ class Phi3YarnScaledRotaryEmbedding(Phi3RotaryEmbedding):
181
+ def __init__(self, dim, config, device=None):
182
+ super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
183
+
184
+ self.short_factor = config.rope_scaling['short_factor']
185
+ self.long_factor = config.rope_scaling['long_factor']
186
+ self.original_max_position_embeddings = config.original_max_position_embeddings
187
+
188
+ @torch.no_grad()
189
+ def forward(self, x, position_ids, seq_len=None):
190
+ seq_len = torch.max(position_ids) + 1
191
+ if seq_len > self.original_max_position_embeddings:
192
+ ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
193
+ else:
194
+ ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
195
+
196
+ inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
197
+ self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
198
+
199
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
200
+ position_ids_expanded = position_ids[:, None, :].float()
201
+
202
+ # Force float32 since bfloat16 loses precision on long contexts
203
+ # See https://github.com/huggingface/transformers/pull/29285
204
+ device_type = x.device.type
205
+ device_type = device_type if isinstance(device_type, str) and device_type != 'mps' else 'cpu'
206
+ with torch.autocast(device_type=device_type, enabled=False):
207
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
208
+ emb = torch.cat((freqs, freqs), dim=-1)
209
+
210
+ scale = self.max_position_embeddings / self.original_max_position_embeddings
211
+ if scale <= 1.0:
212
+ scaling_factor = 1.0
213
+ else:
214
+ scaling_factor = 0.1 * math.log(scale) + 1.0
215
+
216
+ cos = emb.cos() * scaling_factor
217
+ sin = emb.sin() * scaling_factor
218
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
219
+
220
+
221
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
222
+ def rotate_half(x):
223
+ """Rotates half the hidden dims of the input."""
224
+ x1 = x[..., : x.shape[-1] // 2]
225
+ x2 = x[..., x.shape[-1] // 2 :]
226
+ return torch.cat((-x2, x1), dim=-1)
227
+
228
+
229
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
230
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
231
+ """Applies Rotary Position Embedding to the query and key tensors.
232
+
233
+ Args:
234
+ q (`torch.Tensor`): The query tensor.
235
+ k (`torch.Tensor`): The key tensor.
236
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
237
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
238
+ position_ids (`torch.Tensor`, *optional*):
239
+ Deprecated and unused.
240
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
241
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
242
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
243
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
244
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
245
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
246
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
247
+ Returns:
248
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
249
+ """
250
+ cos = cos.unsqueeze(unsqueeze_dim)
251
+ sin = sin.unsqueeze(unsqueeze_dim)
252
+ q_embed = (q * cos) + (rotate_half(q) * sin)
253
+ k_embed = (k * cos) + (rotate_half(k) * sin)
254
+ return q_embed, k_embed
255
+
256
+
257
+ class Phi3MLP(nn.Module):
258
+ def __init__(self, config):
259
+ super().__init__()
260
+
261
+ self.config = config
262
+ self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
263
+ self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
264
+
265
+ self.activation_fn = ACT2FN[config.hidden_act]
266
+
267
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
268
+ up_states = self.gate_up_proj(hidden_states)
269
+
270
+ gate, up_states = up_states.chunk(2, dim=-1)
271
+ up_states = up_states * self.activation_fn(gate)
272
+
273
+ return self.down_proj(up_states)
274
+
275
+
276
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi
277
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
278
+ """
279
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
280
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
281
+ """
282
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
283
+ if n_rep == 1:
284
+ return hidden_states
285
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
286
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
287
+
288
+
289
+ class Phi3Attention(nn.Module):
290
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
291
+
292
+ def __init__(self, config: Phi3Config, layer_idx: Optional[int] = None):
293
+ super().__init__()
294
+ self.config = config
295
+ self.layer_idx = layer_idx
296
+ if layer_idx is None:
297
+ logger.warning_once(
298
+ f'Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will '
299
+ 'lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` '
300
+ 'when creating this class.'
301
+ )
302
+
303
+ self.attention_dropout = config.attention_dropout
304
+ self.hidden_size = config.hidden_size
305
+ self.num_heads = config.num_attention_heads
306
+ self.head_dim = self.hidden_size // self.num_heads
307
+ self.num_key_value_heads = config.num_key_value_heads
308
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
309
+ self.max_position_embeddings = config.max_position_embeddings
310
+ self.original_max_position_embeddings = config.original_max_position_embeddings
311
+ self.rope_theta = config.rope_theta
312
+ self.rope_scaling = config.rope_scaling
313
+ self.is_causal = True
314
+
315
+ if (self.head_dim * self.num_heads) != self.hidden_size:
316
+ raise ValueError(
317
+ f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
318
+ f' and `num_heads`: {self.num_heads}).'
319
+ )
320
+
321
+ op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim)
322
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
323
+ self.qkv_proj = nn.Linear(self.hidden_size, op_size, bias=False)
324
+ self._init_rope()
325
+
326
+ # self.mask = torch.load("headcut_mask/internvl2.0_4B/mask.pth")
327
+
328
+ self.attncut = True
329
+ self.headcut = True
330
+ self.layercut = False
331
+ self.layercut_idx = 24
332
+ self.offset = 70
333
+ head_num=24
334
+ self.mask = torch.load("headcut_mask/internvl2.0_4B/mask_"+str(head_num)+".pth")
335
+
336
+ def _init_rope(self):
337
+ if self.rope_scaling is None:
338
+ self.rotary_emb = Phi3RotaryEmbedding(
339
+ self.head_dim,
340
+ max_position_embeddings=self.max_position_embeddings,
341
+ base=self.rope_theta,
342
+ )
343
+ else:
344
+ scaling_type = self.config.rope_scaling['type']
345
+ if scaling_type == 'su':
346
+ self.rotary_emb = Phi3SuScaledRotaryEmbedding(self.head_dim, self.config)
347
+ elif scaling_type == 'yarn':
348
+ self.rotary_emb = Phi3YarnScaledRotaryEmbedding(self.head_dim, self.config)
349
+ else:
350
+ raise ValueError(f'Unknown RoPE scaling type {scaling_type}')
351
+
352
+ def local_mask(self,h, w, window):
353
+ height, width = h, w
354
+ num_pixels = height * width
355
+
356
+ # Generate grid of positions
357
+ rows = torch.arange(height)
358
+ cols = torch.arange(width)
359
+ grid_r, grid_c = torch.meshgrid(rows, cols, indexing='ij') # Shape: (24, 24)
360
+ positions = torch.stack([grid_r.flatten(), grid_c.flatten()], dim=1) # Shape: (576, 2)
361
+
362
+ # Compute pairwise differences between positions
363
+ positions_i = positions.unsqueeze(1) # Shape: (576, 1, 2)
364
+ positions_j = positions.unsqueeze(0) # Shape: (1, 576, 2)
365
+ delta = positions_i - positions_j # Shape: (576, 576, 2)
366
+ delta_abs = delta.abs() # Absolute differences
367
+
368
+ # Create neighbor mask for 3x3 neighborhood
369
+ neighbor_mask = (delta_abs[..., 0] <= int((window-1)/2)) & (delta_abs[..., 1] <= int((window-1)/2)) # Shape: (576, 576)
370
+
371
+ # Initialize the attention mask
372
+ attention_mask = torch.full((num_pixels, num_pixels), float('-inf'))
373
+ attention_mask[neighbor_mask] = 0.0 # Set 3x3 neighborhood to 0, others to -inf
374
+ return attention_mask
375
+
376
+ def forward(
377
+ self,
378
+ hidden_states: torch.Tensor,
379
+ attention_mask: Optional[torch.Tensor] = None,
380
+ position_ids: Optional[torch.LongTensor] = None,
381
+ past_key_value: Optional[Cache] = None,
382
+ output_attentions: bool = False,
383
+ use_cache: bool = False,
384
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
385
+ logger.warning_once('You are not running the flash-attention implementation, expect numerical differences.')
