zwt123home123
commited on
Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +897 -0
- added_tokens.json +22 -0
- config.json +245 -0
- configuration_intern_vit.py +119 -0
- configuration_internvl_chat.py +96 -0
- configuration_phi3.py +211 -0
- conversation.py +393 -0
- examples/image1.jpg +0 -0
- examples/image2.jpg +0 -0
- examples/red-panda.mp4 +3 -0
- generation_config.json +9 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +548 -0
- modeling_intern_vit.py +429 -0
- modeling_internvl_chat.py +365 -0
- modeling_phi3.py +1680 -0
- preprocessor_config.json +19 -0
- special_tokens_map.json +41 -0
- tokenizer.model +3 -0
- tokenizer_config.json +213 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
examples/red-panda.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,897 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
pipeline_tag: image-text-to-text
|
4 |
+
library_name: transformers
|
5 |
+
base_model:
|
6 |
+
- OpenGVLab/InternViT-300M-448px
|
7 |
+
- microsoft/Phi-3-mini-128k-instruct
|
8 |
+
base_model_relation: merge
|
9 |
+
language:
|
10 |
+
- multilingual
|
11 |
+
tags:
|
12 |
+
- internvl
|
13 |
+
- vision
|
14 |
+
- ocr
|
15 |
+
- multi-image
|
16 |
+
- video
|
17 |
+
- custom_code
|
18 |
+
---
|
19 |
+
|
20 |
+
# InternVL2-4B
|
21 |
+
|
22 |
+
[\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL) [\[🆕 Blog\]](https://internvl.github.io/blog/) [\[📜 InternVL 1.0 Paper\]](https://arxiv.org/abs/2312.14238) [\[📜 InternVL 1.5 Report\]](https://arxiv.org/abs/2404.16821)
|
23 |
+
|
24 |
+
[\[🗨️ Chat Demo\]](https://internvl.opengvlab.com/) [\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[🚀 Quick Start\]](#quick-start) [\[📖 中文解读\]](https://zhuanlan.zhihu.com/p/706547971) [\[📖 Documents\]](https://internvl.readthedocs.io/en/latest/)
|
25 |
+
|
26 |
+
[切换至中文版](#简介)
|
27 |
+
|
28 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/_mLpMwsav5eMeNcZdrIQl.png)
|
29 |
+
|
30 |
+
## Introduction
|
31 |
+
|
32 |
+
We are excited to announce the release of InternVL 2.0, the latest addition to the InternVL series of multimodal large language models. InternVL 2.0 features a variety of **instruction-tuned models**, ranging from 1 billion to 108 billion parameters. This repository contains the instruction-tuned InternVL2-4B model.
|
33 |
+
|
34 |
+
Compared to the state-of-the-art open-source multimodal large language models, InternVL 2.0 surpasses most open-source models. It demonstrates competitive performance on par with proprietary commercial models across various capabilities, including document and chart comprehension, infographics QA, scene text understanding and OCR tasks, scientific and mathematical problem solving, as well as cultural understanding and integrated multimodal capabilities.
|
35 |
+
|
36 |
+
InternVL 2.0 is trained with an 8k context window and utilizes training data consisting of long texts, multiple images, and videos, significantly improving its ability to handle these types of inputs compared to InternVL 1.5. For more details, please refer to our [blog](https://internvl.github.io/blog/2024-07-02-InternVL-2.0/) and [GitHub](https://github.com/OpenGVLab/InternVL).
|
37 |
+
|
38 |
+
| Model Name | Vision Part | Language Part | HF Link | MS Link |
|
39 |
+
| :------------------: | :---------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------: | :--------------------------------------------------------------: | :--------------------------------------------------------------------: |
|
40 |
+
| InternVL2-1B | [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) | [Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-1B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-1B) |
|
41 |
+
| InternVL2-2B | [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) | [internlm2-chat-1_8b](https://huggingface.co/internlm/internlm2-chat-1_8b) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-2B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-2B) |
|
42 |
+
| InternVL2-4B | [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) | [Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-4B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-4B) |
|
43 |
+
| InternVL2-8B | [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) | [internlm2_5-7b-chat](https://huggingface.co/internlm/internlm2_5-7b-chat) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-8B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-8B) |
|
44 |
+
| InternVL2-26B | [InternViT-6B-448px-V1-5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) | [internlm2-chat-20b](https://huggingface.co/internlm/internlm2-chat-20b) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-26B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-26B) |
|
45 |
+
| InternVL2-40B | [InternViT-6B-448px-V1-5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) | [Nous-Hermes-2-Yi-34B](https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-40B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-40B) |
|
46 |
+
| InternVL2-Llama3-76B | [InternViT-6B-448px-V1-5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) | [Hermes-2-Theta-Llama-3-70B](https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-70B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-Llama3-76B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-Llama3-76B) |
|
47 |
+
|
48 |
+
## Model Details
|
49 |
+
|
50 |
+
InternVL 2.0 is a multimodal large language model series, featuring models of various sizes. For each size, we release instruction-tuned models optimized for multimodal tasks. InternVL2-4B consists of [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px), an MLP projector, and [Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct).
|
51 |
+
|
52 |
+
## Performance
|
53 |
+
|
54 |
+
### Image Benchmarks
|
55 |
+
|
56 |
+
| Benchmark | PaliGemma-3B | Phi-3-Vision | Mini-InternVL-4B-1-5 | InternVL2-4B |
|
57 |
+
| :--------------------------: | :----------: | :----------: | :------------------: | :----------: |
|
58 |
+
| Model Size | 2.9B | 4.2B | 4.2B | 4.2B |
|
59 |
+
| | | | | |
|
60 |
+
| DocVQA<sub>test</sub> | - | - | 87.7 | 89.2 |
|
61 |
+
| ChartQA<sub>test</sub> | - | 81.4 | 81.0 | 81.5 |
|
62 |
+
| InfoVQA<sub>test</sub> | - | - | 64.6 | 67.0 |
|
63 |
+
| TextVQA<sub>val</sub> | 68.1 | 70.9 | 72.5 | 74.4 |
|
64 |
+
| OCRBench | 614 | 639 | 638 | 788 |
|
65 |
+
| MME<sub>sum</sub> | 1686.1 | 1508.0 | 2053.6 | 2064.1 |
|
66 |
+
| RealWorldQA | 55.2 | 58.8 | 60.1 | 60.7 |
|
67 |
+
| AI2D<sub>test</sub> | 68.3 | 76.7 | 76.9 | 78.9 |
|
68 |
+
| MMMU<sub>val</sub> | 34.9 | 40.4 / 46.1 | 43.3 / 45.1 | 47.0 / 47.9 |
|
69 |
+
| MMBench-EN<sub>test</sub> | 71.0 | 73.6 | 76.2 | 78.6 |
|
70 |
+
| MMBench-CN<sub>test</sub> | 63.6 | - | 70.3 | 73.9 |
|
71 |
+
| CCBench<sub>dev</sub> | 29.6 | 24.1 | 58.8 | 66.5 |
|
72 |
+
| MMVet<sub>GPT-4-0613</sub> | - | - | 46.7 | 55.7 |
|
73 |
+
| MMVet<sub>GPT-4-Turbo</sub> | 33.1 | 44.1 | 43.6 | 51.0 |
|
74 |
+
| SEED-Image | 69.6 | 70.9 | 72.5 | 73.7 |
|
75 |
+
| HallBench<sub>avg</sub> | 32.2 | 39.0 | 42.8 | 41.9 |
|
76 |
+
| MathVista<sub>testmini</sub> | 28.7 | 44.5 | 53.7 | 58.6 |
|
77 |
+
| OpenCompass<sub>avg</sub> | 46.6 | 53.6 | 56.2 | 60.6 |
|
78 |
+
|
79 |
+
- For more details and evaluation reproduction, please refer to our [Evaluation Guide](https://internvl.readthedocs.io/en/latest/internvl2.0/evaluation.html).
|
80 |
+
|
81 |
+
- We simultaneously use [InternVL](https://github.com/OpenGVLab/InternVL) and [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) repositories for model evaluation. Specifically, the results reported for DocVQA, ChartQA, InfoVQA, TextVQA, MME, AI2D, MMBench, CCBench, MMVet, and SEED-Image were tested using the InternVL repository. OCRBench, RealWorldQA, HallBench, and MathVista were evaluated using the VLMEvalKit.
|
82 |
+
|
83 |
+
- For MMMU, we report both the original scores (left side: evaluated using the InternVL codebase for InternVL series models, and sourced from technical reports or webpages for other models) and the VLMEvalKit scores (right side: collected from the OpenCompass leaderboard).
|
84 |
+
|
85 |
+
- Please note that evaluating the same model using different testing toolkits like [InternVL](https://github.com/OpenGVLab/InternVL) and [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) can result in slight differences, which is normal. Updates to code versions and variations in environment and hardware can also cause minor discrepancies in results.
|
86 |
+
|
87 |
+
### Video Benchmarks
|
88 |
+
|
89 |
+
| Benchmark | VideoChat2-Phi3 | VideoChat2-HD-Mistral | Mini-InternVL-4B-1-5 | InternVL2-4B |
|
90 |
+
| :-------------------------: | :-------------: | :-------------------: | :------------------: | :----------: |
|
91 |
+
| Model Size | 4B | 7B | 4.2B | 4.2B |
|
92 |
+
| | | | | |
|
93 |
+
| MVBench | 55.1 | 60.4 | 46.9 | 63.7 |
|
94 |
+
| MMBench-Video<sub>8f</sub> | - | - | 1.06 | 1.10 |
|
95 |
+
| MMBench-Video<sub>16f</sub> | - | - | 1.10 | 1.18 |
|
96 |
+
| Video-MME<br>w/o subs | - | 42.3 | 50.2 | 51.4 |
|
97 |
+
| Video-MME<br>w subs | - | 54.6 | 52.7 | 53.4 |
|
98 |
+
|
99 |
+
- We evaluate our models on MVBench and Video-MME by extracting 16 frames from each video, and each frame was resized to a 448x448 image.
|
100 |
+
|
101 |
+
### Grounding Benchmarks
|
102 |
+
|
103 |
+
| Model | avg. | RefCOCO<br>(val) | RefCOCO<br>(testA) | RefCOCO<br>(testB) | RefCOCO+<br>(val) | RefCOCO+<br>(testA) | RefCOCO+<br>(testB) | RefCOCO‑g<br>(val) | RefCOCO‑g<br>(test) |
|
104 |
+
| :----------------------------: | :--: | :--------------: | :----------------: | :----------------: | :---------------: | :-----------------: | :-----------------: | :----------------: | :-----------------: |
|
105 |
+
| UNINEXT-H<br>(Specialist SOTA) | 88.9 | 92.6 | 94.3 | 91.5 | 85.2 | 89.6 | 79.8 | 88.7 | 89.4 |
|
106 |
+
| | | | | | | | | | |
|
107 |
+
| Mini-InternVL-<br>Chat-2B-V1-5 | 75.8 | 80.7 | 86.7 | 72.9 | 72.5 | 82.3 | 60.8 | 75.6 | 74.9 |
|
108 |
+
| Mini-InternVL-<br>Chat-4B-V1-5 | 84.4 | 88.0 | 91.4 | 83.5 | 81.5 | 87.4 | 73.8 | 84.7 | 84.6 |
|
109 |
+
| InternVL‑Chat‑V1‑5 | 88.8 | 91.4 | 93.7 | 87.1 | 87.0 | 92.3 | 80.9 | 88.5 | 89.3 |
|
110 |
+
| | | | | | | | | | |
|
111 |
+
| InternVL2‑1B | 79.9 | 83.6 | 88.7 | 79.8 | 76.0 | 83.6 | 67.7 | 80.2 | 79.9 |
|
112 |
+
| InternVL2‑2B | 77.7 | 82.3 | 88.2 | 75.9 | 73.5 | 82.8 | 63.3 | 77.6 | 78.3 |
|
113 |
+
| InternVL2‑4B | 84.4 | 88.5 | 91.2 | 83.9 | 81.2 | 87.2 | 73.8 | 84.6 | 84.6 |
|
114 |
+
| InternVL2‑8B | 82.9 | 87.1 | 91.1 | 80.7 | 79.8 | 87.9 | 71.4 | 82.7 | 82.7 |
|
115 |
+
| InternVL2‑26B | 88.5 | 91.2 | 93.3 | 87.4 | 86.8 | 91.0 | 81.2 | 88.5 | 88.6 |
|
116 |
+
| InternVL2‑40B | 90.3 | 93.0 | 94.7 | 89.2 | 88.5 | 92.8 | 83.6 | 90.3 | 90.6 |
|
117 |
+
| InternVL2-<br>Llama3‑76B | 90.0 | 92.2 | 94.8 | 88.4 | 88.8 | 93.1 | 82.8 | 89.5 | 90.3 |
|
118 |
+
|
119 |
+
- We use the following prompt to evaluate InternVL's grounding ability: `Please provide the bounding box coordinates of the region this sentence describes: <ref>{}</ref>`
|
120 |
+
|
121 |
+
Limitations: Although we have made efforts to ensure the safety of the model during the training process and to encourage the model to generate text that complies with ethical and legal requirements, the model may still produce unexpected outputs due to its size and probabilistic generation paradigm. For example, the generated responses may contain biases, discrimination, or other harmful content. Please do not propagate such content. We are not responsible for any consequences resulting from the dissemination of harmful information.
|
122 |
+
|
123 |
+
### Invitation to Evaluate InternVL
|
124 |
+
|
125 |
+
We welcome MLLM benchmark developers to assess our InternVL1.5 and InternVL2 series models. If you need to add your evaluation results here, please contact me at [wztxy89@163.com](mailto:wztxy89@163.com).
|
126 |
+
|
127 |
+
## Quick Start
|
128 |
+
|
129 |
+
We provide an example code to run InternVL2-4B using `transformers`.
|
130 |
+
|
131 |
+
We also welcome you to experience the InternVL2 series models in our [online demo](https://internvl.opengvlab.com/).
|
132 |
+
|
133 |
+
> Please use transformers==4.37.2 to ensure the model works normally.
|
134 |
+
|
135 |
+
### Model Loading
|
136 |
+
|
137 |
+
#### 16-bit (bf16 / fp16)
|
138 |
+
|
139 |
+
```python
|
140 |
+
import torch
|
141 |
+
from transformers import AutoTokenizer, AutoModel
|
142 |
+
path = "OpenGVLab/InternVL2-4B"
|
143 |
+
model = AutoModel.from_pretrained(
|
144 |
+
path,
|
145 |
+
torch_dtype=torch.bfloat16,
|
146 |
+
low_cpu_mem_usage=True,
|
147 |
+
use_flash_attn=True,
|
148 |
+
trust_remote_code=True).eval().cuda()
|
149 |
+
```
|
150 |
+
|
151 |
+
#### BNB 8-bit Quantization
|
152 |
+
|
153 |
+
```python
|
154 |
+
import torch
|
155 |
+
from transformers import AutoTokenizer, AutoModel
|
156 |
+
path = "OpenGVLab/InternVL2-4B"
|
157 |
+
model = AutoModel.from_pretrained(
|
158 |
+
path,
|
159 |
+
torch_dtype=torch.bfloat16,
|
160 |
+
load_in_8bit=True,
|
161 |
+
low_cpu_mem_usage=True,
|
162 |
+
use_flash_attn=True,
|
163 |
+
trust_remote_code=True).eval()
|
164 |
+
```
|
165 |
+
|
166 |
+
#### BNB 4-bit Quantization
|
167 |
+
|
168 |
+
```python
|
169 |
+
import torch
|
170 |
+
from transformers import AutoTokenizer, AutoModel
|
171 |
+
path = "OpenGVLab/InternVL2-4B"
|
172 |
+
model = AutoModel.from_pretrained(
|
173 |
+
path,
|
174 |
+
torch_dtype=torch.bfloat16,
|
175 |
+
load_in_4bit=True,
|
176 |
+
low_cpu_mem_usage=True,
|
177 |
+
use_flash_attn=True,
|
178 |
+
trust_remote_code=True).eval()
|
179 |
+
```
|
180 |
+
|
181 |
+
#### Multiple GPUs
|
182 |
+
|
183 |
+
The reason for writing the code this way is to avoid errors that occur during multi-GPU inference due to tensors not being on the same device. By ensuring that the first and last layers of the large language model (LLM) are on the same device, we prevent such errors.
|
184 |
+
|
185 |
+
```python
|
186 |
+
import math
|
187 |
+
import torch
|
188 |
+
from transformers import AutoTokenizer, AutoModel
|
189 |
+
|
190 |
+
def split_model(model_name):
|
191 |
+
device_map = {}
|
192 |
+
world_size = torch.cuda.device_count()
|
193 |
+
num_layers = {
|
194 |
+
'InternVL2-1B': 24, 'InternVL2-2B': 24, 'InternVL2-4B': 32, 'InternVL2-8B': 32,
|
195 |
+
'InternVL2-26B': 48, 'InternVL2-40B': 60, 'InternVL2-Llama3-76B': 80}[model_name]
|
196 |
+
# Since the first GPU will be used for ViT, treat it as half a GPU.
|
197 |
+
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
|
198 |
+
num_layers_per_gpu = [num_layers_per_gpu] * world_size
|
199 |
+
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
|
200 |
+
layer_cnt = 0
|
201 |
+
for i, num_layer in enumerate(num_layers_per_gpu):
|
202 |
+
for j in range(num_layer):
|
203 |
+
device_map[f'language_model.model.layers.{layer_cnt}'] = i
|
204 |
+
layer_cnt += 1
|
205 |
+
device_map['vision_model'] = 0
|
206 |
+
device_map['mlp1'] = 0
|
207 |
+
device_map['language_model.model.tok_embeddings'] = 0
|
208 |
+
device_map['language_model.model.embed_tokens'] = 0
|
209 |
+
device_map['language_model.output'] = 0
|
210 |
+
device_map['language_model.model.norm'] = 0
|
211 |
+
device_map['language_model.lm_head'] = 0
|
212 |
+
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
|
213 |
+
|
214 |
+
return device_map
|
215 |
+
|
216 |
+
path = "OpenGVLab/InternVL2-4B"
|
217 |
+
device_map = split_model('InternVL2-4B')
|
218 |
+
model = AutoModel.from_pretrained(
|
219 |
+
path,
|
220 |
+
torch_dtype=torch.bfloat16,
|
221 |
+
low_cpu_mem_usage=True,
|
222 |
+
use_flash_attn=True,
|
223 |
+
trust_remote_code=True,
|
224 |
+
device_map=device_map).eval()
|
225 |
+
```
|
226 |
+
|
227 |
+
### Inference with Transformers
|
228 |
+
|
229 |
+
```python
|
230 |
+
import numpy as np
|
231 |
+
import torch
|
232 |
+
import torchvision.transforms as T
|
233 |
+
from decord import VideoReader, cpu
|
234 |
+
from PIL import Image
|
235 |
+
from torchvision.transforms.functional import InterpolationMode
|
236 |
+
from transformers import AutoModel, AutoTokenizer
|
237 |
+
|
238 |
+
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
239 |
+
IMAGENET_STD = (0.229, 0.224, 0.225)
|
240 |
+
|
241 |
+
def build_transform(input_size):
|
242 |
+
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
243 |
+
transform = T.Compose([
|
244 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
245 |
+
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
246 |
+
T.ToTensor(),
|
247 |
+
T.Normalize(mean=MEAN, std=STD)
|
248 |
+
])
|
249 |
+
return transform
|
250 |
+
|
251 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
252 |
+
best_ratio_diff = float('inf')
|
253 |
+
best_ratio = (1, 1)
|
254 |
+
area = width * height
|
255 |
+
for ratio in target_ratios:
|
256 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
257 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
258 |
+
if ratio_diff < best_ratio_diff:
|
259 |
+
best_ratio_diff = ratio_diff
|
260 |
+
best_ratio = ratio
|
261 |
+
elif ratio_diff == best_ratio_diff:
|
262 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
263 |
+
best_ratio = ratio
|
264 |
+
return best_ratio
|
265 |
+
|
266 |
+
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
|
267 |
+
orig_width, orig_height = image.size
|
268 |
+
aspect_ratio = orig_width / orig_height
|
269 |
+
|
270 |
+
# calculate the existing image aspect ratio
|
271 |
+
target_ratios = set(
|
272 |
+
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
273 |
+
i * j <= max_num and i * j >= min_num)
|
274 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
275 |
+
|
276 |
+
# find the closest aspect ratio to the target
|
277 |
+
target_aspect_ratio = find_closest_aspect_ratio(
|
278 |
+
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
279 |
+
|
280 |
+
# calculate the target width and height
|
281 |
+
target_width = image_size * target_aspect_ratio[0]
|
282 |
+
target_height = image_size * target_aspect_ratio[1]
|
283 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
284 |
+
|
285 |
+
# resize the image
|
286 |
+
resized_img = image.resize((target_width, target_height))
|
287 |
+
processed_images = []
|
288 |
+
for i in range(blocks):
|
289 |
+
box = (
|
290 |
+
(i % (target_width // image_size)) * image_size,
|
291 |
+
(i // (target_width // image_size)) * image_size,
|
292 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
293 |
+
((i // (target_width // image_size)) + 1) * image_size
|
294 |
+
)
|
295 |
+
# split the image
|
296 |
+
split_img = resized_img.crop(box)
|
297 |
+
processed_images.append(split_img)
|
298 |
+
assert len(processed_images) == blocks
|
299 |
+
if use_thumbnail and len(processed_images) != 1:
|
300 |
+
thumbnail_img = image.resize((image_size, image_size))
|
301 |
+
processed_images.append(thumbnail_img)
|
302 |
+
return processed_images
|
303 |
+
|
304 |
+
def load_image(image_file, input_size=448, max_num=12):
|
305 |
+
image = Image.open(image_file).convert('RGB')
|
306 |
+
transform = build_transform(input_size=input_size)
|
307 |
+
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
308 |
+
pixel_values = [transform(image) for image in images]
|
309 |
+
pixel_values = torch.stack(pixel_values)
|
310 |
+
return pixel_values
|
311 |
+
|
312 |
+
# If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section.
|
313 |
+
path = 'OpenGVLab/InternVL2-4B'
|
314 |
+
model = AutoModel.from_pretrained(
|
315 |
+
path,
|
316 |
+
torch_dtype=torch.bfloat16,
|
317 |
+
low_cpu_mem_usage=True,
|
318 |
+
use_flash_attn=True,
|
319 |
+
trust_remote_code=True).eval().cuda()
|
320 |
+
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
321 |
+
|
322 |
+
# set the max number of tiles in `max_num`
|
323 |
+
pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
324 |
+
generation_config = dict(max_new_tokens=1024, do_sample=True)
|
325 |
+
|
326 |
+
# pure-text conversation (纯文本对话)
|
327 |
+
question = 'Hello, who are you?'
|
328 |
+
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
|
329 |
+
print(f'User: {question}\nAssistant: {response}')
|
330 |
+
|
331 |
+
question = 'Can you tell me a story?'
|
332 |
+
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
|
333 |
+
print(f'User: {question}\nAssistant: {response}')
|
334 |
+
|
335 |
+
# single-image single-round conversation (单图单轮对话)
|
336 |
+
question = '<image>\nPlease describe the image shortly.'
|
337 |
+
response = model.chat(tokenizer, pixel_values, question, generation_config)
|
338 |
+
print(f'User: {question}\nAssistant: {response}')
|
339 |
+
|
340 |
+
# single-image multi-round conversation (单图多轮对话)
|
341 |
+
question = '<image>\nPlease describe the image in detail.'
|
342 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
|
343 |
+
print(f'User: {question}\nAssistant: {response}')
|
344 |
+
|
345 |
+
question = 'Please write a poem according to the image.'
|
346 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
|
347 |
+
print(f'User: {question}\nAssistant: {response}')
|
348 |
+
|
349 |
+
# multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
|
350 |
+
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
351 |
+
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
352 |
+
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
353 |
+
|
354 |
+
question = '<image>\nDescribe the two images in detail.'
|
355 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
356 |
+
history=None, return_history=True)
|
357 |
+
print(f'User: {question}\nAssistant: {response}')
|
358 |
+
|
359 |
+
question = 'What are the similarities and differences between these two images.'
|
360 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
361 |
+
history=history, return_history=True)
|
362 |
+
print(f'User: {question}\nAssistant: {response}')
|
363 |
+
|
364 |
+
# multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
|
365 |
+
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
366 |
+
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
367 |
+
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
368 |
+
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
369 |
+
|
370 |
+
question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
|
371 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
372 |
+
num_patches_list=num_patches_list,
|
373 |
+
history=None, return_history=True)
|
374 |
+
print(f'User: {question}\nAssistant: {response}')
|
375 |
+
|
376 |
+
question = 'What are the similarities and differences between these two images.'
|
377 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
378 |
+
num_patches_list=num_patches_list,
|
379 |
+
history=history, return_history=True)
|
380 |
+
print(f'User: {question}\nAssistant: {response}')
|
381 |
+
|
382 |
+
# batch inference, single image per sample (单图批处理)
|
383 |
+
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
384 |
+
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
385 |
+
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
386 |
+
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
387 |
+
|
388 |
+
questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
|
389 |
+
responses = model.batch_chat(tokenizer, pixel_values,
|
390 |
+
num_patches_list=num_patches_list,
|
391 |
+
questions=questions,
|
392 |
+
generation_config=generation_config)
|
393 |
+
for question, response in zip(questions, responses):
|
394 |
+
print(f'User: {question}\nAssistant: {response}')
|
395 |
+
|
396 |
+
# video multi-round conversation (视频多轮对话)
|
397 |
+
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
|
398 |
+
if bound:
|
399 |
+
start, end = bound[0], bound[1]
|
400 |
+
else:
|
401 |
+
start, end = -100000, 100000
|
402 |
+
start_idx = max(first_idx, round(start * fps))
|
403 |
+
end_idx = min(round(end * fps), max_frame)
|
404 |
+
seg_size = float(end_idx - start_idx) / num_segments
|
405 |
+
frame_indices = np.array([
|
406 |
+
int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
|
407 |
+
for idx in range(num_segments)
|
408 |
+
])
|
409 |
+
return frame_indices
|
410 |
+
|
411 |
+
def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
|
412 |
+
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
|
413 |
+
max_frame = len(vr) - 1
|
414 |
+
fps = float(vr.get_avg_fps())
|
415 |
+
|
416 |
+
pixel_values_list, num_patches_list = [], []
|
417 |
+
transform = build_transform(input_size=input_size)
|
418 |
+
frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
|
419 |
+
for frame_index in frame_indices:
|
420 |
+
img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
|
421 |
+
img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
422 |
+
pixel_values = [transform(tile) for tile in img]
|
423 |
+
pixel_values = torch.stack(pixel_values)
|
424 |
+
num_patches_list.append(pixel_values.shape[0])
|
425 |
+
pixel_values_list.append(pixel_values)
|
426 |
+
pixel_values = torch.cat(pixel_values_list)
|
427 |
+
return pixel_values, num_patches_list
|
428 |
+
|
429 |
+
video_path = './examples/red-panda.mp4'
|
430 |
+
pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
|
431 |
+
pixel_values = pixel_values.to(torch.bfloat16).cuda()
|
432 |
+
video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
|
433 |
+
question = video_prefix + 'What is the red panda doing?'
|
434 |
+
# Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
|
435 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
436 |
+
num_patches_list=num_patches_list, history=None, return_history=True)
|
437 |
+
print(f'User: {question}\nAssistant: {response}')
|
438 |
+
|
439 |
+
question = 'Describe this video in detail. Don\'t repeat.'
|
440 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
441 |
+
num_patches_list=num_patches_list, history=history, return_history=True)
|
442 |
+
print(f'User: {question}\nAssistant: {response}')
|
443 |
+
```
|
444 |
+
|
445 |
+
#### Streaming output
|
446 |
+
|
447 |
+
Besides this method, you can also use the following code to get streamed output.
|
448 |
+
|
449 |
+
```python
|
450 |
+
from transformers import TextIteratorStreamer
|
451 |
+
from threading import Thread
|
452 |
+
|
453 |
+
# Initialize the streamer
|
454 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10)
|
455 |
+
# Define the generation configuration
|
456 |
+
generation_config = dict(max_new_tokens=1024, do_sample=False, streamer=streamer)
|
457 |
+
# Start the model chat in a separate thread
|
458 |
+
thread = Thread(target=model.chat, kwargs=dict(
|
459 |
+
tokenizer=tokenizer, pixel_values=pixel_values, question=question,
|
460 |
+
history=None, return_history=False, generation_config=generation_config,
|
461 |
+
))
|
462 |
+
thread.start()
|
463 |
+
|
464 |
+
# Initialize an empty string to store the generated text
|
465 |
+
generated_text = ''
|
466 |
+
# Loop through the streamer to get the new text as it is generated
|
467 |
+
for new_text in streamer:
|
468 |
+
if new_text == model.conv_template.sep:
|
469 |
+
break
|
470 |
+
generated_text += new_text
|
471 |
+
print(new_text, end='', flush=True) # Print each new chunk of generated text on the same line
|
472 |
+
```
|
473 |
+
|
474 |
+
## Finetune
|
475 |
+
|
476 |
+
Many repositories now support fine-tuning of the InternVL series models, including [InternVL](https://github.com/OpenGVLab/InternVL), [SWIFT](https://github.com/modelscope/ms-swift), [XTurner](https://github.com/InternLM/xtuner), and others. Please refer to their documentation for more details on fine-tuning.
|
477 |
+
|
478 |
+
## Deployment
|
479 |
+
|
480 |
+
### LMDeploy
|
481 |
+
|
482 |
+
LMDeploy is a toolkit for compressing, deploying, and serving LLM, developed by the MMRazor and MMDeploy teams.
|
483 |
+
|
484 |
+
```sh
|
485 |
+
pip install lmdeploy==0.5.3
|
486 |
+
```
|
487 |
+
|
488 |
+
LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.
|
489 |
+
|
490 |
+
#### A 'Hello, world' example
|
491 |
+
|
492 |
+
```python
|
493 |
+
from lmdeploy import pipeline, TurbomindEngineConfig
|
494 |
+
from lmdeploy.vl import load_image
|
495 |
+
|
496 |
+
model = 'OpenGVLab/InternVL2-4B'
|
497 |
+
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
|
498 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
499 |
+
response = pipe(('describe this image', image))
|
500 |
+
print(response.text)
|
501 |
+
```
|
502 |
+
|
503 |
+
If `ImportError` occurs while executing this case, please install the required dependency packages as prompted.
|
504 |
+
|
505 |
+
#### Multi-images inference
|
506 |
+
|
507 |
+
When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased.
|
508 |
+
|
509 |
+
> Warning: Due to the scarcity of multi-image conversation data, the performance on multi-image tasks may be unstable, and it may require multiple attempts to achieve satisfactory results.
|
510 |
+
|
511 |
+
```python
|
512 |
+
from lmdeploy import pipeline, TurbomindEngineConfig
|
513 |
+
from lmdeploy.vl import load_image
|
514 |
+
from lmdeploy.vl.constants import IMAGE_TOKEN
|
515 |
+
|
516 |
+
model = 'OpenGVLab/InternVL2-4B'
|
517 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
518 |
+
|
519 |
+
image_urls=[
|
520 |
+
'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
|
521 |
+
'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg'
|
522 |
+
]
|
523 |
+
|
524 |
+
images = [load_image(img_url) for img_url in image_urls]
|
525 |
+
# Numbering images improves multi-image conversations
|
526 |
+
response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
|
527 |
+
print(response.text)
|
528 |
+
```
|
529 |
+
|
530 |
+
#### Batch prompts inference
|
531 |
+
|
532 |
+
Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
|
533 |
+
|
534 |
+
```python
|
535 |
+
from lmdeploy import pipeline, TurbomindEngineConfig
|
536 |
+
from lmdeploy.vl import load_image
|
537 |
+
|
538 |
+
model = 'OpenGVLab/InternVL2-4B'
|
539 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
540 |
+
|
541 |
+
image_urls=[
|
542 |
+
"https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
|
543 |
+
"https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg"
|
544 |
+
]
|
545 |
+
prompts = [('describe this image', load_image(img_url)) for img_url in image_urls]
|
546 |
+
response = pipe(prompts)
|
547 |
+
print(response)
|
548 |
+
```
|
549 |
+
|
550 |
+
#### Multi-turn conversation
|
551 |
+
|
552 |
+
There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
|
553 |
+
|
554 |
+
```python
|
555 |
+
from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
|
556 |
+
from lmdeploy.vl import load_image
|
557 |
+
|
558 |
+
model = 'OpenGVLab/InternVL2-4B'
|
559 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
560 |
+
|
561 |
+
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
|
562 |
+
gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
|
563 |
+
sess = pipe.chat(('describe this image', image), gen_config=gen_config)
|
564 |
+
print(sess.response.text)
|
565 |
+
sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config)
|
566 |
+
print(sess.response.text)
|
567 |
+
```
|
568 |
+
|
569 |
+
#### Service
|
570 |
+
|
571 |
+
LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
|
572 |
+
|
573 |
+
```shell
|
574 |
+
lmdeploy serve api_server OpenGVLab/InternVL2-4B --backend turbomind --server-port 23333
|
575 |
+
```
|
576 |
+
|
577 |
+
To use the OpenAI-style interface, you need to install OpenAI:
|
578 |
+
|
579 |
+
```shell
|
580 |
+
pip install openai
|
581 |
+
```
|
582 |
+
|
583 |
+
Then, use the code below to make the API call:
|
584 |
+
|
585 |
+
```python
|
586 |
+
from openai import OpenAI
|
587 |
+
|
588 |
+
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
|
589 |
+
model_name = client.models.list().data[0].id
|
590 |
+
response = client.chat.completions.create(
|
591 |
+
model=model_name,
|
592 |
+
messages=[{
|
593 |
+
'role':
|
594 |
+
'user',
|
595 |
+
'content': [{
|
596 |
+
'type': 'text',
|
597 |
+
'text': 'describe this image',
|
598 |
+
}, {
|
599 |
+
'type': 'image_url',
|
600 |
+
'image_url': {
|
601 |
+
'url':
|
602 |
+
'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
|
603 |
+
},
|
604 |
+
}],
|
605 |
+
}],
|
606 |
+
temperature=0.8,
|
607 |
+
top_p=0.8)
|
608 |
+
print(response)
|
609 |
+
```
|
610 |
+
|
611 |
+
## License
|
612 |
+
|
613 |
+
This project is released under the MIT license.