386
+
387
+ bsz, q_len, _ = hidden_states.size()
388
+
389
+ qkv = self.qkv_proj(hidden_states)
390
+ query_pos = self.num_heads * self.head_dim
391
+ query_states = qkv[..., :query_pos]
392
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
393
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
394
+
395
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
396
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
397
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
398
+
399
+ kv_seq_len = key_states.shape[-2]
400
+ if past_key_value is not None:
401
+ if self.layer_idx is None:
402
+ raise ValueError(
403
+ f'The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} '
404
+ 'for auto-regressive decoding with k/v caching, please make sure to initialize the attention class '
405
+ 'with a layer index.'
406
+ )
407
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
408
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
409
+
410
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
411
+
412
+ if past_key_value is not None:
413
+ cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
414
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
415
+
416
+ # repeat k/v heads if n_kv_heads < n_heads
417
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
418
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
419
+
420
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
421
+
422
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
423
+ raise ValueError(
424
+ f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
425
+ f' {attn_weights.size()}'
426
+ )
427
+ if attention_mask is not None:
428
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
429
+ raise ValueError(
430
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
431
+ )
432
+ attn_weights = attn_weights + attention_mask
433
+ image_token_num = int(os.environ.get('IMAGE_TOKEN_NUM'))
434
+
435
+ if self.attncut:
436
+ h = int(int(os.environ.get('IMAGE_H'))/2)
437
+ if attn_weights.shape[2]>image_token_num:
438
+ self.mask_local = self.local_mask(h, h, int(h/2)) # 1/4 window
439
+ mask = attn_weights.clone()*0
440
+ temp = mask[:,:,self.offset:self.offset+image_token_num,self.offset:self.offset+image_token_num]
441
+ temp = temp.reshape(temp.shape[0],32, int(temp.shape[2]/(h*h)),h*h,int(temp.shape[2]/(h*h)),h*h)
442
+ temp2 = self.mask_local.unsqueeze(1).unsqueeze(0).unsqueeze(0).unsqueeze(0)
443
+ temp[:,:,:,:,:,:]=temp2.cuda()
444
+ attn_weights = attn_weights + mask
445
+
446
+ # upcast attention to fp32
447
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
448
+
449
+ if self.headcut:
450
+ '''
451
+ # compute headmask based on attn weights ratio.
452
+ if attn_weights.shape[2]==1:
453
+ res_v = torch.sum(attn_weights[0,:,:,70:70+image_token_num],dim=[1,2])
454
+ res_t = torch.sum(attn_weights[0,:,:,70+image_token_num:],dim=[1,2])
455
+ res_s = torch.sum(attn_weights[0,:,:,:70],dim=[1,2])
456
+ res = res_v/(res_t+res_s)
457
+ torch.save(res, 'headcut_mask_4B/'+str(self.layer_idx)+'.pth')
458
+ if self.layer_idx ==31:
459
+ exit()
460
+ '''
461
+ if self.layer_idx>=2:
462
+ mask = self.mask[self.layer_idx].unsqueeze(1).unsqueeze(1).unsqueeze(0).cuda()
463
+ attn_weights[:,:,:,self.offset:self.offset+image_token_num]= attn_weights[:,:,:,self.offset:self.offset+image_token_num] * mask
464
+
465
+
466
+ if self.layercut and self.layer_idx>=self.layercut_idx:
467
+ if attn_weights.shape[2]>image_token_num:
468
+ attn_weights[:,:,image_token_num+self.offset:,self.offset:self.offset+image_token_num]=0
469
+ else:
470
+ attn_weights[:,:,:,self.offset:self.offset+image_token_num]=0
471
+
472
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
473
+
474
+
475
+ attn_output = torch.matmul(attn_weights, value_states)
476
+
477
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
478
+ raise ValueError(
479
+ f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
480
+ f' {attn_output.size()}'
481
+ )
482
+
483
+ attn_output = attn_output.transpose(1, 2).contiguous()
484
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
485
+
486
+ attn_output = self.o_proj(attn_output)
487
+
488
+ if not output_attentions:
489
+ attn_weights = None
490
+
491
+ return attn_output, attn_weights, past_key_value
492
+
493
+
494
+ class Phi3FlashAttention2(Phi3Attention):
495
+ """
496
+ Phi-3 flash attention module. This module inherits from `Phi3Attention` as the weights of the module stays
497
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
498
+ flash attention and deal with padding tokens in case the input contains any of them.
499
+ """
500
+
501
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
502
+ def __init__(self, *args, **kwargs):
503
+ super().__init__(*args, **kwargs)
504
+
505
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
506
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
507
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
508
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
509
+
510
+ def forward(
511
+ self,
512
+ hidden_states: torch.Tensor,
513
+ attention_mask: Optional[torch.LongTensor] = None,
514
+ position_ids: Optional[torch.LongTensor] = None,
515
+ past_key_value: Optional[Cache] = None,
516
+ output_attentions: bool = False,
517
+ use_cache: bool = False,
518
+ **kwargs,
519
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
520
+ # Phi3FlashAttention2 attention does not support output_attentions
521
+
522
+ if not _flash_supports_window_size:
523
+ logger.warning_once(
524
+ "The current flash attention version does not support sliding window attention. Please use `attn_implementation='eager'` or upgrade flash-attn library."
525
+ )
526
+ raise ValueError('The current flash attention version does not support sliding window attention.')
527
+
528
+ output_attentions = False
529
+
530
+ if 'padding_mask' in kwargs:
531
+ warnings.warn(
532
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`'
533
+ )
534
+
535
+ # overwrite attention_mask with padding_mask
536
+ attention_mask = kwargs.pop('padding_mask')
537
+
538
+ bsz, q_len, _ = hidden_states.size()
539
+
540
+ qkv = self.qkv_proj(hidden_states)
541
+ query_pos = self.num_heads * self.head_dim
542
+ query_states = qkv[..., :query_pos]
543
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
544
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
545
+
546
+ # Flash attention requires the input to have the shape
547
+ # batch_size x seq_length x head_dim x hidden_dim
548
+ # therefore we just need to keep the original shape
549
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
550
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
551
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
552
+
553
+ kv_seq_len = key_states.shape[-2]
554
+ if past_key_value is not None:
555
+ if self.layer_idx is None:
556
+ raise ValueError(
557
+ f'The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} '
558
+ 'for auto-regressive decoding with k/v caching, please make sure to initialize the attention class '
559
+ 'with a layer index.'
560
+ )
561
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
562
+
563
+ # Because the input can be padded, the absolute sequence length depends on the max position id.
564
+ rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
565
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=rotary_seq_len)
566
+
567
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
568
+
569
+ use_sliding_windows = (
570
+ _flash_supports_window_size
571
+ and getattr(self.config, 'sliding_window', None) is not None
572
+ and kv_seq_len > self.config.sliding_window
573
+ )
574
+
575
+ if past_key_value is not None:
576
+ # Activate slicing cache only if the config has a value `sliding_windows` attribute
577
+ cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
578
+ if (
579
+ getattr(self.config, 'sliding_window', None) is not None
580
+ and kv_seq_len > self.config.sliding_window
581
+ and cache_has_contents
582
+ ):
583
+ slicing_tokens = 1 - self.config.sliding_window
584
+
585
+ past_key = past_key_value[self.layer_idx][0]
586
+ past_value = past_key_value[self.layer_idx][1]
587
+
588
+ past_key = past_key[:, :, slicing_tokens:, :].contiguous()
589
+ past_value = past_value[:, :, slicing_tokens:, :].contiguous()
590
+
591
+ if past_key.shape[-2] != self.config.sliding_window - 1:
592
+ raise ValueError(
593
+ f'past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got'
594
+ f' {past_key.shape}'
595
+ )
596
+
597
+ if attention_mask is not None:
598
+ attention_mask = attention_mask[:, slicing_tokens:]
599
+ attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
600
+
601
+ cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
602
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
603
+
604
+ # repeat k/v heads if n_kv_heads < n_heads
605
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
606
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
607
+
608
+ attn_dropout = self.attention_dropout if self.training else 0.0
609
+
610
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
611
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
612
+ # cast them back in the correct dtype just to be sure everything works as expected.
613
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
614
+ # in fp32.
615
+
616
+ if query_states.dtype == torch.float32:
617
+ if torch.is_autocast_enabled():
618
+ target_dtype = torch.get_autocast_gpu_dtype()
619
+ # Handle the case where the model is quantized
620
+ elif hasattr(self.config, '_pre_quantization_dtype'):
621
+ target_dtype = self.config._pre_quantization_dtype
622
+ else:
623
+ target_dtype = self.qkv_proj.weight.dtype
624
+
625
+ logger.warning_once(
626
+ f'The input hidden states seems to be silently casted in float32, this might be related to'
627
+ f' the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in'
628
+ f' {target_dtype}.'
629
+ )
630
+
631
+ query_states = query_states.to(target_dtype)
632
+ key_states = key_states.to(target_dtype)
633
+ value_states = value_states.to(target_dtype)
634
+
635
+ # Reashape to the expected shape for Flash Attention
636
+ query_states = query_states.transpose(1, 2)
637
+ key_states = key_states.transpose(1, 2)
638
+ value_states = value_states.transpose(1, 2)
639
+
640
+ attn_output = self._flash_attention_forward(
641
+ query_states,
642
+ key_states,
643
+ value_states,
644
+ attention_mask,
645
+ q_len,
646
+ dropout=attn_dropout,
647
+ use_sliding_windows=use_sliding_windows,
648
+ )
649
+
650
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
651
+ attn_output = self.o_proj(attn_output)
652
+
653
+ if not output_attentions:
654
+ attn_weights = None
655
+
656
+ return attn_output, attn_weights, past_key_value
657
+
658
+ # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._flash_attention_forward
659
+ def _flash_attention_forward(
660
+ self,
661
+ query_states,
662
+ key_states,
663
+ value_states,
664
+ attention_mask,
665
+ query_length,
666
+ dropout=0.0,
667
+ softmax_scale=None,
668
+ use_sliding_windows=False,
669
+ ):
670
+ """
671
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
672
+ first unpad the input, then computes the attention scores and pad the final attention scores.
673
+
674
+ Args:
675
+ query_states (`torch.Tensor`):
676
+ Input query states to be passed to Flash Attention API
677
+ key_states (`torch.Tensor`):
678
+ Input key states to be passed to Flash Attention API
679
+ value_states (`torch.Tensor`):
680
+ Input value states to be passed to Flash Attention API
681
+ attention_mask (`torch.Tensor`):
682
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
683
+ position of padding tokens and 1 for the position of non-padding tokens.
684
+ dropout (`float`):
685
+ Attention dropout
686
+ softmax_scale (`float`, *optional*):
687
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
688
+ use_sliding_windows (`bool`, *optional*):
689
+ Whether to activate sliding window attention.
690
+ """
691
+ if not self._flash_attn_uses_top_left_mask:
692
+ causal = self.is_causal
693
+ else:
694
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
695
+ causal = self.is_causal and query_length != 1
696
+
697
+ # Contains at least one padding token in the sequence
698
+ if attention_mask is not None:
699
+ batch_size = query_states.shape[0]
700
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
701
+ query_states, key_states, value_states, attention_mask, query_length
702
+ )
703
+
704
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
705
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
706
+
707
+ if not use_sliding_windows:
708
+ attn_output_unpad = flash_attn_varlen_func(
709
+ query_states,
710
+ key_states,
711
+ value_states,
712
+ cu_seqlens_q=cu_seqlens_q,
713
+ cu_seqlens_k=cu_seqlens_k,
714
+ max_seqlen_q=max_seqlen_in_batch_q,
715
+ max_seqlen_k=max_seqlen_in_batch_k,
716
+ dropout_p=dropout,
717
+ softmax_scale=softmax_scale,
718
+ causal=causal,
719
+ )
720
+ else:
721
+ attn_output_unpad = flash_attn_varlen_func(
722
+ query_states,
723
+ key_states,
724
+ value_states,
725
+ cu_seqlens_q=cu_seqlens_q,
726
+ cu_seqlens_k=cu_seqlens_k,
727
+ max_seqlen_q=max_seqlen_in_batch_q,
728
+ max_seqlen_k=max_seqlen_in_batch_k,
729
+ dropout_p=dropout,
730
+ softmax_scale=softmax_scale,
731
+ causal=causal,
732
+ window_size=(self.config.sliding_window, self.config.sliding_window),
733
+ )
734
+
735
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
736
+ else:
737
+ if not use_sliding_windows:
738
+ attn_output = flash_attn_func(
739
+ query_states,
740
+ key_states,
741
+ value_states,
742
+ dropout,
743
+ softmax_scale=softmax_scale,
744
+ causal=causal,
745
+ )
746
+ else:
747
+ attn_output = flash_attn_func(
748
+ query_states,
749
+ key_states,
750
+ value_states,
751
+ dropout,
752
+ softmax_scale=softmax_scale,
753
+ causal=causal,
754
+ window_size=(self.config.sliding_window, self.config.sliding_window),
755
+ )
756
+
757
+ return attn_output
758
+
759
+ # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input
760
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
761
+ batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
762
+
763
+ # On the first iteration we need to properly re-create the padding mask
764
+ # by slicing it on the proper place
765
+ if kv_seq_len != attention_mask.shape[-1]:
766
+ attention_mask_num_tokens = attention_mask.shape[-1]
767
+ attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
768
+
769
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
770
+
771
+ key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
772
+ value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
773
+
774
+ if query_length == kv_seq_len:
775
+ query_layer = index_first_axis(
776
+ query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
777
+ )
778
+ cu_seqlens_q = cu_seqlens_k
779
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
780
+ indices_q = indices_k
781
+ elif query_length == 1:
782
+ max_seqlen_in_batch_q = 1
783
+ cu_seqlens_q = torch.arange(
784
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
785
+ ) # There is a memcpy here, that is very bad.