|
614 |
+
|
615 |
+
## Citation
|
616 |
+
|
617 |
+
If you find this project useful in your research, please consider citing:
|
618 |
+
|
619 |
+
```BibTeX
|
620 |
+
@article{chen2023internvl,
|
621 |
+
title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
|
622 |
+
author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
|
623 |
+
journal={arXiv preprint arXiv:2312.14238},
|
624 |
+
year={2023}
|
625 |
+
}
|
626 |
+
@article{chen2024far,
|
627 |
+
title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
|
628 |
+
author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
|
629 |
+
journal={arXiv preprint arXiv:2404.16821},
|
630 |
+
year={2024}
|
631 |
+
}
|
632 |
+
```
|
633 |
+
|
634 |
+
## 简介
|
635 |
+
|
636 |
+
我们很高兴宣布 InternVL 2.0 的发布,这是 InternVL 系列多模态大语言模型的最新版本。InternVL 2.0 提供了多种**指令微调**的模型,参数从 10 亿到 1080 亿不等。此仓库包含经过指令微调的 InternVL2-4B 模型。
|
637 |
+
|
638 |
+
与最先进的开源多模态大语言模型相比,InternVL 2.0 超越了大多数开源模型。它在各种能力上表现出与闭源商业模型相媲美的竞争力,包括文档和图表理解、信息图表问答、场景文本理解和 OCR 任务、科学和数学问题解决,以及文化理解和综合多模态能力。
|
639 |
+
|
640 |
+
InternVL 2.0 使用 8k 上下文窗口进行训练,训练数据包含长文本、多图和视频数据,与 InternVL 1.5 相比,其处理这些类型输入的能力显著提高。更多详细信息,请参阅我们的博客和 GitHub。
|
641 |
+
|
642 |
+
| 模型名称 | 视觉部分 | 语言部分 | HF 链接 | MS 链接 |
|
643 |
+
| :------------------: | :---------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------: | :--------------------------------------------------------------: | :--------------------------------------------------------------------: |
|
644 |
+
| InternVL2-1B | [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) | [Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-1B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-1B) |
|
645 |
+
| InternVL2-2B | [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) | [internlm2-chat-1_8b](https://huggingface.co/internlm/internlm2-chat-1_8b) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-2B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-2B) |
|
646 |
+
| InternVL2-4B | [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) | [Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-4B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-4B) |
|
647 |
+
| InternVL2-8B | [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) | [internlm2_5-7b-chat](https://huggingface.co/internlm/internlm2_5-7b-chat) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-8B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-8B) |
|
648 |
+
| InternVL2-26B | [InternViT-6B-448px-V1-5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) | [internlm2-chat-20b](https://huggingface.co/internlm/internlm2-chat-20b) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-26B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-26B) |
|
649 |
+
| InternVL2-40B | [InternViT-6B-448px-V1-5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) | [Nous-Hermes-2-Yi-34B](https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-40B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-40B) |
|
650 |
+
| InternVL2-Llama3-76B | [InternViT-6B-448px-V1-5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) | [Hermes-2-Theta-Llama-3-70B](https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-70B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-Llama3-76B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-Llama3-76B) |
|
651 |
+
|
652 |
+
## 模型细节
|
653 |
+
|
654 |
+
InternVL 2.0 是一个多模态大语言模型系列,包含各种规模的模型。对于每个规模的模型,我们都会发布针对多模态任务优化的指令微调模型。InternVL2-4B 包含 [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px)、一个 MLP 投影器和 [Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct)。
|
655 |
+
|
656 |
+
## 性能测试
|
657 |
+
|
658 |
+
### 图像相关评测
|
659 |
+
|
660 |
+
| 评测数据集 | PaliGemma-3B | Phi-3-Vision | Mini-InternVL-4B-1-5 | InternVL2-4B |
|
661 |
+
| :--------------------------: | :----------: | :----------: | :------------------: | :----------: |
|
662 |
+
| 模型大小 | 2.9B | 4.2B | 4.2B | 4.2B |
|
663 |
+
| | | | | |
|
664 |
+
| DocVQA<sub>test</sub> | - | - | 87.7 | 89.2 |
|
665 |
+
| ChartQA<sub>test</sub> | - | 81.4 | 81.0 | 81.5 |
|
666 |
+
| InfoVQA<sub>test</sub> | - | - | 64.6 | 67.0 |
|
667 |
+
| TextVQA<sub>val</sub> | 68.1 | 70.9 | 72.5 | 74.4 |
|
668 |
+
| OCRBench | 614 | 639 | 638 | 788 |
|
669 |
+
| MME<sub>sum</sub> | 1686.1 | 1508.0 | 2053.6 | 2064.1 |
|
670 |
+
| RealWorldQA | 55.2 | 58.8 | 60.1 | 60.7 |
|
671 |
+
| AI2D<sub>test</sub> | 68.3 | 76.7 | 76.9 | 78.9 |
|
672 |
+
| MMMU<sub>val</sub> | 34.9 | 40.4 / 46.1 | 43.3 / 45.1 | 47.0 / 47.9 |
|
673 |
+
| MMBench-EN<sub>test</sub> | 71.0 | 73.6 | 76.2 | 78.6 |
|
674 |
+
| MMBench-CN<sub>test</sub> | 63.6 | - | 70.3 | 73.9 |
|
675 |
+
| CCBench<sub>dev</sub> | 29.6 | 24.1 | 58.8 | 66.5 |
|
676 |
+
| MMVet<sub>GPT-4-0613</sub> | - | - | 46.7 | 55.7 |
|
677 |
+
| MMVet<sub>GPT-4-Turbo</sub> | 33.1 | 44.1 | 43.6 | 51.0 |
|
678 |
+
| SEED-Image | 69.6 | 70.9 | 72.5 | 73.7 |
|
679 |
+
| HallBench<sub>avg</sub> | 32.2 | 39.0 | 42.8 | 41.9 |
|
680 |
+
| MathVista<sub>testmini</sub> | 28.7 | 44.5 | 53.7 | 58.6 |
|
681 |
+
| OpenCompass<sub>avg</sub> | 46.6 | 53.6 | 56.2 | 60.6 |
|
682 |
+
|
683 |
+
- 关于更多的细节以及评测复现,请看我们的[评测指南](https://internvl.readthedocs.io/en/latest/internvl2.0/evaluation.html)。
|
684 |
+
|
685 |
+
- 我们同时使用 InternVL 和 VLMEvalKit 仓库进行模型评估。具体来说,DocVQA、ChartQA、InfoVQA、TextVQA、MME、AI2D、MMBench、CCBench、MMVet 和 SEED-Image 的结果是使用 InternVL 仓库测试的。OCRBench、RealWorldQA、HallBench 和 MathVista 是使用 VLMEvalKit 进行评估的。
|
686 |
+
|
687 |
+
- 对于MMMU,我们报告了原始分数(左侧:InternVL系列模型使用InternVL代码库评测,其他模型的分数来自其技术报告或网页)和VLMEvalKit分数(右侧:从OpenCompass排行榜收集)。
|
688 |
+
|
689 |
+
- 请注意,使用不同的测试工具包(如 InternVL 和 VLMEvalKit)评估同一模型可能会导致细微差异,这是正常的。代码版本的更新、环境和硬件的变化也可能导致结果的微小差异。
|
690 |
+
|
691 |
+
### 视频相关评测
|
692 |
+
|
693 |
+
| 评测数据集 | VideoChat2-Phi3 | VideoChat2-HD-Mistral | Mini-InternVL-4B-1-5 | InternVL2-4B |
|
694 |
+
| :-------------------------: | :-------------: | :-------------------: | :------------------: | :----------: |
|
695 |
+
| 模型大小 | 4B | 7B | 4.2B | 4.2B |
|
696 |
+
| | | | | |
|
697 |
+
| MVBench | 55.1 | 60.4 | 46.9 | 63.7 |
|
698 |
+
| MMBench-Video<sub>8f</sub> | - | - | 1.06 | 1.10 |
|
699 |
+
| MMBench-Video<sub>16f</sub> | - | - | 1.10 | 1.18 |
|
700 |
+
| Video-MME<br>w/o subs | - | 42.3 | 50.2 | 51.4 |
|
701 |
+
| Video-MME<br>w subs | - | 54.6 | 52.7 | 53.4 |
|
702 |
+
|
703 |
+
- 我们通过从每个视频中提取 16 帧来评估我们的模型在 MVBench 和 Video-MME 上的性能,每个视频帧被调整为 448x448 的图像。
|
704 |
+
|
705 |
+
### 定位相关评测
|
706 |
+
|
707 |
+
| 模型 | avg. | RefCOCO<br>(val) | RefCOCO<br>(testA) | RefCOCO<br>(testB) | RefCOCO+<br>(val) | RefCOCO+<br>(testA) | RefCOCO+<br>(testB) | RefCOCO‑g<br>(val) | RefCOCO‑g<br>(test) |
|
708 |
+
| :----------------------------: | :--: | :--------------: | :----------------: | :----------------: | :---------------: | :-----------------: | :-----------------: | :----------------: | :-----------------: |
|
709 |
+
| UNINEXT-H<br>(Specialist SOTA) | 88.9 | 92.6 | 94.3 | 91.5 | 85.2 | 89.6 | 79.8 | 88.7 | 89.4 |
|
710 |
+
| | | | | | | | | | |
|
711 |
+
| Mini-InternVL-<br>Chat-2B-V1-5 | 75.8 | 80.7 | 86.7 | 72.9 | 72.5 | 82.3 | 60.8 | 75.6 | 74.9 |
|
712 |
+
| Mini-InternVL-<br>Chat-4B-V1-5 | 84.4 | 88.0 | 91.4 | 83.5 | 81.5 | 87.4 | 73.8 | 84.7 | 84.6 |
|
713 |
+
| InternVL‑Chat‑V1‑5 | 88.8 | 91.4 | 93.7 | 87.1 | 87.0 | 92.3 | 80.9 | 88.5 | 89.3 |
|
714 |
+
| | | | | | | | | | |
|
715 |
+
| InternVL2‑1B | 79.9 | 83.6 | 88.7 | 79.8 | 76.0 | 83.6 | 67.7 | 80.2 | 79.9 |
|
716 |
+
| InternVL2‑2B | 77.7 | 82.3 | 88.2 | 75.9 | 73.5 | 82.8 | 63.3 | 77.6 | 78.3 |
|
717 |
+
| InternVL2‑4B | 84.4 | 88.5 | 91.2 | 83.9 | 81.2 | 87.2 | 73.8 | 84.6 | 84.6 |
|
718 |
+
| InternVL2‑8B | 82.9 | 87.1 | 91.1 | 80.7 | 79.8 | 87.9 | 71.4 | 82.7 | 82.7 |
|
719 |
+
| InternVL2‑26B | 88.5 | 91.2 | 93.3 | 87.4 | 86.8 | 91.0 | 81.2 | 88.5 | 88.6 |
|
720 |
+
| InternVL2‑40B | 90.3 | 93.0 | 94.7 | 89.2 | 88.5 | 92.8 | 83.6 | 90.3 | 90.6 |
|
721 |
+
| InternVL2-<br>Llama3‑76B | 90.0 | 92.2 | 94.8 | 88.4 | 88.8 | 93.1 | 82.8 | 89.5 | 90.3 |
|
722 |
+
|
723 |
+
- 我们使用以下 Prompt 来评测 InternVL 的 Grounding 能力: `Please provide the bounding box coordinates of the region this sentence describes: <ref>{}</ref>`
|
724 |
+
|
725 |
+
限制:尽管在训练过程中我们非常注重模型的安全性,尽力促使模型输出符合伦理和法律要求的文本,但受限于模型大小以及概率生成范式,模型可能会产生各种不符合预期的输出,例如回复内容包含偏见、歧视等有害内容,请勿传播这些内容。由于传播不良信息导致的任何后果,本项目不承担责任。
|
726 |
+
|
727 |
+
### 邀请评测 InternVL
|
728 |
+
|
729 |
+
我们欢迎各位 MLLM benchmark 的开发者对我们的 InternVL1.5 以及 InternVL2 系列模型进行评测。如果需要在此处添加评测结果,请与我联系([wztxy89@163.com](mailto:wztxy89@163.com))。
|
730 |
+
|
731 |
+
## 快速启动
|
732 |
+
|
733 |
+
我们提供了一个示例代码,用于使用 `transformers` 运行 InternVL2-4B。
|
734 |
+
|
735 |
+
我们也欢迎你在我们的[在线demo](https://internvl.opengvlab.com/)中体验InternVL2的系列模型。
|
736 |
+
|
737 |
+
> 请使用 transformers==4.37.2 以确保模型正常运行。
|
738 |
+
|
739 |
+
示例代码请[点击这里](#quick-start)。
|
740 |
+
|
741 |
+
## 微调
|
742 |
+
|
743 |
+
许多仓库现在都支持 InternVL 系列模型的微调,包括 [InternVL](https://github.com/OpenGVLab/InternVL)、[SWIFT](https://github.com/modelscope/ms-swift)、[XTurner](https://github.com/InternLM/xtuner) 等。请参阅它们的文档以获取更多微调细节。
|
744 |
+
|
745 |
+
## 部署
|
746 |
+
|
747 |
+
### LMDeploy
|
748 |
+
|
749 |
+
LMDeploy 是由 MMRazor 和 MMDeploy 团队开发的用于压缩、部署和服务大语言模型(LLM)的工具包。
|
750 |
+
|
751 |
+
```sh
|
752 |
+
pip install lmdeploy==0.5.3
|
753 |
+
```
|
754 |
+
|
755 |
+
LMDeploy 将多模态视觉-语言模型(VLM)的复杂推理过程抽象为一个易于使用的管道,类似于大语言模型(LLM)的推理管道。
|
756 |
+
|
757 |
+
#### 一个“你好,世界”示例
|
758 |
+
|
759 |
+
```python
|
760 |
+
from lmdeploy import pipeline, TurbomindEngineConfig
|
761 |
+
from lmdeploy.vl import load_image
|
762 |
+
|
763 |
+
model = 'OpenGVLab/InternVL2-4B'
|
764 |
+
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
|
765 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
766 |
+
response = pipe(('describe this image', image))
|
767 |
+
print(response.text)
|
768 |
+
```
|
769 |
+
|
770 |
+
如果在执行此示例时出现 `ImportError`,请按照提示安装所需的依赖包。
|
771 |
+
|
772 |
+
#### 多图像推理
|
773 |
+
|
774 |
+
在处理多张图像时,可以将它们全部放入一个列表中。请注意,多张图像会导致输入 token 数量增加,因此通常需要增加上下文窗口的大小。
|
775 |
+
|
776 |
+
```python
|
777 |
+
from lmdeploy import pipeline, TurbomindEngineConfig
|
778 |
+
from lmdeploy.vl import load_image
|
779 |
+
from lmdeploy.vl.constants import IMAGE_TOKEN
|
780 |
+
|
781 |
+
model = 'OpenGVLab/InternVL2-4B'
|
782 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
783 |
+
|
784 |
+
image_urls=[
|
785 |
+
'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
|
786 |
+
'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg'
|
787 |
+
]
|
788 |
+
|
789 |
+
images = [load_image(img_url) for img_url in image_urls]
|
790 |
+
# Numbering images improves multi-image conversations
|
791 |
+
response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
|
792 |
+
print(response.text)
|
793 |
+
```
|
794 |
+
|
795 |
+
#### 批量Prompt推理
|
796 |
+
|
797 |
+
使用批量Prompt进行推理非常简单;只需将它们放在一个列表结构中:
|
798 |
+
|
799 |
+
```python
|
800 |
+
from lmdeploy import pipeline, TurbomindEngineConfig
|
801 |
+
from lmdeploy.vl import load_image
|
802 |
+
|
803 |
+
model = 'OpenGVLab/InternVL2-4B'
|
804 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
805 |
+
|
806 |
+
image_urls=[
|
807 |
+
"https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
|
808 |
+
"https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg"
|
809 |
+
]
|
810 |
+
prompts = [('describe this image', load_image(img_url)) for img_url in image_urls]
|
811 |
+
response = pipe(prompts)
|
812 |
+
print(response)
|
813 |
+
```
|
814 |
+
|
815 |
+
#### 多轮对话
|
816 |
+
|
817 |
+
使用管道进行多轮对话有两种方法。一种是根据 OpenAI 的格式构建消息并使用上述方法,另一种是使用 `pipeline.chat` 接口。
|
818 |
+
|
819 |
+
```python
|
820 |
+
from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
|
821 |
+
from lmdeploy.vl import load_image
|
822 |
+
|
823 |
+
model = 'OpenGVLab/InternVL2-4B'
|
824 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
825 |
+
|
826 |
+
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
|
827 |
+
gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
|
828 |
+
sess = pipe.chat(('describe this image', image), gen_config=gen_config)
|
829 |
+
print(sess.response.text)
|
830 |
+
sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config)
|
831 |
+
print(sess.response.text)
|
832 |
+
```
|
833 |
+
|
834 |
+
#### API部署
|
835 |
+
|
836 |
+
LMDeploy 的 `api_server` 使模型能够通过一个命令轻松打包成服务。提供的 RESTful API 与 OpenAI 的接口兼容。以下是服务启动的示例:
|
837 |
+
|
838 |
+
```shell
|
839 |
+
lmdeploy serve api_server OpenGVLab/InternVL2-4B --backend turbomind --server-port 23333
|
840 |
+
```
|
841 |
+
|
842 |
+
为了使用OpenAI风格的API接口,您需要安装OpenAI:
|
843 |
+
|
844 |
+
```shell
|
845 |
+
pip install openai
|
846 |
+
```
|
847 |
+
|
848 |
+
然后,使用下面的代码进行API调用:
|
849 |
+
|
850 |
+
```python
|
851 |
+
from openai import OpenAI
|
852 |
+
|
853 |
+
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
|
854 |
+
model_name = client.models.list().data[0].id
|
855 |
+
response = client.chat.completions.create(
|
856 |
+
model=model_name,
|
857 |
+
messages=[{
|
858 |
+
'role':
|
859 |
+
'user',
|
860 |
+
'content': [{
|
861 |
+
'type': 'text',
|
862 |
+
'text': 'describe this image',
|
863 |
+
}, {
|
864 |
+
'type': 'image_url',
|
865 |
+
'image_url': {
|
866 |
+
'url':
|
867 |
+
'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
|
868 |
+
},
|
869 |
+
}],
|
870 |
+
}],
|
871 |
+
temperature=0.8,
|
872 |
+
top_p=0.8)
|
873 |
+
print(response)
|
874 |
+
```
|
875 |
+
|
876 |
+
## 开源许可证
|
877 |
+
|
878 |
+
该项目采用 MIT 许可证发布。
|
879 |
+
|
880 |
+
## 引用
|
881 |
+
|
882 |
+
如果您发现此项目对您的研究有用,可以考虑引用我们的论文:
|
883 |
+
|
884 |
+
```BibTeX
|
885 |
+
@article{chen2023internvl,
|
886 |
+
title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
|
887 |
+
author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
|
888 |
+
journal={arXiv preprint arXiv:2312.14238},
|
889 |
+
year={2023}
|
890 |
+
}
|
891 |
+
@article{chen2024far,
|
892 |
+
title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
|
893 |
+
author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
|
894 |
+
journal={arXiv preprint arXiv:2404.16821},
|
895 |
+
year={2024}
|
896 |
+
}
|
897 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</box>": 32019,
|
3 |
+
"</img>": 32012,
|
4 |
+
"</quad>": 32015,
|
5 |
+
"</ref>": 32017,
|
6 |
+
"<IMG_CONTEXT>": 32013,
|
7 |
+
"<box>": 32018,
|
8 |
+
"<img>": 32011,
|
9 |
+
"<quad>": 32014,
|
10 |
+
"<ref>": 32016,
|
11 |
+
"<|assistant|>": 32001,
|
12 |
+
"<|endoftext|>": 32000,
|
13 |
+
"<|end|>": 32007,
|
14 |
+
"<|placeholder1|>": 32002,
|
15 |
+
"<|placeholder2|>": 32003,
|
16 |
+
"<|placeholder3|>": 32004,
|
17 |
+
"<|placeholder4|>": 32005,
|
18 |
+
"<|placeholder5|>": 32008,
|
19 |
+
"<|placeholder6|>": 32009,
|
20 |
+
"<|system|>": 32006,
|
21 |
+
"<|user|>": 32010
|
22 |
+
}
|
config.json
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_commit_hash": null,
|
3 |
+
"architectures": [
|
4 |
+
"InternVLChatModel"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
|
8 |
+
"AutoModel": "modeling_internvl_chat.InternVLChatModel",
|
9 |
+
"AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
|
10 |
+
},
|
11 |
+
"downsample_ratio": 0.5,
|
12 |
+
"dynamic_image_size": true,
|
13 |
+
"force_image_size": 448,
|
14 |
+
"llm_config": {
|
15 |
+
"_name_or_path": "microsoft/Phi-3-mini-128k-instruct",
|
16 |
+
"add_cross_attention": false,
|
17 |
+
"architectures": [
|
18 |
+
"Phi3ForCausalLM"
|
19 |
+
],
|
20 |
+
"attn_implementation": "flash_attention_2",
|
21 |
+
"attention_dropout": 0.0,
|
22 |
+
"auto_map": {
|
23 |
+
"AutoConfig": "configuration_phi3.Phi3Config",
|
24 |
+
"AutoModelForCausalLM": "modeling_phi3.Phi3ForCausalLM"
|
25 |
+
},
|
26 |
+
"bad_words_ids": null,
|
27 |
+
"begin_suppress_tokens": null,
|
28 |
+
"bos_token_id": 1,
|
29 |
+
"chunk_size_feed_forward": 0,
|
30 |
+
"cross_attention_hidden_size": null,
|
31 |
+
"decoder_start_token_id": null,
|
32 |
+
"diversity_penalty": 0.0,
|
33 |
+
"do_sample": false,
|
34 |
+
"early_stopping": false,
|
35 |
+
"embd_pdrop": 0.0,
|
36 |
+
"encoder_no_repeat_ngram_size": 0,
|
37 |
+
"eos_token_id": 32000,
|
38 |
+
"exponential_decay_length_penalty": null,
|
39 |
+
"finetuning_task": null,
|