786
+ indices_q = cu_seqlens_q[:-1]
787
+ query_layer = query_layer.squeeze(1)
788
+ else:
789
+ # The -q_len: slice assumes left padding.
790
+ attention_mask = attention_mask[:, -query_length:]
791
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
792
+
793
+ return (
794
+ query_layer,
795
+ key_layer,
796
+ value_layer,
797
+ indices_q,
798
+ (cu_seqlens_q, cu_seqlens_k),
799
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
800
+ )
801
+
802
+
803
+ # copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Phi3
804
+ # TODO @Arthur no longer copied from LLama after static cache
805
+ class Phi3SdpaAttention(Phi3Attention):
806
+ """
807
+ Phi3 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
808
+ `Phi3Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
809
+ SDPA API.
810
+ """
811
+
812
+ # Adapted from Phi3Attention.forward
813
+ def forward(
814
+ self,
815
+ hidden_states: torch.Tensor,
816
+ attention_mask: Optional[torch.Tensor] = None,
817
+ position_ids: Optional[torch.LongTensor] = None,
818
+ past_key_value: Optional[Cache] = None,
819
+ output_attentions: bool = False,
820
+ use_cache: bool = False,
821
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
822
+ if output_attentions:
823
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
824
+ logger.warning_once(
825
+ 'Phi3Model is using Phi3SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, '
826
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
827
+ )
828
+ return super().forward(
829
+ hidden_states=hidden_states,
830
+ attention_mask=attention_mask,
831
+ position_ids=position_ids,
832
+ past_key_value=past_key_value,
833
+ output_attentions=output_attentions,
834
+ use_cache=use_cache,
835
+ )
836
+
837
+ bsz, q_len, _ = hidden_states.size()
838
+
839
+ qkv = self.qkv_proj(hidden_states)
840
+ query_pos = self.num_heads * self.head_dim
841
+ query_states = qkv[..., :query_pos]
842
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
843
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
844
+
845
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
846
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
847
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
848
+
849
+ kv_seq_len = key_states.shape[-2]
850
+ if past_key_value is not None:
851
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
852
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
853
+
854
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
855
+
856
+ if past_key_value is not None:
857
+ cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
858
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
859
+
860
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
861
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
862
+
863
+ if attention_mask is not None:
864
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
865
+ raise ValueError(
866
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
867
+ )
868
+
869
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
870
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
871
+ if query_states.device.type == 'cuda' and attention_mask is not None:
872
+ query_states = query_states.contiguous()
873
+ key_states = key_states.contiguous()
874
+ value_states = value_states.contiguous()
875
+
876
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
877
+ query_states,
878
+ key_states,
879
+ value_states,
880
+ attn_mask=attention_mask,
881
+ dropout_p=self.attention_dropout if self.training else 0.0,
882
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
883
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
884
+ )
885
+
886
+ attn_output = attn_output.transpose(1, 2).contiguous()
887
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
888
+
889
+ attn_output = self.o_proj(attn_output)
890
+
891
+ return attn_output, None, past_key_value
892
+
893
+
894
+ PHI3_ATTENTION_CLASSES = {
895
+ 'eager': Phi3Attention,
896
+ 'flash_attention_2': Phi3FlashAttention2,
897
+ 'sdpa': Phi3SdpaAttention,
898
+ }
899
+
900
+
901
+ class Phi3DecoderLayer(nn.Module):
902
+ def __init__(self, config: Phi3Config, layer_idx: int):
903
+ super().__init__()
904
+
905
+ self.config = config
906
+ self.self_attn = PHI3_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
907
+
908
+ self.mlp = Phi3MLP(config)
909
+ self.input_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
910
+
911
+ self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
912
+ self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
913
+ self.post_attention_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
914
+
915
+ def forward(
916
+ self,
917
+ hidden_states: torch.Tensor,
918
+ attention_mask: Optional[torch.Tensor] = None,
919
+ position_ids: Optional[torch.LongTensor] = None,
920
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
921
+ output_attentions: Optional[bool] = False,
922
+ use_cache: Optional[bool] = False,
923
+ **kwargs,
924
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
925
+ if 'padding_mask' in kwargs:
926
+ warnings.warn(
927
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`'
928
+ )
929
+ """
930
+ Args:
931
+ hidden_states (`torch.FloatTensor`):
932
+ input to the layer of shape `(batch, seq_len, embed_dim)`
933
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
934
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
935
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
936
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
937
+ `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
938
+ output_attentions (`bool`, *optional*):
939
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
940
+ returned tensors for more detail.
941
+ use_cache (`bool`, *optional*):
942
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
943
+ (see `past_key_values`).
944
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
945
+ """
946
+
947
+ residual = hidden_states
948
+
949
+ hidden_states = self.input_layernorm(hidden_states)
950
+
951
+ # Self Attention
952
+ attn_outputs, self_attn_weights, present_key_value = self.self_attn(
953
+ hidden_states=hidden_states,
954
+ attention_mask=attention_mask,
955
+ position_ids=position_ids,
956
+ past_key_value=past_key_value,
957
+ output_attentions=output_attentions,
958
+ use_cache=use_cache,
959
+ )
960
+
961
+ hidden_states = residual + self.resid_attn_dropout(attn_outputs)
962
+
963
+ residual = hidden_states
964
+ hidden_states = self.post_attention_layernorm(hidden_states)
965
+ hidden_states = self.mlp(hidden_states)
966
+ hidden_states = residual + self.resid_mlp_dropout(hidden_states)
967
+
968
+ outputs = (hidden_states,)
969
+
970
+ if output_attentions:
971
+ outputs += (self_attn_weights,)
972
+
973
+ if use_cache:
974
+ outputs += (present_key_value,)
975
+
976
+ return outputs
977
+
978
+
979
+ PHI3_START_DOCSTRING = r"""
980
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
981
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
982
+ etc.)
983
+
984
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
985
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
986
+ and behavior.
987
+
988
+ Parameters:
989
+ config ([`Phi3Config`]):
990
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
991
+ load the weights associated with the model, only the configuration. Check out the
992
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
993
+ """
994
+
995
+
996
+ @add_start_docstrings(
997
+ 'The bare Phi-3 model outputting raw hidden-states without any specific head on top.',
998
+ PHI3_START_DOCSTRING,
999
+ )
1000
+ class Phi3PreTrainedModel(PreTrainedModel):
1001
+ config_class = Phi3Config
1002
+ base_model_prefix = 'model'
1003
+ supports_gradient_checkpointing = True
1004
+ _no_split_modules = ['Phi3DecoderLayer']
1005
+ _skip_keys_device_placement = 'past_key_values'
1006
+ _supports_flash_attn_2 = True
1007
+ _supports_sdpa = False
1008
+ _supports_cache_class = True
1009
+
1010
+ _version = '0.0.5'
1011
+
1012
+ def __init__(self, config: Phi3Config):
1013
+ if not has_flash_attn:
1014
+ config._attn_implementation = 'eager'
1015
+ print('Warning: Flash attention is not available, using eager attention instead.')
1016
+ super().__init__(config)
1017
+
1018
+ def _init_weights(self, module):
1019
+ std = self.config.initializer_range
1020
+ if isinstance(module, nn.Linear):
1021
+ module.weight.data.normal_(mean=0.0, std=std)
1022
+ if module.bias is not None:
1023
+ module.bias.data.zero_()
1024
+ elif isinstance(module, nn.Embedding):
1025
+ module.weight.data.normal_(mean=0.0, std=std)
1026
+ if module.padding_idx is not None:
1027
+ module.weight.data[module.padding_idx].zero_()
1028
+
1029
+
1030
+ PHI3_INPUTS_DOCSTRING = r"""
1031
+ Args:
1032
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1033
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1034
+ it.
1035
+
1036
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1037
+ [`PreTrainedTokenizer.__call__`] for details.
1038
+
1039
+ [What are input IDs?](../glossary#input-ids)
1040
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1041
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1042
+
1043
+ - 1 for tokens that are **not masked**,
1044
+ - 0 for tokens that are **masked**.
1045
+
1046
+ [What are attention masks?](../glossary#attention-mask)
1047
+
1048
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1049
+ [`PreTrainedTokenizer.__call__`] for details.
1050
+
1051
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
1052
+ `past_key_values`).
1053
+
1054
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1055
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1056
+ information on the default strategy.
1057
+
1058
+ - 1 indicates the head is **not masked**,
1059
+ - 0 indicates the head is **masked**.
1060
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1061
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1062
+ config.n_positions - 1]`.
1063
+
1064
+ [What are position IDs?](../glossary#position-ids)
1065
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
1066
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1067
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
1068
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
1069
+
1070
+ Two formats are allowed:
1071
+ - a [`~cache_utils.Cache`] instance;
1072
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1073
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1074
+ cache format.
1075
+
1076
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1077
+ legacy cache format will be returned.
1078
+
1079
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1080
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1081
+ of shape `(batch_size, sequence_length)`.
1082
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1083
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1084
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1085
+ model's internal embedding lookup matrix.
1086
+ use_cache (`bool`, *optional*):
1087
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1088
+ `past_key_values`).
1089
+ output_attentions (`bool`, *optional*):
1090
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1091
+ tensors for more detail.
1092
+ output_hidden_states (`bool`, *optional*):
1093
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1094
+ more detail.
1095
+ return_dict (`bool`, *optional*):
1096
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1097
+ """
1098
+
1099
+
1100
+ @add_start_docstrings(
1101
+ 'The bare Phi-3 model outputting raw hidden-states without any specific head on top.',
1102
+ PHI3_START_DOCSTRING,
1103
+ )
1104
+ class Phi3Model(Phi3PreTrainedModel):
1105
+ """
1106
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`]
1107
+
1108
+ Args:
1109
+ config: Phi3Config
1110
+ """
1111
+
1112
+ def __init__(self, config: Phi3Config):
1113
+ super().__init__(config)
1114
+ self.padding_idx = config.pad_token_id
1115
+ self.vocab_size = config.vocab_size
1116
+
1117
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1118
+ self.embed_dropout = nn.Dropout(config.embd_pdrop)
1119
+ self.layers = nn.ModuleList(
1120
+ [Phi3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
1121
+ )
1122
+ self._attn_implementation = config._attn_implementation
1123
+
1124
+ self.norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1125
+
1126
+ self.gradient_checkpointing = False
1127
+ # Initialize weights and apply final processing
1128
+ self.post_init()
1129
+
1130
+ def get_input_embeddings(self):
1131
+ return self.embed_tokens
1132
+
1133
+ def set_input_embeddings(self, value):
1134
+ self.embed_tokens = value
1135
+
1136
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1137
+ def forward(
1138
+ self,
1139
+ input_ids: torch.LongTensor = None,
1140
+ attention_mask: Optional[torch.Tensor] = None,
1141
+ position_ids: Optional[torch.LongTensor] = None,
1142
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1143
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1144
+ use_cache: Optional[bool] = None,
1145
+ output_attentions: Optional[bool] = None,
1146
+ output_hidden_states: Optional[bool] = None,
1147
+ return_dict: Optional[bool] = None,
1148
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1149
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1150
+ output_hidden_states = (
1151
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1152
+ )
1153
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1154
+
1155
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1156
+
1157
+ # retrieve input_ids and inputs_embeds
1158
+ if input_ids is not None and inputs_embeds is not None:
1159
+ raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
1160
+ elif input_ids is not None:
1161
+ batch_size, seq_length = input_ids.shape[:2]
1162
+ elif inputs_embeds is not None:
1163
+ batch_size, seq_length = inputs_embeds.shape[:2]
1164
+ else:
1165
+ raise ValueError('You have to specify either input_ids or inputs_embeds')
1166
+
1167
+ past_key_values_length = 0
1168
+
1169
+ if self.gradient_checkpointing and self.training:
1170
+ if use_cache:
1171
+ logger.warning_once(
1172
+ '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
1173
+ )
1174
+ use_cache = False
1175
+
1176
+ if use_cache:
1177
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1178
+ if use_legacy_cache:
1179
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1180
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1181
+
1182
+ if position_ids is None:
1183
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1184
+ position_ids = torch.arange(
1185
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1186
+ )
1187
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
1188
+ else:
1189
+ position_ids = position_ids.view(-1, seq_length).long()
1190
+
1191
+ if inputs_embeds is None:
1192
+ inputs_embeds = self.embed_tokens(input_ids)
1193
+
1194
+ if attention_mask is not None and self._attn_implementation == 'flash_attention_2' and use_cache:
1195