40 |
+
"forced_bos_token_id": null,
|
41 |
+
"forced_eos_token_id": null,
|
42 |
+
"hidden_act": "silu",
|
43 |
+
"hidden_size": 3072,
|
44 |
+
"id2label": {
|
45 |
+
"0": "LABEL_0",
|
46 |
+
"1": "LABEL_1"
|
47 |
+
},
|
48 |
+
"initializer_range": 0.02,
|
49 |
+
"intermediate_size": 8192,
|
50 |
+
"is_decoder": false,
|
51 |
+
"is_encoder_decoder": false,
|
52 |
+
"label2id": {
|
53 |
+
"LABEL_0": 0,
|
54 |
+
"LABEL_1": 1
|
55 |
+
},
|
56 |
+
"length_penalty": 1.0,
|
57 |
+
"max_length": 20,
|
58 |
+
"max_position_embeddings": 131072,
|
59 |
+
"min_length": 0,
|
60 |
+
"model_type": "phi3",
|
61 |
+
"no_repeat_ngram_size": 0,
|
62 |
+
"num_attention_heads": 32,
|
63 |
+
"num_beam_groups": 1,
|
64 |
+
"num_beams": 1,
|
65 |
+
"num_hidden_layers": 32,
|
66 |
+
"num_key_value_heads": 32,
|
67 |
+
"num_return_sequences": 1,
|
68 |
+
"original_max_position_embeddings": 4096,
|
69 |
+
"output_attentions": false,
|
70 |
+
"output_hidden_states": false,
|
71 |
+
"output_scores": false,
|
72 |
+
"pad_token_id": 32000,
|
73 |
+
"prefix": null,
|
74 |
+
"problem_type": null,
|
75 |
+
"pruned_heads": {},
|
76 |
+
"remove_invalid_values": false,
|
77 |
+
"repetition_penalty": 1.0,
|
78 |
+
"resid_pdrop": 0.0,
|
79 |
+
"return_dict": true,
|
80 |
+
"return_dict_in_generate": false,
|
81 |
+
"rms_norm_eps": 1e-05,
|
82 |
+
"rope_scaling": {
|
83 |
+
"long_factor": [
|
84 |
+
1.0299999713897705,
|
85 |
+
1.0499999523162842,
|
86 |
+
1.0499999523162842,
|
87 |
+
1.0799999237060547,
|
88 |
+
1.2299998998641968,
|
89 |
+
1.2299998998641968,
|
90 |
+
1.2999999523162842,
|
91 |
+
1.4499999284744263,
|
92 |
+
1.5999999046325684,
|
93 |
+
1.6499998569488525,
|
94 |
+
1.8999998569488525,
|
95 |
+
2.859999895095825,
|
96 |
+
3.68999981880188,
|
97 |
+
5.419999599456787,
|
98 |
+
5.489999771118164,
|
99 |
+
5.489999771118164,
|
100 |
+
9.09000015258789,
|
101 |
+
11.579999923706055,
|
102 |
+
15.65999984741211,
|
103 |
+
15.769999504089355,
|
104 |
+
15.789999961853027,
|
105 |
+
18.360000610351562,
|
106 |
+
21.989999771118164,
|
107 |
+
23.079999923706055,
|
108 |
+
30.009998321533203,
|
109 |
+
32.35000228881836,
|
110 |
+
32.590003967285156,
|
111 |
+
35.56000518798828,
|
112 |
+
39.95000457763672,
|
113 |
+
53.840003967285156,
|
114 |
+
56.20000457763672,
|
115 |
+
57.95000457763672,
|
116 |
+
59.29000473022461,
|
117 |
+
59.77000427246094,
|
118 |
+
59.920005798339844,
|
119 |
+
61.190006256103516,
|
120 |
+
61.96000671386719,
|
121 |
+
62.50000762939453,
|
122 |
+
63.3700065612793,
|
123 |
+
63.48000717163086,
|
124 |
+
63.48000717163086,
|
125 |
+
63.66000747680664,
|
126 |
+
63.850006103515625,
|
127 |
+
64.08000946044922,
|
128 |
+
64.760009765625,
|
129 |
+
64.80001068115234,
|
130 |
+
64.81001281738281,
|
131 |
+
64.81001281738281
|
132 |
+
],
|
133 |
+
"short_factor": [
|
134 |
+
1.05,
|
135 |
+
1.05,
|
136 |
+
1.05,
|
137 |
+
1.1,
|
138 |
+
1.1,
|
139 |
+
1.1500000000000001,
|
140 |
+
1.2000000000000002,
|
141 |
+
1.2500000000000002,
|
142 |
+
1.3000000000000003,
|
143 |
+
1.3500000000000003,
|
144 |
+
1.5000000000000004,
|
145 |
+
2.000000000000001,
|
146 |
+
2.000000000000001,
|
147 |
+
2.000000000000001,
|
148 |
+
2.000000000000001,
|
149 |
+
2.000000000000001,
|
150 |
+
2.000000000000001,
|
151 |
+
2.000000000000001,
|
152 |
+
2.000000000000001,
|
153 |
+
2.000000000000001,
|
154 |
+
2.000000000000001,
|
155 |
+
2.000000000000001,
|
156 |
+
2.000000000000001,
|
157 |
+
2.000000000000001,
|
158 |
+
2.000000000000001,
|
159 |
+
2.000000000000001,
|
160 |
+
2.000000000000001,
|
161 |
+
2.000000000000001,
|
162 |
+
2.000000000000001,
|
163 |
+
2.000000000000001,
|
164 |
+
2.000000000000001,
|
165 |
+
2.000000000000001,
|
166 |
+
2.0500000000000007,
|
167 |
+
2.0500000000000007,
|
168 |
+
2.0500000000000007,
|
169 |
+
2.1000000000000005,
|
170 |
+
2.1000000000000005,
|
171 |
+
2.1000000000000005,
|
172 |
+
2.1500000000000004,
|
173 |
+
2.1500000000000004,
|
174 |
+
2.3499999999999996,
|
175 |
+
2.549999999999999,
|
176 |
+
2.5999999999999988,
|
177 |
+
2.5999999999999988,
|
178 |
+
2.7499999999999982,
|
179 |
+
2.849999999999998,
|
180 |
+
2.849999999999998,
|
181 |
+
2.9499999999999975
|
182 |
+
],
|
183 |
+
"type": "su"
|
184 |
+
},
|
185 |
+
"rope_theta": 10000.0,
|
186 |
+
"sep_token_id": null,
|
187 |
+
"sliding_window": 262144,
|
188 |
+
"suppress_tokens": null,
|
189 |
+
"task_specific_params": null,
|
190 |
+
"temperature": 1.0,
|
191 |
+
"tf_legacy_loss": false,
|
192 |
+
"tie_encoder_decoder": false,
|
193 |
+
"tie_word_embeddings": false,
|
194 |
+
"tokenizer_class": null,
|
195 |
+
"top_k": 50,
|
196 |
+
"top_p": 1.0,
|
197 |
+
"torch_dtype": "bfloat16",
|
198 |
+
"torchscript": false,
|
199 |
+
"transformers_version": "4.37.2",
|
200 |
+
"typical_p": 1.0,
|
201 |
+
"use_bfloat16": true,
|
202 |
+
"use_cache": true,
|
203 |
+
"vocab_size": 32020
|
204 |
+
},
|
205 |
+
"max_dynamic_patch": 12,
|
206 |
+
"min_dynamic_patch": 1,
|
207 |
+
"model_type": "internvl_chat",
|
208 |
+
"ps_version": "v2",
|
209 |
+
"select_layer": -1,
|
210 |
+
"template": "phi3-chat",
|
211 |
+
"torch_dtype": "bfloat16",
|
212 |
+
"use_backbone_lora": 0,
|
213 |
+
"use_llm_lora": 0,
|
214 |
+
"use_thumbnail": true,
|
215 |
+
"vision_config": {
|
216 |
+
"architectures": [
|
217 |
+
"InternVisionModel"
|
218 |
+
],
|
219 |
+
"attention_dropout": 0.0,
|
220 |
+
"drop_path_rate": 0.0,
|
221 |
+
"dropout": 0.0,
|
222 |
+
"hidden_act": "gelu",
|
223 |
+
"hidden_size": 1024,
|
224 |
+
"image_size": 448,
|
225 |
+
"initializer_factor": 1.0,
|
226 |
+
"initializer_range": 0.02,
|
227 |
+
"intermediate_size": 4096,
|
228 |
+
"layer_norm_eps": 1e-06,
|
229 |
+
"model_type": "intern_vit_6b",
|
230 |
+
"norm_type": "layer_norm",
|
231 |
+
"num_attention_heads": 16,
|
232 |
+
"num_channels": 3,
|
233 |
+
"num_hidden_layers": 24,
|
234 |
+
"output_attentions": false,
|
235 |
+
"output_hidden_states": false,
|
236 |
+
"patch_size": 14,
|
237 |
+
"qk_normalization": false,
|
238 |
+
"qkv_bias": true,
|
239 |
+
"return_dict": true,
|
240 |
+
"torch_dtype": "bfloat16",
|
241 |
+
"transformers_version": "4.37.2",
|
242 |
+
"use_bfloat16": true,
|
243 |
+
"use_flash_attn": true
|
244 |
+
}
|
245 |
+
}
|
configuration_intern_vit.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
import os
|
7 |
+
from typing import Union
|
8 |
+
|
9 |
+
from transformers.configuration_utils import PretrainedConfig
|
10 |
+
from transformers.utils import logging
|
11 |
+
|
12 |
+
logger = logging.get_logger(__name__)
|
13 |
+
|
14 |
+
|
15 |
+
class InternVisionConfig(PretrainedConfig):
|
16 |
+
r"""
|
17 |
+
This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
|
18 |
+
instantiate a vision encoder according to the specified arguments, defining the model architecture.
|
19 |
+
|
20 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
21 |
+
documentation from [`PretrainedConfig`] for more information.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
num_channels (`int`, *optional*, defaults to 3):
|
25 |
+
Number of color channels in the input images (e.g., 3 for RGB).
|
26 |
+
patch_size (`int`, *optional*, defaults to 14):
|
27 |
+
The size (resolution) of each patch.
|
28 |
+
image_size (`int`, *optional*, defaults to 224):
|
29 |
+
The size (resolution) of each image.
|
30 |
+
qkv_bias (`bool`, *optional*, defaults to `False`):
|
31 |
+
Whether to add a bias to the queries and values in the self-attention layers.
|
32 |
+
hidden_size (`int`, *optional*, defaults to 3200):
|
33 |
+
Dimensionality of the encoder layers and the pooler layer.
|
34 |
+
num_attention_heads (`int`, *optional*, defaults to 25):
|
35 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
36 |
+
intermediate_size (`int`, *optional*, defaults to 12800):
|
37 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
38 |
+
qk_normalization (`bool`, *optional*, defaults to `True`):
|
39 |
+
Whether to normalize the queries and keys in the self-attention layers.
|
40 |
+
num_hidden_layers (`int`, *optional*, defaults to 48):
|
41 |
+
Number of hidden layers in the Transformer encoder.
|
42 |
+
use_flash_attn (`bool`, *optional*, defaults to `True`):
|
43 |
+
Whether to use flash attention mechanism.
|
44 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
45 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
46 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
|
47 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
|
48 |
+
The epsilon used by the layer normalization layers.
|
49 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
50 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
51 |
+
drop_path_rate (`float`, *optional*, defaults to 0.0):
|
52 |
+
Dropout rate for stochastic depth.
|
53 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
54 |
+
The dropout ratio for the attention probabilities.
|
55 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
56 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
57 |
+
initializer_factor (`float`, *optional*, defaults to 0.1):
|
58 |
+
A factor for layer scale.
|
59 |
+
"""
|
60 |
+
|
61 |
+
model_type = 'intern_vit_6b'
|
62 |
+
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
num_channels=3,
|
66 |
+
patch_size=14,
|
67 |
+
image_size=224,
|
68 |
+
qkv_bias=False,
|
69 |
+
hidden_size=3200,
|
70 |
+
num_attention_heads=25,
|
71 |
+
intermediate_size=12800,
|
72 |
+
qk_normalization=True,
|
73 |
+
num_hidden_layers=48,
|
74 |
+
use_flash_attn=True,
|
75 |
+
hidden_act='gelu',
|
76 |
+
norm_type='rms_norm',
|
77 |
+
layer_norm_eps=1e-6,
|
78 |
+
dropout=0.0,
|
79 |
+
drop_path_rate=0.0,
|
80 |
+
attention_dropout=0.0,
|
81 |
+
initializer_range=0.02,
|
82 |
+
initializer_factor=0.1,
|
83 |
+
**kwargs,
|
84 |
+
):
|
85 |
+
super().__init__(**kwargs)
|
86 |
+
|
87 |
+
self.hidden_size = hidden_size
|
88 |
+
self.intermediate_size = intermediate_size
|
89 |
+
self.dropout = dropout
|
90 |
+
self.drop_path_rate = drop_path_rate
|
91 |
+
self.num_hidden_layers = num_hidden_layers
|
92 |
+
self.num_attention_heads = num_attention_heads
|
93 |
+
self.num_channels = num_channels
|
94 |
+
self.patch_size = patch_size
|
95 |
+
self.image_size = image_size
|
96 |
+
self.initializer_range = initializer_range
|
97 |
+
self.initializer_factor = initializer_factor
|
98 |
+
self.attention_dropout = attention_dropout
|
99 |
+
self.layer_norm_eps = layer_norm_eps
|
100 |
+
self.hidden_act = hidden_act
|
101 |
+
self.norm_type = norm_type
|
102 |
+
self.qkv_bias = qkv_bias
|
103 |
+
self.qk_normalization = qk_normalization
|
104 |
+
self.use_flash_attn = use_flash_attn
|
105 |
+
|
106 |
+
@classmethod
|
107 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
|
108 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
109 |
+
|
110 |
+
if 'vision_config' in config_dict:
|
111 |
+
config_dict = config_dict['vision_config']
|
112 |
+
|
113 |
+
if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
|
114 |
+
logger.warning(
|
115 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
116 |
+
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
|
117 |
+
)
|
118 |
+
|
119 |
+
return cls.from_dict(config_dict, **kwargs)
|
configuration_internvl_chat.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import copy
|
8 |
+
|
9 |
+
from transformers import AutoConfig, LlamaConfig
|
10 |
+
from transformers.configuration_utils import PretrainedConfig
|
11 |
+
from transformers.utils import logging
|
12 |
+
|
13 |
+
from .configuration_intern_vit import InternVisionConfig
|
14 |
+
from .configuration_phi3 import Phi3Config
|
15 |
+
|
16 |
+
logger = logging.get_logger(__name__)
|
17 |
+
|
18 |
+
|
19 |
+
class InternVLChatConfig(PretrainedConfig):
|
20 |
+
model_type = 'internvl_chat'
|
21 |
+
is_composition = True
|
22 |
+
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
vision_config=None,
|
26 |
+
llm_config=None,
|
27 |
+
use_backbone_lora=0,
|
28 |
+
use_llm_lora=0,
|
29 |
+
select_layer=-1,
|
30 |
+
force_image_size=None,
|
31 |
+
downsample_ratio=0.5,
|
32 |
+
template=None,
|
33 |
+
dynamic_image_size=False,
|
34 |
+
use_thumbnail=False,
|
35 |
+
ps_version='v1',
|
36 |
+
min_dynamic_patch=1,
|
37 |
+
max_dynamic_patch=6,
|
38 |
+
**kwargs):
|
39 |
+
super().__init__(**kwargs)
|
40 |
+
|
41 |
+
if vision_config is None:
|
42 |
+
vision_config = {}
|
43 |
+
logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
|
44 |
+
|
45 |
+
if llm_config is None:
|
46 |
+
llm_config = {}
|
47 |
+
logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
|
48 |
+
|
49 |
+
self.vision_config = InternVisionConfig(**vision_config)
|
50 |
+
if llm_config['architectures'][0] == 'LlamaForCausalLM':
|
51 |
+
self.llm_config = LlamaConfig(**llm_config)
|
52 |
+
elif llm_config['architectures'][0] == 'Phi3ForCausalLM':
|
53 |
+
self.llm_config = Phi3Config(**llm_config)
|
54 |
+
else:
|
55 |
+
raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
|
56 |
+
self.use_backbone_lora = use_backbone_lora
|
57 |
+
self.use_llm_lora = use_llm_lora
|
58 |
+
self.select_layer = select_layer
|
59 |
+
self.force_image_size = force_image_size
|
60 |
+
self.downsample_ratio = downsample_ratio
|
61 |
+
self.template = template
|
62 |
+
self.dynamic_image_size = dynamic_image_size
|
63 |
+
self.use_thumbnail = use_thumbnail
|
64 |
+
self.ps_version = ps_version # pixel shuffle version
|
65 |
+
self.min_dynamic_patch = min_dynamic_patch
|
66 |
+
self.max_dynamic_patch = max_dynamic_patch
|
67 |
+
|
68 |
+
logger.info(f'vision_select_layer: {self.select_layer}')
|
69 |
+
logger.info(f'ps_version: {self.ps_version}')
|
70 |
+
logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
|
71 |
+
logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
|
72 |
+
|
73 |
+
def to_dict(self):
|
74 |
+
"""
|
75 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
76 |
+
|
77 |
+
Returns:
|
78 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
79 |
+
"""
|
80 |
+
output = copy.deepcopy(self.__dict__)
|
81 |
+
output['vision_config'] = self.vision_config.to_dict()
|
82 |
+
output['llm_config'] = self.llm_config.to_dict()
|
83 |
+
output['model_type'] = self.__class__.model_type
|
84 |
+
output['use_backbone_lora'] = self.use_backbone_lora
|
85 |
+
output['use_llm_lora'] = self.use_llm_lora
|
86 |
+
output['select_layer'] = self.select_layer
|
87 |
+
output['force_image_size'] = self.force_image_size
|
88 |
+
output['downsample_ratio'] = self.downsample_ratio
|
89 |
+
output['template'] = self.template
|
90 |
+
output['dynamic_image_size'] = self.dynamic_image_size
|
91 |
+
output['use_thumbnail'] = self.use_thumbnail
|
92 |
+
output['ps_version'] = self.ps_version
|
93 |
+
output['min_dynamic_patch'] = self.min_dynamic_patch
|
94 |
+
output['max_dynamic_patch'] = self.max_dynamic_patch
|
95 |
+
|
96 |
+
return output
|
configuration_phi3.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License atd
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
""" Phi-3 model configuration"""
|
16 |
+
|
17 |
+
|
18 |
+
from transformers.configuration_utils import PretrainedConfig
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
24 |
+
'microsoft/Phi-3-mini-4k-instruct': 'https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json',
|
25 |
+
'microsoft/Phi-3-mini-128k-instruct': 'https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json',
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
class Phi3Config(PretrainedConfig):
|
30 |
+
r"""
|
31 |
+
This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
|
32 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
33 |
+
defaults will yield a similar configuration to that of the
|
34 |
+
[microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
|
35 |
+
|
36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
+
documentation from [`PretrainedConfig`] for more information.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
vocab_size (`int`, *optional*, defaults to 32064):
|
41 |
+
Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
|
42 |
+
`inputs_ids` passed when calling [`Phi3Model`].
|
43 |
+
hidden_size (`int`, *optional*, defaults to 3072):
|
44 |
+
Dimension of the hidden representations.
|
45 |
+
intermediate_size (`int`, *optional*, defaults to 8192):
|
46 |
+
Dimension of the MLP representations.
|
47 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
48 |
+
Number of hidden layers in the Transformer decoder.
|
49 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
50 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
51 |
+
num_key_value_heads (`int`, *optional*):
|
52 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
53 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
54 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
55 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
56 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
57 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
58 |
+
`num_attention_heads`.
|
59 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
60 |
+
Dropout probability for mlp outputs.
|
61 |
+
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
62 |
+
The dropout ratio for the embeddings.
|
63 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
64 |
+
The dropout ratio after computing the attention scores.
|
65 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
66 |
+
The non-linear activation function (function or string) in the decoder.
|
67 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
68 |
+
The maximum sequence length that this model might ever be used with.
|
69 |
+
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
|
70 |
+
The maximum sequence length that this model was trained with. This is used to determine the size of the
|
71 |
+
original RoPE embeddings when using long scaling.
|
72 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
73 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
74 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
75 |
+
The epsilon value used for the RMSNorm.
|
76 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
77 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
78 |
+
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
79 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
80 |
+
Whether to tie weight embeddings
|
81 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
82 |
+
The base period of the RoPE embeddings.
|
83 |
+
rope_scaling (`dict`, *optional*):
|
84 |
+
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
|
85 |
+
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be either `su` or `yarn` and
|
86 |
+
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
|
87 |
+
divided by the number of attention heads divided by 2.
|
88 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
89 |
+
The id of the "beginning-of-sequence" token.
|
90 |
+
eos_token_id (`int`, *optional*, defaults to 32000):
|
91 |
+
The id of the "end-of-sequence" token.
|
92 |
+
pad_token_id (`int`, *optional*, defaults to 32000):
|
93 |
+
The id of the padding token.
|
94 |
+
sliding_window (`int`, *optional*):
|
95 |
+
Sliding window attention window size. If `None`, no sliding window is applied.
|
96 |
+
|
97 |
+
Example:
|
98 |
+
|
99 |
+
```python
|
100 |
+
>>> from transformers import Phi3Model, Phi3Config
|
101 |
+
|
102 |
+
>>> # Initializing a Phi-3 style configuration
|
103 |
+
>>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
|
104 |
+
|
105 |
+
>>> # Initializing a model from the configuration
|
106 |
+
>>> model = Phi3Model(configuration)
|
107 |
+
|
108 |
+
>>> # Accessing the model configuration
|
109 |
+
>>> configuration = model.config
|
110 |
+
```"""
|
111 |
+
|
112 |
+
model_type = 'phi3'
|
113 |
+
keys_to_ignore_at_inference = ['past_key_values']
|
114 |
+
|
115 |
+
def __init__(
|
116 |
+
self,
|
117 |
+
vocab_size=32064,
|
118 |
+
hidden_size=3072,
|
119 |
+
intermediate_size=8192,
|
120 |
+
num_hidden_layers=32,
|
121 |
+
num_attention_heads=32,
|
122 |
+
num_key_value_heads=None,
|
123 |
+
resid_pdrop=0.0,
|
124 |
+
embd_pdrop=0.0,
|
125 |
+
attention_dropout=0.0,
|
126 |
+
hidden_act='silu',
|
127 |
+
max_position_embeddings=4096,
|
128 |
+
original_max_position_embeddings=4096,
|
129 |
+
initializer_range=0.02,
|
130 |
+
rms_norm_eps=1e-5,
|
131 |
+
use_cache=True,
|
132 |
+
tie_word_embeddings=False,
|
133 |
+
rope_theta=10000.0,
|
134 |
+
rope_scaling=None,
|
135 |
+
bos_token_id=1,
|
136 |
+
eos_token_id=32000,
|
137 |
+
pad_token_id=32000,
|
138 |
+
sliding_window=None,
|
139 |
+
**kwargs,
|
140 |
+
):
|
141 |
+
self.vocab_size = vocab_size
|
142 |
+
self.hidden_size = hidden_size
|
143 |
+
self.intermediate_size = intermediate_size
|
144 |
+
self.num_hidden_layers = num_hidden_layers
|
145 |
+
self.num_attention_heads = num_attention_heads
|
146 |
+
|
147 |
+
if num_key_value_heads is None:
|
148 |
+
num_key_value_heads = num_attention_heads
|
149 |
+
|
150 |
+
self.num_key_value_heads = num_key_value_heads
|
151 |
+
self.resid_pdrop = resid_pdrop
|
152 |
+
self.embd_pdrop = embd_pdrop
|
153 |
+
self.attention_dropout = attention_dropout
|
154 |
+
self.hidden_act = hidden_act
|
155 |
+
self.max_position_embeddings = max_position_embeddings
|
156 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
157 |
+
self.initializer_range = initializer_range
|
158 |
+
self.rms_norm_eps = rms_norm_eps
|
159 |
+
self.use_cache = use_cache
|
160 |
+
self.rope_theta = rope_theta
|
161 |
+
self.rope_scaling = rope_scaling
|
162 |
+
self._rope_scaling_validation()
|
163 |
+
self.sliding_window = sliding_window
|
164 |
+
|
165 |
+
super().__init__(
|
166 |
+
bos_token_id=bos_token_id,
|
167 |
+
eos_token_id=eos_token_id,
|
168 |
+
pad_token_id=pad_token_id,
|
169 |
+
tie_word_embeddings=tie_word_embeddings,
|
170 |
+
**kwargs,
|
171 |
+
)
|
172 |
+
|
173 |
+
def _rope_scaling_validation(self):
|
174 |
+
"""
|
175 |
+
Validate the `rope_scaling` configuration.
|
176 |
+
"""
|
177 |
+
if self.rope_scaling is None:
|
178 |
+
return
|
179 |
+
|
180 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
|
181 |
+
raise ValueError(
|
182 |
+
'`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, '
|
183 |
+
f'got {self.rope_scaling}'
|
184 |
+
)
|
185 |
+
rope_scaling_type = self.rope_scaling.get('type', None)
|
186 |
+
rope_scaling_short_factor = self.rope_scaling.get('short_factor', None)
|
187 |
+
rope_scaling_long_factor = self.rope_scaling.get('long_factor', None)
|
188 |
+
if rope_scaling_type is None or rope_scaling_type not in ['su', 'yarn']:
|
189 |
+
raise ValueError(f"`rope_scaling`'s type field must be one of ['su', 'yarn'], got {rope_scaling_type}")
|
190 |
+
if not (
|
191 |
+
isinstance(rope_scaling_short_factor, list)
|
192 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
|
193 |
+
):
|
194 |
+
raise ValueError(
|
195 |
+
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
|
196 |
+
)
|
197 |
+
if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
|
198 |
+
raise ValueError(
|
199 |
+
f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
|
200 |
+
)
|
201 |
+
if not (
|
202 |
+
isinstance(rope_scaling_long_factor, list)
|
203 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
|
204 |
+
):
|
205 |
+
raise ValueError(
|
206 |
+
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
|
207 |
+
)
|
208 |
+
if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
|
209 |
+
raise ValueError(
|
210 |
+
f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
|
211 |
+
)
|
conversation.py
ADDED
@@ -0,0 +1,393 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Conversation prompt templates.
|
3 |
+
|
4 |
+
We kindly request that you import fastchat instead of copying this file if you wish to use it.
|
5 |
+
If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
|
6 |
+
"""
|
7 |
+
|
8 |
+
import dataclasses
|
9 |
+
from enum import IntEnum, auto
|
10 |
+
from typing import Any, Dict, List, Tuple, Union
|
11 |
+
|
12 |
+
|
13 |
+
class SeparatorStyle(IntEnum):
|
14 |
+
"""Separator styles."""
|
15 |
+
|
16 |
+
ADD_COLON_SINGLE = auto()
|
17 |
+
ADD_COLON_TWO = auto()
|
18 |
+
ADD_COLON_SPACE_SINGLE = auto()
|
19 |
+
NO_COLON_SINGLE = auto()
|
20 |
+
NO_COLON_TWO = auto()
|
21 |
+
ADD_NEW_LINE_SINGLE = auto()
|
22 |
+
LLAMA2 = auto()
|
23 |
+
CHATGLM = auto()
|
24 |
+
CHATML = auto()
|
25 |
+
CHATINTERN = auto()
|
26 |
+
DOLLY = auto()
|
27 |
+
RWKV = auto()
|
28 |
+
PHOENIX = auto()
|
29 |
+
ROBIN = auto()
|
30 |
+
FALCON_CHAT = auto()
|
31 |
+
CHATGLM3 = auto()
|
32 |
+
INTERNVL_ZH = auto()
|
33 |
+
MPT = auto()
|
34 |
+
|
35 |
+
|
36 |
+
@dataclasses.dataclass
|
37 |
+
class Conversation:
|
38 |
+
"""A class that manages prompt templates and keeps all conversation history."""
|
39 |
+
|
40 |
+
# The name of this template
|
41 |
+
name: str
|
42 |
+
# The template of the system prompt
|
43 |
+
system_template: str = '{system_message}'
|
44 |
+
# The system message
|
45 |
+
system_message: str = ''
|
46 |
+
# The names of two roles
|
47 |
+
roles: Tuple[str] = ('USER', 'ASSISTANT')
|
48 |
+
# All messages. Each item is (role, message).
|
49 |
+
messages: List[List[str]] = ()
|
50 |
+
# The number of few shot examples
|
51 |
+
offset: int = 0
|
52 |
+
# The separator style and configurations
|
53 |
+
sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
|
54 |
+
sep: str = '\n'
|
55 |
+
sep2: str = None
|
56 |
+
# Stop criteria (the default one is EOS token)
|
57 |
+
stop_str: Union[str, List[str]] = None
|
58 |
+
# Stops generation if meeting any token in this list
|
59 |
+
stop_token_ids: List[int] = None
|
60 |
+
|
61 |
+
def get_prompt(self) -> str:
|
62 |
+
"""Get the prompt for generation."""
|
63 |
+
system_prompt = self.system_template.format(system_message=self.system_message)
|
64 |
+
if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
|
65 |
+
ret = system_prompt + self.sep
|
66 |
+
for role, message in self.messages:
|
67 |
+
if message:
|
68 |
+
ret += role + ': ' + message + self.sep
|
69 |
+
else:
|
70 |
+
ret += role + ':'
|
71 |
+
return ret
|
72 |
+
elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
|
73 |
+
seps = [self.sep, self.sep2]
|
74 |
+
ret = system_prompt + seps[0]
|
75 |
+
for i, (role, message) in enumerate(self.messages):
|
76 |
+
if message:
|
77 |
+
ret += role + ': ' + message + seps[i % 2]
|
78 |
+
else:
|
79 |
+
ret += role + ':'
|
80 |
+
return ret
|
81 |
+
elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
|
82 |
+
ret = system_prompt + self.sep
|
83 |
+
for role, message in self.messages:
|
84 |
+
if message:
|
85 |
+
ret += role + ': ' + message + self.sep
|
86 |
+
else:
|
87 |
+
ret += role + ': ' # must be end with a space
|
88 |
+
return ret
|
89 |
+
elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
|
90 |
+
ret = '' if system_prompt == '' else system_prompt + self.sep
|
91 |
+
for role, message in self.messages:
|
92 |
+
if message:
|
93 |
+
ret += role + '\n' + message + self.sep
|
94 |
+
else:
|
95 |
+
ret += role + '\n'
|
96 |
+
return ret
|
97 |
+
elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
|
98 |
+
ret = system_prompt
|
99 |
+
for role, message in self.messages:
|
100 |
+
if message:
|
101 |
+
ret += role + message + self.sep
|
102 |
+
else:
|
103 |
+
ret += role
|
104 |
+
return ret
|
105 |
+
elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
|
106 |
+
seps = [self.sep, self.sep2]
|
107 |
+
ret = system_prompt
|
108 |
+
for i, (role, message) in enumerate(self.messages):
|
109 |
+
if message:
|
110 |
+
ret += role + message + seps[i % 2]
|
111 |
+
else:
|
112 |
+
ret += role
|
113 |
+
return ret
|
114 |
+
elif self.sep_style == SeparatorStyle.RWKV:
|
115 |
+
ret = system_prompt
|
116 |
+
for i, (role, message) in enumerate(self.messages):
|
117 |
+
if message:
|
118 |
+
ret += (
|
119 |
+
role
|
120 |
+
+ ': '
|
121 |
+
+ message.replace('\r\n', '\n').replace('\n\n', '\n')
|
122 |
+
)
|
123 |
+
ret += '\n\n'
|
124 |
+
else:
|
125 |
+
ret += role + ':'
|
126 |
+
return ret
|
127 |
+
elif self.sep_style == SeparatorStyle.LLAMA2:
|
128 |
+
seps = [self.sep, self.sep2]
|
129 |
+
if self.system_message:
|
130 |
+
ret = system_prompt
|
131 |
+
else:
|
132 |
+
ret = '[INST] '
|
133 |
+
for i, (role, message) in enumerate(self.messages):
|
134 |
+
tag = self.roles[i % 2]
|
135 |
+
if message:
|
136 |
+
if i == 0:
|
137 |
+
ret += message + ' '
|
138 |
+
else:
|
139 |
+
ret += tag + ' ' + message + seps[i % 2]
|
140 |
+
else:
|
141 |
+
ret += tag
|
142 |
+
return ret
|
143 |
+
elif self.sep_style == SeparatorStyle.CHATGLM:
|
144 |
+
# source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
|
145 |
+
# source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
|
146 |
+
round_add_n = 1 if self.name == 'chatglm2' else 0
|
147 |
+
if system_prompt:
|
148 |
+
ret = system_prompt + self.sep
|
149 |
+
else:
|
150 |
+
ret = ''
|
151 |
+
|
152 |
+
for i, (role, message) in enumerate(self.messages):
|
153 |
+
if i % 2 == 0:
|
154 |
+
ret += f'[Round {i//2 + round_add_n}]{self.sep}'
|
155 |
+
|
156 |
+
if message:
|
157 |
+
ret += f'{role}:{message}{self.sep}'
|
158 |
+
else:
|
159 |
+
ret += f'{role}:'
|
160 |
+
return ret
|
161 |
+
elif self.sep_style == SeparatorStyle.CHATML:
|
162 |
+
ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
|
163 |
+
for role, message in self.messages:
|
164 |
+
if message:
|
165 |
+
ret += role + '\n' + message + self.sep + '\n'
|
166 |
+
else:
|
167 |
+
ret += role + '\n'
|
168 |
+
return ret
|
169 |
+
elif self.sep_style == SeparatorStyle.CHATGLM3:
|
170 |
+
ret = ''
|
171 |
+
if self.system_message:
|
172 |
+
ret += system_prompt
|
173 |
+
for role, message in self.messages:
|
174 |
+
if message:
|
175 |
+
ret += role + '\n' + ' ' + message
|
176 |
+
else:
|
177 |
+
ret += role
|
178 |
+
return ret
|
179 |
+
elif self.sep_style == SeparatorStyle.CHATINTERN:
|
180 |
+
# source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
|
181 |
+
seps = [self.sep, self.sep2]
|
182 |
+
ret = system_prompt
|
183 |
+
for i, (role, message) in enumerate(self.messages):
|
184 |
+
# if i % 2 == 0:
|
185 |
+
# ret += "<s>"
|
186 |
+
if message:
|
187 |
+
ret += role + ':' + message + seps[i % 2] + '\n'
|
188 |
+
else:
|
189 |
+
ret += role + ':'
|
190 |
+
return ret
|
191 |
+
elif self.sep_style == SeparatorStyle.DOLLY:
|
192 |
+
seps = [self.sep, self.sep2]
|
193 |
+
ret = system_prompt
|
194 |
+
for i, (role, message) in enumerate(self.messages):
|
195 |
+
if message:
|
196 |
+
ret += role + ':\n' + message + seps[i % 2]
|
197 |
+
if i % 2 == 1:
|
198 |
+
ret += '\n\n'
|
199 |
+
else:
|
200 |
+
ret += role + ':\n'
|
201 |
+
return ret
|
202 |
+
elif self.sep_style == SeparatorStyle.PHOENIX:
|
203 |
+
ret = system_prompt
|
204 |
+
for role, message in self.messages:
|
205 |
+
if message:
|
206 |
+
ret += role + ': ' + '<s>' + message + '</s>'
|
207 |
+
else:
|
208 |
+
ret += role + ': ' + '<s>'
|
209 |
+
return ret
|
210 |
+
elif self.sep_style == SeparatorStyle.ROBIN:
|
211 |
+
ret = system_prompt + self.sep
|
212 |
+
for role, message in self.messages:
|
213 |
+
if message:
|
214 |
+
ret += role + ':\n' + message + self.sep
|
215 |
+
else:
|
216 |
+
ret += role + ':\n'
|
217 |
+
return ret
|
218 |
+
elif self.sep_style == SeparatorStyle.FALCON_CHAT:
|
219 |
+
ret = ''
|
220 |
+
if self.system_message:
|
221 |
+
ret += system_prompt + self.sep
|
222 |
+
for role, message in self.messages:
|
223 |
+
if message:
|
224 |
+
ret += role + ': ' + message + self.sep
|
225 |
+
else:
|
226 |
+
ret += role + ':'
|
227 |
+
|
228 |
+
return ret
|
229 |
+
elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
|
230 |
+
seps = [self.sep, self.sep2]
|
231 |
+
ret = self.system_message + seps[0]
|
232 |
+
for i, (role, message) in enumerate(self.messages):
|
233 |
+
if message:
|
234 |
+
ret += role + ': ' + message + seps[i % 2]
|
235 |
+
else:
|
236 |
+
ret += role + ':'
|
237 |
+
return ret
|
238 |
+
elif self.sep_style == SeparatorStyle.MPT:
|
239 |
+
ret = system_prompt + self.sep
|
240 |
+
for role, message in self.messages:
|
241 |
+
if message:
|
242 |
+
if type(message) is tuple:
|
243 |
+
message, _, _ = message
|
244 |
+
ret += role + message + self.sep
|
245 |
+
else:
|
246 |
+
ret += role
|
247 |
+
return ret
|
248 |
+
else:
|
249 |
+
raise ValueError(f'Invalid style: {self.sep_style}')
|
250 |
+
|
251 |
+
def set_system_message(self, system_message: str):
|
252 |
+
"""Set the system message."""