+ is_padding_right = attention_mask[:, -1].sum().item() != batch_size
1196
+ if is_padding_right:
1197
+ raise ValueError(
1198
+ "You are attempting to perform batched generation with padding_side='right'"
1199
+ ' this may lead to unexpected behaviour for Flash Attention version of Phi3. Make sure to '
1200
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
1201
+ )
1202
+
1203
+ if self._attn_implementation == 'flash_attention_2':
1204
+ # 2d mask is passed through the layers
1205
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1206
+ else:
1207
+ # 4d mask is passed through the layers
1208
+ attention_mask = _prepare_4d_causal_attention_mask(
1209
+ attention_mask,
1210
+ (batch_size, seq_length),
1211
+ inputs_embeds,
1212
+ past_key_values_length,
1213
+ sliding_window=self.config.sliding_window,
1214
+ )
1215
+
1216
+ hidden_states = inputs_embeds
1217
+
1218
+ # decoder layers
1219
+ all_hidden_states = () if output_hidden_states else None
1220
+ all_self_attns = () if output_attentions else None
1221
+ next_decoder_cache = None
1222
+
1223
+ for decoder_layer in self.layers:
1224
+ if output_hidden_states:
1225
+ all_hidden_states += (hidden_states,)
1226
+
1227
+ if self.gradient_checkpointing and self.training:
1228
+ layer_outputs = self._gradient_checkpointing_func(
1229
+ decoder_layer.__call__,
1230
+ hidden_states,
1231
+ attention_mask,
1232
+ position_ids,
1233
+ past_key_values,
1234
+ output_attentions,
1235
+ use_cache,
1236
+ )
1237
+ else:
1238
+ layer_outputs = decoder_layer(
1239
+ hidden_states,
1240
+ attention_mask=attention_mask,
1241
+ position_ids=position_ids,
1242
+ past_key_value=past_key_values,
1243
+ output_attentions=output_attentions,
1244
+ use_cache=use_cache,
1245
+ )
1246
+
1247
+ hidden_states = layer_outputs[0]
1248
+
1249
+ if use_cache:
1250
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1251
+
1252
+ if output_attentions:
1253
+ all_self_attns += (layer_outputs[1],)
1254
+
1255
+ hidden_states = self.norm(hidden_states)
1256
+
1257
+ # add hidden states from the last decoder layer
1258
+ if output_hidden_states:
1259
+ all_hidden_states += (hidden_states,)
1260
+
1261
+ next_cache = None
1262
+ if use_cache:
1263
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1264
+ if not return_dict:
1265
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1266
+ return BaseModelOutputWithPast(
1267
+ last_hidden_state=hidden_states,
1268
+ past_key_values=next_cache,
1269
+ hidden_states=all_hidden_states,
1270
+ attentions=all_self_attns,
1271
+ )
1272
+
1273
+
1274
+ class Phi3ForCausalLM(Phi3PreTrainedModel):
1275
+ _tied_weights_keys = ['lm_head.weight']
1276
+
1277
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi3
1278
+ def __init__(self, config):
1279
+ super().__init__(config)
1280
+ self.model = Phi3Model(config)
1281
+ self.vocab_size = config.vocab_size
1282
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1283
+
1284
+ # Initialize weights and apply final processing
1285
+ self.post_init()
1286
+
1287
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
1288
+ def get_input_embeddings(self):
1289
+ return self.model.embed_tokens
1290
+
1291
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
1292
+ def set_input_embeddings(self, value):
1293
+ self.model.embed_tokens = value
1294
+
1295
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
1296
+ def get_output_embeddings(self):
1297
+ return self.lm_head
1298
+
1299
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
1300
+ def set_output_embeddings(self, new_embeddings):
1301
+ self.lm_head = new_embeddings
1302
+
1303
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
1304
+ def set_decoder(self, decoder):
1305
+ self.model = decoder
1306
+
1307
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
1308
+ def get_decoder(self):
1309
+ return self.model
1310
+
1311
+ # Ignore copy
1312
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1313
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1314
+ def forward(
1315
+ self,
1316
+ input_ids: torch.LongTensor = None,
1317
+ attention_mask: Optional[torch.Tensor] = None,
1318
+ position_ids: Optional[torch.LongTensor] = None,
1319
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1320
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1321
+ labels: Optional[torch.LongTensor] = None,
1322
+ use_cache: Optional[bool] = None,
1323
+ output_attentions: Optional[bool] = None,
1324
+ output_hidden_states: Optional[bool] = None,
1325
+ return_dict: Optional[bool] = None,
1326
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1327
+ r"""
1328
+ Args:
1329
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1330
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1331
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1332
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1333
+
1334
+ Returns:
1335
+
1336
+ Example:
1337
+
1338
+ ```python
1339
+ >>> from transformers import AutoTokenizer, Phi3ForCausalLM
1340
+
1341
+ >>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
1342
+ >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
1343
+
1344
+ >>> prompt = "This is an example script ."
1345
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1346
+
1347
+ >>> # Generate
1348
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1349
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1350
+ 'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
1351
+ ```"""
1352
+
1353
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1354
+ output_hidden_states = (
1355
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1356
+ )
1357
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1358
+
1359
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1360
+ outputs = self.model(
1361
+ input_ids=input_ids,
1362
+ attention_mask=attention_mask,
1363
+ position_ids=position_ids,
1364
+ past_key_values=past_key_values,
1365
+ inputs_embeds=inputs_embeds,
1366
+ use_cache=use_cache,
1367
+ output_attentions=output_attentions,
1368
+ output_hidden_states=output_hidden_states,
1369
+ return_dict=return_dict,
1370
+ )
1371
+
1372
+ hidden_states = outputs[0]
1373
+ logits = self.lm_head(hidden_states)
1374
+ logits = logits.float()
1375
+
1376
+ loss = None
1377
+ if labels is not None:
1378
+ # Shift so that tokens < n predict n
1379
+ shift_logits = logits[..., :-1, :].contiguous()
1380
+ shift_labels = labels[..., 1:].contiguous()
1381
+ # Flatten the tokens
1382
+ loss_fct = CrossEntropyLoss()
1383
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1384
+ shift_labels = shift_labels.view(-1)
1385
+ # Enable model parallelism
1386
+ shift_labels = shift_labels.to(shift_logits.device)
1387
+ loss = loss_fct(shift_logits, shift_labels)
1388
+
1389
+ if not return_dict:
1390
+ output = (logits,) + outputs[1:]
1391
+ return (loss,) + output if loss is not None else output
1392
+
1393
+ return CausalLMOutputWithPast(
1394
+ loss=loss,
1395
+ logits=logits,
1396
+ past_key_values=outputs.past_key_values,
1397
+ hidden_states=outputs.hidden_states,
1398
+ attentions=outputs.attentions,
1399
+ )
1400
+
1401
+ # Copied from transformers.models.persimmon.modeling_persimmon.PersimmonForCausalLM.prepare_inputs_for_generation
1402
+ def prepare_inputs_for_generation(
1403
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1404
+ ):
1405
+ if past_key_values is not None:
1406
+ if isinstance(past_key_values, Cache):
1407
+ cache_length = past_key_values.get_seq_length()
1408
+ past_length = past_key_values.seen_tokens
1409
+ max_cache_length = past_key_values.get_max_length()
1410
+ else:
1411
+ cache_length = past_length = past_key_values[0][0].shape[2]
1412
+ max_cache_length = None
1413
+
1414
+ # Keep only the unprocessed tokens:
1415
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1416
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1417
+ # input)
1418
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1419
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1420
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1421
+ # input_ids based on the past_length.