|
253 |
+
self.system_message = system_message
|
254 |
+
|
255 |
+
def append_message(self, role: str, message: str):
|
256 |
+
"""Append a new message."""
|
257 |
+
self.messages.append([role, message])
|
258 |
+
|
259 |
+
def update_last_message(self, message: str):
|
260 |
+
"""Update the last output.
|
261 |
+
|
262 |
+
The last message is typically set to be None when constructing the prompt,
|
263 |
+
so we need to update it in-place after getting the response from a model.
|
264 |
+
"""
|
265 |
+
self.messages[-1][1] = message
|
266 |
+
|
267 |
+
def to_gradio_chatbot(self):
|
268 |
+
"""Convert the conversation to gradio chatbot format."""
|
269 |
+
ret = []
|
270 |
+
for i, (role, msg) in enumerate(self.messages[self.offset :]):
|
271 |
+
if i % 2 == 0:
|
272 |
+
ret.append([msg, None])
|
273 |
+
else:
|
274 |
+
ret[-1][-1] = msg
|
275 |
+
return ret
|
276 |
+
|
277 |
+
def to_openai_api_messages(self):
|
278 |
+
"""Convert the conversation to OpenAI chat completion format."""
|
279 |
+
ret = [{'role': 'system', 'content': self.system_message}]
|
280 |
+
|
281 |
+
for i, (_, msg) in enumerate(self.messages[self.offset :]):
|
282 |
+
if i % 2 == 0:
|
283 |
+
ret.append({'role': 'user', 'content': msg})
|
284 |
+
else:
|
285 |
+
if msg is not None:
|
286 |
+
ret.append({'role': 'assistant', 'content': msg})
|
287 |
+
return ret
|
288 |
+
|
289 |
+
def copy(self):
|
290 |
+
return Conversation(
|
291 |
+
name=self.name,
|
292 |
+
system_template=self.system_template,
|
293 |
+
system_message=self.system_message,
|
294 |
+
roles=self.roles,
|
295 |
+
messages=[[x, y] for x, y in self.messages],
|
296 |
+
offset=self.offset,
|
297 |
+
sep_style=self.sep_style,
|
298 |
+
sep=self.sep,
|
299 |
+
sep2=self.sep2,
|
300 |
+
stop_str=self.stop_str,
|
301 |
+
stop_token_ids=self.stop_token_ids,
|
302 |
+
)
|
303 |
+
|
304 |
+
def dict(self):
|
305 |
+
return {
|
306 |
+
'template_name': self.name,
|
307 |
+
'system_message': self.system_message,
|
308 |
+
'roles': self.roles,
|
309 |
+
'messages': self.messages,
|
310 |
+
'offset': self.offset,
|
311 |
+
}
|
312 |
+
|
313 |
+
|
314 |
+
# A global registry for all conversation templates
|
315 |
+
conv_templates: Dict[str, Conversation] = {}
|
316 |
+
|
317 |
+
|
318 |
+
def register_conv_template(template: Conversation, override: bool = False):
|
319 |
+
"""Register a new conversation template."""
|
320 |
+
if not override:
|
321 |
+
assert (
|
322 |
+
template.name not in conv_templates
|
323 |
+
), f'{template.name} has been registered.'
|
324 |
+
|
325 |
+
conv_templates[template.name] = template
|
326 |
+
|
327 |
+
|
328 |
+
def get_conv_template(name: str) -> Conversation:
|
329 |
+
"""Get a conversation template."""
|
330 |
+
return conv_templates[name].copy()
|
331 |
+
|
332 |
+
|
333 |
+
# Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
|
334 |
+
# is that during training, the preprocessing function for the Hermes-2 template doesn't add
|
335 |
+
# <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
|
336 |
+
# Therefore, they are completely equivalent during inference.
|
337 |
+
register_conv_template(
|
338 |
+
Conversation(
|
339 |
+
name='Hermes-2',
|
340 |
+
system_template='<|im_start|>system\n{system_message}',
|
341 |
+
# note: The new system prompt was not used here to avoid changes in benchmark performance.
|
342 |
+
# system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
|
343 |
+
system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
|
344 |
+
roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
|
345 |
+
sep_style=SeparatorStyle.MPT,
|
346 |
+
sep='<|im_end|>',
|
347 |
+
stop_token_ids=[
|
348 |
+
2,
|
349 |
+
6,
|
350 |
+
7,
|
351 |
+
8,
|
352 |
+
],
|
353 |
+
stop_str='<|endoftext|>',
|
354 |
+
)
|
355 |
+
)
|
356 |
+
|
357 |
+
|
358 |
+
register_conv_template(
|
359 |
+
Conversation(
|
360 |
+
name='internlm2-chat',
|
361 |
+
system_template='<|im_start|>system\n{system_message}',
|
362 |
+
# note: The new system prompt was not used here to avoid changes in benchmark performance.
|
363 |
+
# system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
|
364 |
+
system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
|
365 |
+
roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
|
366 |
+
sep_style=SeparatorStyle.MPT,
|
367 |
+
sep='<|im_end|>',
|
368 |
+
stop_token_ids=[
|
369 |
+
2,
|
370 |
+
92543,
|
371 |
+
92542
|
372 |
+
]
|
373 |
+
)
|
374 |
+
)
|
375 |
+
|
376 |
+
|
377 |
+
register_conv_template(
|
378 |
+
Conversation(
|
379 |
+
name='phi3-chat',
|
380 |
+
system_template='<|system|>\n{system_message}',
|
381 |
+
# note: The new system prompt was not used here to avoid changes in benchmark performance.
|
382 |
+
# system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
|
383 |
+
system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
|
384 |
+
roles=('<|user|>\n', '<|assistant|>\n'),
|
385 |
+
sep_style=SeparatorStyle.MPT,
|
386 |
+
sep='<|end|>',
|
387 |
+
stop_token_ids=[
|
388 |
+
2,
|
389 |
+
32000,
|
390 |
+
32007
|
391 |
+
]
|
392 |
+
)
|
393 |
+
)
|
examples/image1.jpg
ADDED
examples/image2.jpg
ADDED
examples/red-panda.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d921c07bb97224d65a37801541d246067f0d506f08723ffa1ad85c217907ccb8
|
3 |
+
size 1867237
|
generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"transformers_version": "4.37.2",
|
4 |
+
"eos_token_id": [
|
5 |
+
2,
|
6 |
+
32000,
|
7 |
+
32007
|
8 |
+
]
|
9 |
+
}
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d49faea2fab060381af9c6902a1ae9593797cffdc6317394b62b6bc97a80f35
|
3 |
+
size 4957392176
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe85c0ab7ff42c3760870e1168f4de677f8177cbf4b43abde850e1d7ad16348a
|
3 |
+
size 3336385864
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,548 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 8293711872
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"language_model.lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"language_model.model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"language_model.model.layers.0.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"language_model.model.layers.0.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"language_model.model.layers.1.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"language_model.model.layers.1.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"language_model.model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"language_model.model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"language_model.model.layers.10.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"language_model.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"language_model.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"language_model.model.layers.10.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"language_model.model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"language_model.model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"language_model.model.layers.11.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"language_model.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"language_model.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"language_model.model.layers.11.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"language_model.model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"language_model.model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"language_model.model.layers.12.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"language_model.model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"language_model.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"language_model.model.layers.12.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"language_model.model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"language_model.model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"language_model.model.layers.13.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"language_model.model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"language_model.model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"language_model.model.layers.13.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"language_model.model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"language_model.model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"language_model.model.layers.14.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"language_model.model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"language_model.model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"language_model.model.layers.14.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"language_model.model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"language_model.model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"language_model.model.layers.15.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"language_model.model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"language_model.model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"language_model.model.layers.15.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"language_model.model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"language_model.model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"language_model.model.layers.16.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"language_model.model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"language_model.model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"language_model.model.layers.16.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"language_model.model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"language_model.model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"language_model.model.layers.17.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"language_model.model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"language_model.model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"language_model.model.layers.17.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"language_model.model.layers.18.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
69 |
+
"language_model.model.layers.18.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
70 |
+
"language_model.model.layers.18.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
|
71 |
+
"language_model.model.layers.18.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
72 |
+
"language_model.model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"language_model.model.layers.18.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"language_model.model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
75 |
+
"language_model.model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
76 |
+
"language_model.model.layers.19.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
|
77 |
+
"language_model.model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
78 |
+
"language_model.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
79 |
+
"language_model.model.layers.19.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
|
80 |
+
"language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"language_model.model.layers.2.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"language_model.model.layers.2.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"language_model.model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
87 |
+
"language_model.model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
88 |
+
"language_model.model.layers.20.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
|
89 |
+
"language_model.model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
90 |
+
"language_model.model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
91 |
+
"language_model.model.layers.20.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
|
92 |
+
"language_model.model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
93 |
+
"language_model.model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
94 |
+
"language_model.model.layers.21.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
|
95 |
+
"language_model.model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
96 |
+
"language_model.model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
97 |
+
"language_model.model.layers.21.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
|
98 |
+
"language_model.model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
99 |
+
"language_model.model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
100 |
+
"language_model.model.layers.22.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
|
101 |
+
"language_model.model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
102 |
+
"language_model.model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
103 |
+
"language_model.model.layers.22.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
|
104 |
+
"language_model.model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
105 |
+
"language_model.model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
106 |
+
"language_model.model.layers.23.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
|
107 |
+
"language_model.model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
108 |
+
"language_model.model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
109 |
+
"language_model.model.layers.23.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
|
110 |
+
"language_model.model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
111 |
+
"language_model.model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
112 |
+
"language_model.model.layers.24.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
|
113 |
+
"language_model.model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
114 |
+
"language_model.model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
115 |
+
"language_model.model.layers.24.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
|
116 |
+
"language_model.model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
117 |
+
"language_model.model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
118 |
+
"language_model.model.layers.25.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
|
119 |
+
"language_model.model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
120 |
+
"language_model.model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
121 |
+
"language_model.model.layers.25.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
|
122 |
+
"language_model.model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
123 |
+
"language_model.model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
124 |
+
"language_model.model.layers.26.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
|
125 |
+
"language_model.model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
126 |
+
"language_model.model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
127 |
+
"language_model.model.layers.26.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
|
128 |
+
"language_model.model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
129 |
+
"language_model.model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
130 |
+
"language_model.model.layers.27.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
|
131 |
+
"language_model.model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
132 |
+
"language_model.model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
133 |
+
"language_model.model.layers.27.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
|
134 |
+
"language_model.model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
135 |
+
"language_model.model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
136 |
+
"language_model.model.layers.28.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
|
137 |
+
"language_model.model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
138 |
+
"language_model.model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
139 |
+
"language_model.model.layers.28.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
|
140 |
+
"language_model.model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
141 |
+
"language_model.model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
142 |
+
"language_model.model.layers.29.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
|
143 |
+
"language_model.model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
144 |
+
"language_model.model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
145 |
+
"language_model.model.layers.29.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
|
146 |
+
"language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"language_model.model.layers.3.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
|
149 |
+
"language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
151 |
+
"language_model.model.layers.3.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"language_model.model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
153 |
+
"language_model.model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
154 |
+
"language_model.model.layers.30.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
|
155 |
+
"language_model.model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
156 |
+
"language_model.model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
157 |
+
"language_model.model.layers.30.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
|
158 |
+
"language_model.model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
159 |
+
"language_model.model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
160 |
+
"language_model.model.layers.31.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
|
161 |
+
"language_model.model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
162 |
+
"language_model.model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
163 |
+
"language_model.model.layers.31.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
|
164 |
+
"language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"language_model.model.layers.4.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"language_model.model.layers.4.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
170 |
+
"language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
172 |
+
"language_model.model.layers.5.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
|
173 |
+
"language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
174 |
+
"language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
175 |
+
"language_model.model.layers.5.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
177 |
+
"language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"language_model.model.layers.6.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
181 |
+
"language_model.model.layers.6.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
182 |
+
"language_model.model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"language_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
184 |
+
"language_model.model.layers.7.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
|
185 |
+
"language_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
186 |
+
"language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
187 |
+
"language_model.model.layers.7.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"language_model.model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"language_model.model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"language_model.model.layers.8.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"language_model.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"language_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
193 |
+
"language_model.model.layers.8.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
194 |
+
"language_model.model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"language_model.model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
196 |
+
"language_model.model.layers.9.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
|
197 |
+
"language_model.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"language_model.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
199 |
+
"language_model.model.layers.9.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"language_model.model.norm.weight": "model-00002-of-00002.safetensors",
|
201 |
+
"mlp1.0.bias": "model-00002-of-00002.safetensors",
|
202 |
+
"mlp1.0.weight": "model-00002-of-00002.safetensors",
|
203 |
+
"mlp1.1.bias": "model-00002-of-00002.safetensors",
|
204 |
+
"mlp1.1.weight": "model-00002-of-00002.safetensors",
|
205 |
+
"mlp1.3.bias": "model-00002-of-00002.safetensors",
|
206 |
+
"mlp1.3.weight": "model-00002-of-00002.safetensors",
|
207 |
+
"vision_model.embeddings.class_embedding": "model-00001-of-00002.safetensors",
|
208 |
+
"vision_model.embeddings.patch_embedding.bias": "model-00001-of-00002.safetensors",
|
209 |
+
"vision_model.embeddings.patch_embedding.weight": "model-00001-of-00002.safetensors",
|
210 |
+
"vision_model.embeddings.position_embedding": "model-00001-of-00002.safetensors",
|
211 |
+
"vision_model.encoder.layers.0.attn.proj.bias": "model-00001-of-00002.safetensors",
|
212 |
+
"vision_model.encoder.layers.0.attn.proj.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"vision_model.encoder.layers.0.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
214 |
+
"vision_model.encoder.layers.0.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"vision_model.encoder.layers.0.ls1": "model-00001-of-00002.safetensors",
|
216 |
+
"vision_model.encoder.layers.0.ls2": "model-00001-of-00002.safetensors",
|
217 |
+
"vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
218 |
+
"vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
220 |
+
"vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
221 |
+
"vision_model.encoder.layers.0.norm1.bias": "model-00001-of-00002.safetensors",
|
222 |
+
"vision_model.encoder.layers.0.norm1.weight": "model-00001-of-00002.safetensors",
|
223 |
+
"vision_model.encoder.layers.0.norm2.bias": "model-00001-of-00002.safetensors",
|
224 |
+
"vision_model.encoder.layers.0.norm2.weight": "model-00001-of-00002.safetensors",
|
225 |
+
"vision_model.encoder.layers.1.attn.proj.bias": "model-00001-of-00002.safetensors",
|
226 |
+
"vision_model.encoder.layers.1.attn.proj.weight": "model-00001-of-00002.safetensors",
|
227 |
+
"vision_model.encoder.layers.1.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
228 |
+
"vision_model.encoder.layers.1.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
229 |
+
"vision_model.encoder.layers.1.ls1": "model-00001-of-00002.safetensors",
|
230 |
+
"vision_model.encoder.layers.1.ls2": "model-00001-of-00002.safetensors",
|
231 |
+
"vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
232 |
+
"vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
233 |
+
"vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
234 |
+
"vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
235 |
+
"vision_model.encoder.layers.1.norm1.bias": "model-00001-of-00002.safetensors",
|
236 |
+
"vision_model.encoder.layers.1.norm1.weight": "model-00001-of-00002.safetensors",
|
237 |
+
"vision_model.encoder.layers.1.norm2.bias": "model-00001-of-00002.safetensors",
|
238 |
+
"vision_model.encoder.layers.1.norm2.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"vision_model.encoder.layers.10.attn.proj.bias": "model-00001-of-00002.safetensors",
|
240 |
+
"vision_model.encoder.layers.10.attn.proj.weight": "model-00001-of-00002.safetensors",
|
241 |
+
"vision_model.encoder.layers.10.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
242 |
+
"vision_model.encoder.layers.10.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"vision_model.encoder.layers.10.ls1": "model-00001-of-00002.safetensors",
|
244 |
+
"vision_model.encoder.layers.10.ls2": "model-00001-of-00002.safetensors",
|
245 |
+
"vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
246 |
+
"vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
247 |
+
"vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
248 |
+
"vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"vision_model.encoder.layers.10.norm1.bias": "model-00001-of-00002.safetensors",
|
250 |
+
"vision_model.encoder.layers.10.norm1.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"vision_model.encoder.layers.10.norm2.bias": "model-00001-of-00002.safetensors",
|
252 |
+
"vision_model.encoder.layers.10.norm2.weight": "model-00001-of-00002.safetensors",
|
253 |
+
"vision_model.encoder.layers.11.attn.proj.bias": "model-00001-of-00002.safetensors",
|
254 |
+
"vision_model.encoder.layers.11.attn.proj.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"vision_model.encoder.layers.11.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
256 |
+
"vision_model.encoder.layers.11.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
257 |
+
"vision_model.encoder.layers.11.ls1": "model-00001-of-00002.safetensors",
|
258 |
+
"vision_model.encoder.layers.11.ls2": "model-00001-of-00002.safetensors",
|
259 |
+
"vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
260 |
+
"vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
261 |
+
"vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
262 |
+
"vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
263 |
+
"vision_model.encoder.layers.11.norm1.bias": "model-00001-of-00002.safetensors",
|
264 |
+
"vision_model.encoder.layers.11.norm1.weight": "model-00001-of-00002.safetensors",
|
265 |
+
"vision_model.encoder.layers.11.norm2.bias": "model-00001-of-00002.safetensors",
|
266 |
+
"vision_model.encoder.layers.11.norm2.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"vision_model.encoder.layers.12.attn.proj.bias": "model-00001-of-00002.safetensors",
|
268 |
+
"vision_model.encoder.layers.12.attn.proj.weight": "model-00001-of-00002.safetensors",
|
269 |
+
"vision_model.encoder.layers.12.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
270 |
+
"vision_model.encoder.layers.12.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
271 |
+
"vision_model.encoder.layers.12.ls1": "model-00001-of-00002.safetensors",
|
272 |
+
"vision_model.encoder.layers.12.ls2": "model-00001-of-00002.safetensors",
|
273 |
+
"vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
274 |
+
"vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
275 |
+
"vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
276 |
+
"vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
277 |
+
"vision_model.encoder.layers.12.norm1.bias": "model-00001-of-00002.safetensors",
|
278 |
+
"vision_model.encoder.layers.12.norm1.weight": "model-00001-of-00002.safetensors",
|
279 |
+
"vision_model.encoder.layers.12.norm2.bias": "model-00001-of-00002.safetensors",
|
280 |
+
"vision_model.encoder.layers.12.norm2.weight": "model-00001-of-00002.safetensors",
|
281 |
+
"vision_model.encoder.layers.13.attn.proj.bias": "model-00001-of-00002.safetensors",
|
282 |
+
"vision_model.encoder.layers.13.attn.proj.weight": "model-00001-of-00002.safetensors",
|
283 |
+
"vision_model.encoder.layers.13.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
284 |
+
"vision_model.encoder.layers.13.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"vision_model.encoder.layers.13.ls1": "model-00001-of-00002.safetensors",
|
286 |
+
"vision_model.encoder.layers.13.ls2": "model-00001-of-00002.safetensors",
|
287 |
+
"vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
288 |
+
"vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
289 |
+
"vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
290 |
+
"vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"vision_model.encoder.layers.13.norm1.bias": "model-00001-of-00002.safetensors",
|
292 |
+
"vision_model.encoder.layers.13.norm1.weight": "model-00001-of-00002.safetensors",
|
293 |
+
"vision_model.encoder.layers.13.norm2.bias": "model-00001-of-00002.safetensors",
|
294 |
+
"vision_model.encoder.layers.13.norm2.weight": "model-00001-of-00002.safetensors",
|
295 |
+
"vision_model.encoder.layers.14.attn.proj.bias": "model-00001-of-00002.safetensors",
|
296 |
+
"vision_model.encoder.layers.14.attn.proj.weight": "model-00001-of-00002.safetensors",
|
297 |
+
"vision_model.encoder.layers.14.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
298 |
+
"vision_model.encoder.layers.14.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
299 |
+
"vision_model.encoder.layers.14.ls1": "model-00001-of-00002.safetensors",
|
300 |
+
"vision_model.encoder.layers.14.ls2": "model-00001-of-00002.safetensors",
|
301 |
+
"vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
302 |
+
"vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
303 |
+
"vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
304 |
+
"vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
305 |
+
"vision_model.encoder.layers.14.norm1.bias": "model-00001-of-00002.safetensors",
|
306 |
+
"vision_model.encoder.layers.14.norm1.weight": "model-00001-of-00002.safetensors",
|
307 |
+
"vision_model.encoder.layers.14.norm2.bias": "model-00001-of-00002.safetensors",
|
308 |
+
"vision_model.encoder.layers.14.norm2.weight": "model-00001-of-00002.safetensors",
|
309 |
+
"vision_model.encoder.layers.15.attn.proj.bias": "model-00001-of-00002.safetensors",
|
310 |
+
"vision_model.encoder.layers.15.attn.proj.weight": "model-00001-of-00002.safetensors",
|
311 |
+
"vision_model.encoder.layers.15.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
312 |
+
"vision_model.encoder.layers.15.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
313 |
+
"vision_model.encoder.layers.15.ls1": "model-00001-of-00002.safetensors",
|
314 |
+
"vision_model.encoder.layers.15.ls2": "model-00001-of-00002.safetensors",
|
315 |
+
"vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
316 |
+
"vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
317 |
+
"vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
318 |
+
"vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
319 |
+
"vision_model.encoder.layers.15.norm1.bias": "model-00001-of-00002.safetensors",
|
320 |
+
"vision_model.encoder.layers.15.norm1.weight": "model-00001-of-00002.safetensors",
|
321 |
+
"vision_model.encoder.layers.15.norm2.bias": "model-00001-of-00002.safetensors",
|
322 |
+
"vision_model.encoder.layers.15.norm2.weight": "model-00001-of-00002.safetensors",
|
323 |
+
"vision_model.encoder.layers.16.attn.proj.bias": "model-00001-of-00002.safetensors",
|
324 |
+
"vision_model.encoder.layers.16.attn.proj.weight": "model-00001-of-00002.safetensors",
|
325 |
+
"vision_model.encoder.layers.16.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
326 |
+
"vision_model.encoder.layers.16.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
327 |
+
"vision_model.encoder.layers.16.ls1": "model-00001-of-00002.safetensors",
|
328 |
+
"vision_model.encoder.layers.16.ls2": "model-00001-of-00002.safetensors",
|
329 |
+
"vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
330 |
+
"vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
331 |
+
"vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
332 |
+
"vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
333 |
+
"vision_model.encoder.layers.16.norm1.bias": "model-00001-of-00002.safetensors",
|
334 |
+
"vision_model.encoder.layers.16.norm1.weight": "model-00001-of-00002.safetensors",
|
335 |
+
"vision_model.encoder.layers.16.norm2.bias": "model-00001-of-00002.safetensors",
|
336 |
+
"vision_model.encoder.layers.16.norm2.weight": "model-00001-of-00002.safetensors",
|
337 |
+
"vision_model.encoder.layers.17.attn.proj.bias": "model-00001-of-00002.safetensors",
|
338 |
+
"vision_model.encoder.layers.17.attn.proj.weight": "model-00001-of-00002.safetensors",
|
339 |
+
"vision_model.encoder.layers.17.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
340 |
+
"vision_model.encoder.layers.17.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
341 |
+
"vision_model.encoder.layers.17.ls1": "model-00001-of-00002.safetensors",
|
342 |
+
"vision_model.encoder.layers.17.ls2": "model-00001-of-00002.safetensors",
|
343 |
+
"vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
344 |
+
"vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
345 |
+
"vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
346 |
+
"vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
347 |
+
"vision_model.encoder.layers.17.norm1.bias": "model-00001-of-00002.safetensors",
|
348 |
+
"vision_model.encoder.layers.17.norm1.weight": "model-00001-of-00002.safetensors",
|
349 |
+
"vision_model.encoder.layers.17.norm2.bias": "model-00001-of-00002.safetensors",
|
350 |
+
"vision_model.encoder.layers.17.norm2.weight": "model-00001-of-00002.safetensors",
|
351 |
+
"vision_model.encoder.layers.18.attn.proj.bias": "model-00001-of-00002.safetensors",
|
352 |
+
"vision_model.encoder.layers.18.attn.proj.weight": "model-00001-of-00002.safetensors",
|
353 |
+
"vision_model.encoder.layers.18.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
354 |
+
"vision_model.encoder.layers.18.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
355 |
+
"vision_model.encoder.layers.18.ls1": "model-00001-of-00002.safetensors",
|
356 |
+
"vision_model.encoder.layers.18.ls2": "model-00001-of-00002.safetensors",
|
357 |
+
"vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
358 |
+
"vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
359 |
+
"vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
360 |
+
"vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
361 |
+
"vision_model.encoder.layers.18.norm1.bias": "model-00001-of-00002.safetensors",
|
362 |
+
"vision_model.encoder.layers.18.norm1.weight": "model-00001-of-00002.safetensors",
|
363 |
+
"vision_model.encoder.layers.18.norm2.bias": "model-00001-of-00002.safetensors",
|
364 |
+
"vision_model.encoder.layers.18.norm2.weight": "model-00001-of-00002.safetensors",
|
365 |
+
"vision_model.encoder.layers.19.attn.proj.bias": "model-00001-of-00002.safetensors",
|
366 |
+
"vision_model.encoder.layers.19.attn.proj.weight": "model-00001-of-00002.safetensors",
|
367 |
+
"vision_model.encoder.layers.19.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
368 |
+
"vision_model.encoder.layers.19.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
369 |
+
"vision_model.encoder.layers.19.ls1": "model-00001-of-00002.safetensors",
|
370 |
+
"vision_model.encoder.layers.19.ls2": "model-00001-of-00002.safetensors",
|
371 |
+
"vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
372 |
+
"vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
373 |
+
"vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
374 |
+
"vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
375 |
+
"vision_model.encoder.layers.19.norm1.bias": "model-00001-of-00002.safetensors",
|
376 |
+
"vision_model.encoder.layers.19.norm1.weight": "model-00001-of-00002.safetensors",
|
377 |
+
"vision_model.encoder.layers.19.norm2.bias": "model-00001-of-00002.safetensors",
|
378 |
+
"vision_model.encoder.layers.19.norm2.weight": "model-00001-of-00002.safetensors",
|
379 |
+
"vision_model.encoder.layers.2.attn.proj.bias": "model-00001-of-00002.safetensors",
|
380 |
+
"vision_model.encoder.layers.2.attn.proj.weight": "model-00001-of-00002.safetensors",
|
381 |
+
"vision_model.encoder.layers.2.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
382 |
+
"vision_model.encoder.layers.2.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
383 |
+
"vision_model.encoder.layers.2.ls1": "model-00001-of-00002.safetensors",
|
384 |
+
"vision_model.encoder.layers.2.ls2": "model-00001-of-00002.safetensors",
|
385 |
+
"vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
386 |
+
"vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
387 |
+
"vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
388 |
+
"vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
389 |
+
"vision_model.encoder.layers.2.norm1.bias": "model-00001-of-00002.safetensors",
|
390 |
+
"vision_model.encoder.layers.2.norm1.weight": "model-00001-of-00002.safetensors",
|
391 |
+
"vision_model.encoder.layers.2.norm2.bias": "model-00001-of-00002.safetensors",
|
392 |
+
"vision_model.encoder.layers.2.norm2.weight": "model-00001-of-00002.safetensors",
|
393 |
+
"vision_model.encoder.layers.20.attn.proj.bias": "model-00001-of-00002.safetensors",
|
394 |
+
"vision_model.encoder.layers.20.attn.proj.weight": "model-00001-of-00002.safetensors",
|
395 |
+
"vision_model.encoder.layers.20.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
396 |
+
"vision_model.encoder.layers.20.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
397 |
+
"vision_model.encoder.layers.20.ls1": "model-00001-of-00002.safetensors",
|
398 |
+
"vision_model.encoder.layers.20.ls2": "model-00001-of-00002.safetensors",
|
399 |
+
"vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
400 |
+
"vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
401 |
+
"vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
402 |
+
"vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
403 |
+
"vision_model.encoder.layers.20.norm1.bias": "model-00001-of-00002.safetensors",
|
404 |
+
"vision_model.encoder.layers.20.norm1.weight": "model-00001-of-00002.safetensors",
|
405 |
+
"vision_model.encoder.layers.20.norm2.bias": "model-00001-of-00002.safetensors",
|
406 |
+
"vision_model.encoder.layers.20.norm2.weight": "model-00001-of-00002.safetensors",
|
407 |
+
"vision_model.encoder.layers.21.attn.proj.bias": "model-00001-of-00002.safetensors",
|
408 |
+
"vision_model.encoder.layers.21.attn.proj.weight": "model-00001-of-00002.safetensors",
|
409 |
+
"vision_model.encoder.layers.21.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
410 |
+
"vision_model.encoder.layers.21.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
411 |
+
"vision_model.encoder.layers.21.ls1": "model-00001-of-00002.safetensors",
|
412 |
+
"vision_model.encoder.layers.21.ls2": "model-00001-of-00002.safetensors",
|
413 |
+
"vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
414 |
+
"vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
415 |
+
"vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
416 |
+
"vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
417 |
+
"vision_model.encoder.layers.21.norm1.bias": "model-00001-of-00002.safetensors",
|
418 |
+
"vision_model.encoder.layers.21.norm1.weight": "model-00001-of-00002.safetensors",
|
419 |
+
"vision_model.encoder.layers.21.norm2.bias": "model-00001-of-00002.safetensors",
|
420 |
+
"vision_model.encoder.layers.21.norm2.weight": "model-00001-of-00002.safetensors",
|
421 |
+
"vision_model.encoder.layers.22.attn.proj.bias": "model-00001-of-00002.safetensors",
|
422 |
+
"vision_model.encoder.layers.22.attn.proj.weight": "model-00001-of-00002.safetensors",
|
423 |
+
"vision_model.encoder.layers.22.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
424 |
+
"vision_model.encoder.layers.22.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
425 |
+
"vision_model.encoder.layers.22.ls1": "model-00001-of-00002.safetensors",
|
426 |
+
"vision_model.encoder.layers.22.ls2": "model-00001-of-00002.safetensors",
|
427 |
+
"vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
428 |
+
"vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
429 |
+
"vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
430 |
+
"vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
431 |
+
"vision_model.encoder.layers.22.norm1.bias": "model-00001-of-00002.safetensors",
|
432 |
+
"vision_model.encoder.layers.22.norm1.weight": "model-00001-of-00002.safetensors",
|
433 |
+
"vision_model.encoder.layers.22.norm2.bias": "model-00001-of-00002.safetensors",
|
434 |
+
"vision_model.encoder.layers.22.norm2.weight": "model-00001-of-00002.safetensors",
|
435 |
+
"vision_model.encoder.layers.23.attn.proj.bias": "model-00001-of-00002.safetensors",
|
436 |
+
"vision_model.encoder.layers.23.attn.proj.weight": "model-00001-of-00002.safetensors",
|
437 |
+
"vision_model.encoder.layers.23.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
438 |
+
"vision_model.encoder.layers.23.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
439 |
+
"vision_model.encoder.layers.23.ls1": "model-00001-of-00002.safetensors",
|
440 |
+
"vision_model.encoder.layers.23.ls2": "model-00001-of-00002.safetensors",
|
441 |
+
"vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
442 |
+
"vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
443 |
+
"vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
444 |
+
"vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