1422
+ elif past_length < input_ids.shape[1]:
1423
+ input_ids = input_ids[:, past_length:]
1424
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1425
+
1426
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1427
+ if (
1428
+ max_cache_length is not None
1429
+ and attention_mask is not None
1430
+ and cache_length + input_ids.shape[1] > max_cache_length
1431
+ ):
1432
+ attention_mask = attention_mask[:, -max_cache_length:]
1433
+
1434
+ position_ids = kwargs.get('position_ids', None)
1435
+ if attention_mask is not None and position_ids is None:
1436
+ # create position_ids on the fly for batch generation
1437
+ position_ids = attention_mask.long().cumsum(-1) - 1
1438
+ position_ids.masked_fill_(attention_mask == 0, 1)
1439
+ if past_key_values:
1440
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1441
+
1442
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1443
+ if (inputs_embeds is not None and past_key_values is None) or (inputs_embeds is not None and len(past_key_values) == 0):
1444
+ model_inputs = {'inputs_embeds': inputs_embeds}
1445
+ else:
1446
+ model_inputs = {'input_ids': input_ids}
1447
+
1448
+ model_inputs.update(
1449
+ {
1450
+ 'position_ids': position_ids,
1451
+ 'past_key_values': past_key_values,
1452
+ 'use_cache': kwargs.get('use_cache'),
1453
+ 'attention_mask': attention_mask,
1454
+ }
1455
+ )
1456
+ return model_inputs
1457
+
1458
+ @staticmethod
1459
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM._reorder_cache
1460
+ def _reorder_cache(past_key_values, beam_idx):
1461
+ reordered_past = ()
1462
+ for layer_past in past_key_values:
1463
+ reordered_past += (
1464
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1465
+ )
1466
+ return reordered_past
1467
+
1468
+
1469
+ @add_start_docstrings(
1470
+ """
1471
+ The [`Phi3Model`] with a sequence classification head on top (linear layer).
1472
+
1473
+ [`Phi3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1474
+ (e.g. GPT-2) do.
1475
+
1476
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1477
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1478
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1479
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1480
+ each row of the batch).
1481
+ """,
1482
+ PHI3_START_DOCSTRING,
1483
+ )
1484
+ # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Phi3, LLAMA->PHI3, self.transformer->self.model, transformer_outputs->model_outputs
1485
+ class Phi3ForSequenceClassification(Phi3PreTrainedModel):
1486
+ def __init__(self, config):
1487
+ super().__init__(config)
1488
+ self.num_labels = config.num_labels
1489
+ self.model = Phi3Model(config)
1490
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1491
+
1492
+ # Initialize weights and apply final processing
1493
+ self.post_init()
1494
+
1495
+ def get_input_embeddings(self):
1496
+ return self.model.embed_tokens
1497
+
1498
+ def set_input_embeddings(self, value):
1499
+ self.model.embed_tokens = value
1500
+
1501
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1502
+ def forward(
1503
+ self,
1504
+ input_ids: torch.LongTensor = None,
1505
+ attention_mask: Optional[torch.Tensor] = None,
1506
+ position_ids: Optional[torch.LongTensor] = None,
1507
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1508
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1509
+ labels: Optional[torch.LongTensor] = None,
1510
+ use_cache: Optional[bool] = None,
1511
+ output_attentions: Optional[bool] = None,
1512
+ output_hidden_states: Optional[bool] = None,
1513
+ return_dict: Optional[bool] = None,
1514
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1515
+ r"""
1516
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1517
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1518
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1519
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1520
+ """
1521
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1522
+
1523
+ model_outputs = self.model(
1524
+ input_ids,
1525
+ attention_mask=attention_mask,
1526
+ position_ids=position_ids,
1527
+ past_key_values=past_key_values,
1528
+ inputs_embeds=inputs_embeds,
1529
+ use_cache=use_cache,
1530
+ output_attentions=output_attentions,
1531
+ output_hidden_states=output_hidden_states,
1532
+ return_dict=return_dict,
1533
+ )
1534
+ hidden_states = model_outputs[0]
1535
+ logits = self.score(hidden_states)
1536
+
1537
+ if input_ids is not None:
1538
+ batch_size = input_ids.shape[0]
1539
+ else:
1540
+ batch_size = inputs_embeds.shape[0]
1541
+
1542
+ if self.config.pad_token_id is None and batch_size != 1:
1543
+ raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
1544
+ if self.config.pad_token_id is None:
1545
+ sequence_lengths = -1
1546
+ else:
1547
+ if input_ids is not None:
1548
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1549
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1550
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1551
+ sequence_lengths = sequence_lengths.to(logits.device)
1552
+ else:
1553
+ sequence_lengths = -1
1554
+
1555
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1556
+
1557
+ loss = None
1558
+ if labels is not None:
1559
+ labels = labels.to(logits.device)
1560
+ if self.config.problem_type is None:
1561
+ if self.num_labels == 1:
1562
+ self.config.problem_type = 'regression'
1563
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1564
+ self.config.problem_type = 'single_label_classification'
1565
+ else:
1566
+ self.config.problem_type = 'multi_label_classification'
1567
+
1568
+ if self.config.problem_type == 'regression':
1569
+ loss_fct = MSELoss()
1570
+ if self.num_labels == 1:
1571
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1572
+ else:
1573
+ loss = loss_fct(pooled_logits, labels)
1574
+ elif self.config.problem_type == 'single_label_classification':
1575
+ loss_fct = CrossEntropyLoss()
1576
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1577
+ elif self.config.problem_type == 'multi_label_classification':
1578
+ loss_fct = BCEWithLogitsLoss()
1579
+ loss = loss_fct(pooled_logits, labels)
1580
+ if not return_dict:
1581
+ output = (pooled_logits,) + model_outputs[1:]
1582
+ return ((loss,) + output) if loss is not None else output
1583
+
1584
+ return SequenceClassifierOutputWithPast(
1585
+ loss=loss,
1586
+ logits=pooled_logits,
1587
+ past_key_values=model_outputs.past_key_values,
1588
+ hidden_states=model_outputs.hidden_states,
1589
+ attentions=model_outputs.attentions,
1590
+ )
1591
+
1592
+
1593
+ @add_start_docstrings(
1594
+ """
1595
+ [`Phi3Model`] with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
1596
+ Named-Entity-Recognition (NER) tasks.
1597
+ """,
1598
+ PHI3_START_DOCSTRING,
1599
+ )
1600
+ # Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with Mpt->Phi3,MPT->PHI3,self.transformer->self.model,transformer_outputs->model_outputs
1601
+ class Phi3ForTokenClassification(Phi3PreTrainedModel):
1602
+ def __init__(self, config: Phi3Config):
1603
+ super().__init__(config)
1604
+ self.num_labels = config.num_labels
1605
+
1606
+ self.model = Phi3Model(config)
1607
+ if hasattr(config, 'classifier_dropout') and config.classifier_dropout is not None:
1608
+ classifier_dropout = config.classifier_dropout
1609
+ elif hasattr(config, 'hidden_dropout') and config.hidden_dropout is not None:
1610
+ classifier_dropout = config.hidden_dropout
1611
+ else:
1612
+ classifier_dropout = 0.1
1613
+ self.dropout = nn.Dropout(classifier_dropout)
1614
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1615
+
1616
+ # Initialize weights and apply final processing
1617
+ self.post_init()
1618
+
1619
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1620
+ @add_code_sample_docstrings(
1621
+ checkpoint=_CHECKPOINT_FOR_DOC,
1622
+ output_type=TokenClassifierOutput,
1623
+ config_class=_CONFIG_FOR_DOC,
1624
+ )
1625
+ def forward(
1626
+ self,
1627
+ input_ids: Optional[torch.LongTensor] = None,
1628
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
1629
+ attention_mask: Optional[torch.Tensor] = None,
1630
+ inputs_embeds: Optional[torch.Tensor] = None,
1631
+ labels: Optional[torch.Tensor] = None,
1632
+ use_cache: Optional[bool] = None,
1633
+ output_attentions: Optional[bool] = None,
1634
+ output_hidden_states: Optional[bool] = None,
1635
+ return_dict: Optional[bool] = None,
1636
+ **deprecated_arguments,
1637
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
1638
+ r"""
1639
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1640
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1641
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1642
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1643
+ """
1644
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1645
+
1646
+ model_outputs = self.model(
1647
+ input_ids,
1648
+ past_key_values=past_key_values,
1649
+ attention_mask=attention_mask,
1650
+ inputs_embeds=inputs_embeds,
1651
+ use_cache=use_cache,
1652
+ output_attentions=output_attentions,
1653
+ output_hidden_states=output_hidden_states,
1654
+ return_dict=return_dict,
1655
+ )
1656
+
1657
+ hidden_states = model_outputs[0]
1658
+ hidden_states = self.dropout(hidden_states)
1659
+ logits = self.classifier(hidden_states)
1660
+
1661
+ loss = None
1662
+ if labels is not None:
1663
+ # move labels to correct device to enable model parallelism
1664
+ labels = labels.to(logits.device)
1665
+ batch_size, seq_length = labels.shape
1666
+ loss_fct = CrossEntropyLoss()
1667
+ loss = loss_fct(
1668
+ logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
1669
+ )
1670
+
1671
+ if not return_dict:
1672
+ output = (logits,) + model_outputs[2:]
1673
+ return ((loss,) + output) if loss is not None else output
1674
+
1675
+ return TokenClassifierOutput(
1676
+ loss=loss,
1677
+ logits=logits,
1678
+ hidden_states=model_outputs.hidden_states,
1679
+ attentions=model_outputs.attentions,
1680
+ )
preprocessor_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": 448,
3
+ "do_center_crop": true,
4
+ "do_normalize": true,
5
+ "do_resize": true,
6
+ "feature_extractor_type": "CLIPFeatureExtractor",
7
+ "image_mean": [
8
+ 0.485,
9
+ 0.456,
10
+ 0.406
11
+ ],
12
+ "image_std": [
13
+ 0.229,
14
+ 0.224,
15
+ 0.225
16
+ ],
17
+ "resample": 3,
18
+ "size": 448
19
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<img>",
4
+ "</img>",
5
+ "<IMG_CONTEXT>",
6
+ "<quad>",
7
+ "</quad>",
8
+ "<ref>",
9
+ "</ref>",
10
+ "<box>",
11
+ "</box>"
12
+ ],
13
+ "bos_token": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "eos_token": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": true,
25
+ "single_word": false
26
+ },
27
+ "pad_token": {
28
+ "content": "</s>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": true,
32
+ "single_word": false
33
+ },
34
+ "unk_token": {
35
+ "content": "<unk>",
36
+ "lstrip": false,
37
+ "normalized": false,
38
+ "rstrip": false,
39
+ "single_word": false
40
+ }
41
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": true,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32000": {
30
+ "content": "<|endoftext|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "32001": {
38
+ "content": "<|assistant|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": true,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "32002": {
46
+ "content": "<|placeholder1|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": true,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "32003": {
54
+ "content": "<|placeholder2|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": true,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "32004": {
62
+ "content": "<|placeholder3|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": true,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "32005": {
70
+ "content": "<|placeholder4|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": true,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "32006": {
78
+ "content": "<|system|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": true,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "32007": {
86
+ "content": "<|end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": true,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "32008": {
94
+ "content": "<|placeholder5|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": true,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "32009": {
102
+ "content": "<|placeholder6|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": true,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "32010": {
110
+ "content": "<|user|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": true,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "32011": {
118
+ "content": "<img>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": true
124
+ },
125
+ "32012": {
126
+ "content": "</img>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": true
132
+ },
133
+ "32013": {
134
+ "content": "<IMG_CONTEXT>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": true
140
+ },
141
+ "32014": {
142
+ "content": "<quad>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": true
148
+ },
149
+ "32015": {
150
+ "content": "</quad>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": true
156
+ },
157
+ "32016": {
158
+ "content": "<ref>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": true
164
+ },
165
+ "32017": {
166
+ "content": "</ref>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": true
172
+ },
173
+ "32018": {
174
+ "content": "<box>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": true
180
+ },
181
+ "32019": {
182
+ "content": "</box>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": true
188
+ }
189
+ },
190
+ "additional_special_tokens": [
191
+ "<img>",
192
+ "</img>",
193
+ "<IMG_CONTEXT>",
194
+ "<quad>",
195
+ "</quad>",
196
+ "<ref>",
197
+ "</ref>",
198
+ "<box>",
199
+ "</box>"
200
+ ],
201
+ "bos_token": "<s>",
202
+ "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') %}{{'<|user|>' + '\n' + message['content'] + '<|end|>' + '\n' + '<|assistant|>' + '\n'}}{% elif (message['role'] == 'assistant') %}{{message['content'] + '<|end|>' + '\n'}}{% endif %}{% endfor %}",
203
+ "clean_up_tokenization_spaces": false,
204
+ "eos_token": "</s>",
205
+ "legacy": false,
206
+ "model_max_length": 8192,
207
+ "pad_token": "</s>",
208
+ "sp_model_kwargs": {},
209
+ "spaces_between_special_tokens": false,
210
+ "tokenizer_class": "LlamaTokenizer",
211
+ "unk_token": "<unk>",
212
+ "use_default_system_prompt": false
213
+ }