445 |
+
"vision_model.encoder.layers.23.norm1.bias": "model-00001-of-00002.safetensors",
|
446 |
+
"vision_model.encoder.layers.23.norm1.weight": "model-00001-of-00002.safetensors",
|
447 |
+
"vision_model.encoder.layers.23.norm2.bias": "model-00001-of-00002.safetensors",
|
448 |
+
"vision_model.encoder.layers.23.norm2.weight": "model-00001-of-00002.safetensors",
|
449 |
+
"vision_model.encoder.layers.3.attn.proj.bias": "model-00001-of-00002.safetensors",
|
450 |
+
"vision_model.encoder.layers.3.attn.proj.weight": "model-00001-of-00002.safetensors",
|
451 |
+
"vision_model.encoder.layers.3.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
452 |
+
"vision_model.encoder.layers.3.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
453 |
+
"vision_model.encoder.layers.3.ls1": "model-00001-of-00002.safetensors",
|
454 |
+
"vision_model.encoder.layers.3.ls2": "model-00001-of-00002.safetensors",
|
455 |
+
"vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
456 |
+
"vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
457 |
+
"vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
458 |
+
"vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
459 |
+
"vision_model.encoder.layers.3.norm1.bias": "model-00001-of-00002.safetensors",
|
460 |
+
"vision_model.encoder.layers.3.norm1.weight": "model-00001-of-00002.safetensors",
|
461 |
+
"vision_model.encoder.layers.3.norm2.bias": "model-00001-of-00002.safetensors",
|
462 |
+
"vision_model.encoder.layers.3.norm2.weight": "model-00001-of-00002.safetensors",
|
463 |
+
"vision_model.encoder.layers.4.attn.proj.bias": "model-00001-of-00002.safetensors",
|
464 |
+
"vision_model.encoder.layers.4.attn.proj.weight": "model-00001-of-00002.safetensors",
|
465 |
+
"vision_model.encoder.layers.4.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
466 |
+
"vision_model.encoder.layers.4.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
467 |
+
"vision_model.encoder.layers.4.ls1": "model-00001-of-00002.safetensors",
|
468 |
+
"vision_model.encoder.layers.4.ls2": "model-00001-of-00002.safetensors",
|
469 |
+
"vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
470 |
+
"vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
471 |
+
"vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
472 |
+
"vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
473 |
+
"vision_model.encoder.layers.4.norm1.bias": "model-00001-of-00002.safetensors",
|
474 |
+
"vision_model.encoder.layers.4.norm1.weight": "model-00001-of-00002.safetensors",
|
475 |
+
"vision_model.encoder.layers.4.norm2.bias": "model-00001-of-00002.safetensors",
|
476 |
+
"vision_model.encoder.layers.4.norm2.weight": "model-00001-of-00002.safetensors",
|
477 |
+
"vision_model.encoder.layers.5.attn.proj.bias": "model-00001-of-00002.safetensors",
|
478 |
+
"vision_model.encoder.layers.5.attn.proj.weight": "model-00001-of-00002.safetensors",
|
479 |
+
"vision_model.encoder.layers.5.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
480 |
+
"vision_model.encoder.layers.5.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
481 |
+
"vision_model.encoder.layers.5.ls1": "model-00001-of-00002.safetensors",
|
482 |
+
"vision_model.encoder.layers.5.ls2": "model-00001-of-00002.safetensors",
|
483 |
+
"vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
484 |
+
"vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
485 |
+
"vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
486 |
+
"vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
487 |
+
"vision_model.encoder.layers.5.norm1.bias": "model-00001-of-00002.safetensors",
|
488 |
+
"vision_model.encoder.layers.5.norm1.weight": "model-00001-of-00002.safetensors",
|
489 |
+
"vision_model.encoder.layers.5.norm2.bias": "model-00001-of-00002.safetensors",
|
490 |
+
"vision_model.encoder.layers.5.norm2.weight": "model-00001-of-00002.safetensors",
|
491 |
+
"vision_model.encoder.layers.6.attn.proj.bias": "model-00001-of-00002.safetensors",
|
492 |
+
"vision_model.encoder.layers.6.attn.proj.weight": "model-00001-of-00002.safetensors",
|
493 |
+
"vision_model.encoder.layers.6.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
494 |
+
"vision_model.encoder.layers.6.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
495 |
+
"vision_model.encoder.layers.6.ls1": "model-00001-of-00002.safetensors",
|
496 |
+
"vision_model.encoder.layers.6.ls2": "model-00001-of-00002.safetensors",
|
497 |
+
"vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
498 |
+
"vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
499 |
+
"vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
500 |
+
"vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
501 |
+
"vision_model.encoder.layers.6.norm1.bias": "model-00001-of-00002.safetensors",
|
502 |
+
"vision_model.encoder.layers.6.norm1.weight": "model-00001-of-00002.safetensors",
|
503 |
+
"vision_model.encoder.layers.6.norm2.bias": "model-00001-of-00002.safetensors",
|
504 |
+
"vision_model.encoder.layers.6.norm2.weight": "model-00001-of-00002.safetensors",
|
505 |
+
"vision_model.encoder.layers.7.attn.proj.bias": "model-00001-of-00002.safetensors",
|
506 |
+
"vision_model.encoder.layers.7.attn.proj.weight": "model-00001-of-00002.safetensors",
|
507 |
+
"vision_model.encoder.layers.7.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
508 |
+
"vision_model.encoder.layers.7.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
509 |
+
"vision_model.encoder.layers.7.ls1": "model-00001-of-00002.safetensors",
|
510 |
+
"vision_model.encoder.layers.7.ls2": "model-00001-of-00002.safetensors",
|
511 |
+
"vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
512 |
+
"vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
513 |
+
"vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
514 |
+
"vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
515 |
+
"vision_model.encoder.layers.7.norm1.bias": "model-00001-of-00002.safetensors",
|
516 |
+
"vision_model.encoder.layers.7.norm1.weight": "model-00001-of-00002.safetensors",
|
517 |
+
"vision_model.encoder.layers.7.norm2.bias": "model-00001-of-00002.safetensors",
|
518 |
+
"vision_model.encoder.layers.7.norm2.weight": "model-00001-of-00002.safetensors",
|
519 |
+
"vision_model.encoder.layers.8.attn.proj.bias": "model-00001-of-00002.safetensors",
|
520 |
+
"vision_model.encoder.layers.8.attn.proj.weight": "model-00001-of-00002.safetensors",
|
521 |
+
"vision_model.encoder.layers.8.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
522 |
+
"vision_model.encoder.layers.8.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
523 |
+
"vision_model.encoder.layers.8.ls1": "model-00001-of-00002.safetensors",
|
524 |
+
"vision_model.encoder.layers.8.ls2": "model-00001-of-00002.safetensors",
|
525 |
+
"vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
526 |
+
"vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
527 |
+
"vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
528 |
+
"vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
529 |
+
"vision_model.encoder.layers.8.norm1.bias": "model-00001-of-00002.safetensors",
|
530 |
+
"vision_model.encoder.layers.8.norm1.weight": "model-00001-of-00002.safetensors",
|
531 |
+
"vision_model.encoder.layers.8.norm2.bias": "model-00001-of-00002.safetensors",
|
532 |
+
"vision_model.encoder.layers.8.norm2.weight": "model-00001-of-00002.safetensors",
|
533 |
+
"vision_model.encoder.layers.9.attn.proj.bias": "model-00001-of-00002.safetensors",
|
534 |
+
"vision_model.encoder.layers.9.attn.proj.weight": "model-00001-of-00002.safetensors",
|
535 |
+
"vision_model.encoder.layers.9.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
536 |
+
"vision_model.encoder.layers.9.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
537 |
+
"vision_model.encoder.layers.9.ls1": "model-00001-of-00002.safetensors",
|
538 |
+
"vision_model.encoder.layers.9.ls2": "model-00001-of-00002.safetensors",
|
539 |
+
"vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
540 |
+
"vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
541 |
+
"vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
542 |
+
"vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
543 |
+
"vision_model.encoder.layers.9.norm1.bias": "model-00001-of-00002.safetensors",
|
544 |
+
"vision_model.encoder.layers.9.norm1.weight": "model-00001-of-00002.safetensors",
|
545 |
+
"vision_model.encoder.layers.9.norm2.bias": "model-00001-of-00002.safetensors",
|
546 |
+
"vision_model.encoder.layers.9.norm2.weight": "model-00001-of-00002.safetensors"
|
547 |
+
}
|
548 |
+
}
|
modeling_intern_vit.py
ADDED
@@ -0,0 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
from typing import Optional, Tuple, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import torch.utils.checkpoint
|
11 |
+
from einops import rearrange
|
12 |
+
from timm.models.layers import DropPath
|
13 |
+
from torch import nn
|
14 |
+
from transformers.activations import ACT2FN
|
15 |
+
from transformers.modeling_outputs import (BaseModelOutput,
|
16 |
+
BaseModelOutputWithPooling)
|
17 |
+
from transformers.modeling_utils import PreTrainedModel
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
from .configuration_intern_vit import InternVisionConfig
|
21 |
+
|
22 |
+
try:
|
23 |
+
from flash_attn.bert_padding import pad_input, unpad_input
|
24 |
+
from flash_attn.flash_attn_interface import \
|
25 |
+
flash_attn_varlen_qkvpacked_func
|
26 |
+
has_flash_attn = True
|
27 |
+
except:
|
28 |
+
print('FlashAttention2 is not installed.')
|
29 |
+
has_flash_attn = False
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__)
|
32 |
+
|
33 |
+
|
34 |
+
class FlashAttention(nn.Module):
|
35 |
+
"""Implement the scaled dot product attention with softmax.
|
36 |
+
Arguments
|
37 |
+
---------
|
38 |
+
softmax_scale: The temperature to use for the softmax attention.
|
39 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
40 |
+
runtime)
|
41 |
+
attention_dropout: The dropout rate to apply to the attention
|
42 |
+
(default: 0.0)
|
43 |
+
"""
|
44 |
+
|
45 |
+
def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
|
46 |
+
super().__init__()
|
47 |
+
self.softmax_scale = softmax_scale
|
48 |
+
self.dropout_p = attention_dropout
|
49 |
+
|
50 |
+
def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
|
51 |
+
max_s=None, need_weights=False):
|
52 |
+
"""Implements the multihead softmax attention.
|
53 |
+
Arguments
|
54 |
+
---------
|
55 |
+
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
|
56 |
+
if unpadded: (nnz, 3, h, d)
|
57 |
+
key_padding_mask: a bool tensor of shape (B, S)
|
58 |
+
"""
|
59 |
+
assert not need_weights
|
60 |
+
assert qkv.dtype in [torch.float16, torch.bfloat16]
|
61 |
+
assert qkv.is_cuda
|
62 |
+
|
63 |
+
if cu_seqlens is None:
|
64 |
+
batch_size = qkv.shape[0]
|
65 |
+
seqlen = qkv.shape[1]
|
66 |
+
if key_padding_mask is None:
|
67 |
+
qkv = rearrange(qkv, 'b s ... -> (b s) ...')
|
68 |
+
max_s = seqlen
|
69 |
+
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
|
70 |
+
device=qkv.device)
|
71 |
+
output = flash_attn_varlen_qkvpacked_func(
|
72 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
73 |
+
softmax_scale=self.softmax_scale, causal=causal
|
74 |
+
)
|
75 |
+
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
|
76 |
+
else:
|
77 |
+
nheads = qkv.shape[-2]
|
78 |
+
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
|
79 |
+
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
|
80 |
+
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
|
81 |
+
output_unpad = flash_attn_varlen_qkvpacked_func(
|
82 |
+
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
83 |
+
softmax_scale=self.softmax_scale, causal=causal
|
84 |
+
)
|
85 |
+
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
|
86 |
+
indices, batch_size, seqlen),
|
87 |
+
'b s (h d) -> b s h d', h=nheads)
|
88 |
+
else:
|
89 |
+
assert max_s is not None
|
90 |
+
output = flash_attn_varlen_qkvpacked_func(
|
91 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
92 |
+
softmax_scale=self.softmax_scale, causal=causal
|
93 |
+
)
|
94 |
+
|
95 |
+
return output, None
|
96 |
+
|
97 |
+
|
98 |
+
class InternRMSNorm(nn.Module):
|
99 |
+
def __init__(self, hidden_size, eps=1e-6):
|
100 |
+
super().__init__()
|
101 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
102 |
+
self.variance_epsilon = eps
|
103 |
+
|
104 |
+
def forward(self, hidden_states):
|
105 |
+
input_dtype = hidden_states.dtype
|
106 |
+
hidden_states = hidden_states.to(torch.float32)
|
107 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
108 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
109 |
+
return self.weight * hidden_states.to(input_dtype)
|
110 |
+
|
111 |
+
|
112 |
+
try:
|
113 |
+
from apex.normalization import FusedRMSNorm
|
114 |
+
|
115 |
+
InternRMSNorm = FusedRMSNorm # noqa
|
116 |
+
|
117 |
+
logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
|
118 |
+
except ImportError:
|
119 |
+
# using the normal InternRMSNorm
|
120 |
+
pass
|
121 |
+
except Exception:
|
122 |
+
logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
|
123 |
+
pass
|
124 |
+
|
125 |
+
|
126 |
+
NORM2FN = {
|
127 |
+
'rms_norm': InternRMSNorm,
|
128 |
+
'layer_norm': nn.LayerNorm,
|
129 |
+
}
|
130 |
+
|
131 |
+
|
132 |
+
class InternVisionEmbeddings(nn.Module):
|
133 |
+
def __init__(self, config: InternVisionConfig):
|
134 |
+
super().__init__()
|
135 |
+
self.config = config
|
136 |
+
self.embed_dim = config.hidden_size
|
137 |
+
self.image_size = config.image_size
|
138 |
+
self.patch_size = config.patch_size
|
139 |
+
|
140 |
+
self.class_embedding = nn.Parameter(
|
141 |
+
torch.randn(1, 1, self.embed_dim),
|
142 |
+
)
|
143 |
+
|
144 |
+
self.patch_embedding = nn.Conv2d(
|
145 |
+
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
|
146 |
+
)
|
147 |
+
|
148 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
149 |
+
self.num_positions = self.num_patches + 1
|
150 |
+
|
151 |
+
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
|
152 |
+
|
153 |
+
def _get_pos_embed(self, pos_embed, H, W):
|
154 |
+
target_dtype = pos_embed.dtype
|
155 |
+
pos_embed = pos_embed.float().reshape(
|
156 |
+
1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
|
157 |
+
pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
|
158 |
+
reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
|
159 |
+
return pos_embed
|
160 |
+
|
161 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
162 |
+
target_dtype = self.patch_embedding.weight.dtype
|
163 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
|
164 |
+
batch_size, _, height, width = patch_embeds.shape
|
165 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
166 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
|
167 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
168 |
+
position_embedding = torch.cat([
|
169 |
+
self.position_embedding[:, :1, :],
|
170 |
+
self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
|
171 |
+
], dim=1)
|
172 |
+
embeddings = embeddings + position_embedding.to(target_dtype)
|
173 |
+
return embeddings
|
174 |
+
|
175 |
+
|
176 |
+
class InternAttention(nn.Module):
|
177 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
178 |
+
|
179 |
+
def __init__(self, config: InternVisionConfig):
|
180 |
+
super().__init__()
|
181 |
+
self.config = config
|
182 |
+
self.embed_dim = config.hidden_size
|
183 |
+
self.num_heads = config.num_attention_heads
|
184 |
+
self.use_flash_attn = config.use_flash_attn and has_flash_attn
|
185 |
+
if config.use_flash_attn and not has_flash_attn:
|
186 |
+
print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
|
187 |
+
self.head_dim = self.embed_dim // self.num_heads
|
188 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
189 |
+
raise ValueError(
|
190 |
+
f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
|
191 |
+
f' {self.num_heads}).'
|
192 |
+
)
|
193 |
+
|
194 |
+
self.scale = self.head_dim ** -0.5
|
195 |
+
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
|
196 |
+
self.attn_drop = nn.Dropout(config.attention_dropout)
|
197 |
+
self.proj_drop = nn.Dropout(config.dropout)
|
198 |
+
|
199 |
+
self.qk_normalization = config.qk_normalization
|
200 |
+
|
201 |
+
if self.qk_normalization:
|
202 |
+
self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
203 |
+
self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
204 |
+
|
205 |
+
if self.use_flash_attn:
|
206 |
+
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
|
207 |
+
self.proj = nn.Linear(self.embed_dim, self.embed_dim)
|
208 |
+
|
209 |
+
def _naive_attn(self, x):
|
210 |
+
B, N, C = x.shape
|
211 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
212 |
+
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
213 |
+
|
214 |
+
if self.qk_normalization:
|
215 |
+
B_, H_, N_, D_ = q.shape
|
216 |
+
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
217 |
+
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
218 |
+
|
219 |
+
attn = ((q * self.scale) @ k.transpose(-2, -1))
|
220 |
+
attn = attn.softmax(dim=-1)
|
221 |
+
attn = self.attn_drop(attn)
|
222 |
+
|
223 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
224 |
+
x = self.proj(x)
|
225 |
+
x = self.proj_drop(x)
|
226 |
+
return x
|
227 |
+
|
228 |
+
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
|
229 |
+
qkv = self.qkv(x)
|
230 |
+
qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
|
231 |
+
|
232 |
+
if self.qk_normalization:
|
233 |
+
q, k, v = qkv.unbind(2)
|
234 |
+
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
|
235 |
+
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
|
236 |
+
qkv = torch.stack([q, k, v], dim=2)
|
237 |
+
|
238 |
+
context, _ = self.inner_attn(
|
239 |
+
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
|
240 |
+
)
|
241 |
+
outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
|
242 |
+
outs = self.proj_drop(outs)
|
243 |
+
return outs
|
244 |
+
|
245 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
246 |
+
x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
|
247 |
+
return x
|
248 |
+
|
249 |
+
|
250 |
+
class InternMLP(nn.Module):
|
251 |
+
def __init__(self, config: InternVisionConfig):
|
252 |
+
super().__init__()
|
253 |
+
self.config = config
|
254 |
+
self.act = ACT2FN[config.hidden_act]
|
255 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
256 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
257 |
+
|
258 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
259 |
+
hidden_states = self.fc1(hidden_states)
|
260 |
+
hidden_states = self.act(hidden_states)
|
261 |
+
hidden_states = self.fc2(hidden_states)
|
262 |
+
return hidden_states
|
263 |
+
|
264 |
+
|
265 |
+
class InternVisionEncoderLayer(nn.Module):
|
266 |
+
def __init__(self, config: InternVisionConfig, drop_path_rate: float):
|
267 |
+
super().__init__()
|
268 |
+
self.embed_dim = config.hidden_size
|
269 |
+
self.intermediate_size = config.intermediate_size
|
270 |
+
self.norm_type = config.norm_type
|
271 |
+
|
272 |
+
self.attn = InternAttention(config)
|
273 |
+
self.mlp = InternMLP(config)
|
274 |
+
self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
275 |
+
self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
276 |
+
|
277 |
+
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
278 |
+
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
279 |
+
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
280 |
+
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
281 |
+
|
282 |
+
def forward(
|
283 |
+
self,
|
284 |
+
hidden_states: torch.Tensor,
|
285 |
+
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
|
286 |
+
"""
|
287 |
+
Args:
|
288 |
+
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
289 |
+
"""
|
290 |
+
hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1)
|
291 |
+
|
292 |
+
hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2)
|
293 |
+
|
294 |
+
return hidden_states
|
295 |
+
|
296 |
+
|
297 |
+
class InternVisionEncoder(nn.Module):
|
298 |
+
"""
|
299 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
300 |
+
[`InternEncoderLayer`].
|
301 |
+
|
302 |
+
Args:
|
303 |
+
config (`InternConfig`):
|
304 |
+
The corresponding vision configuration for the `InternEncoder`.
|
305 |
+
"""
|
306 |
+
|
307 |
+
def __init__(self, config: InternVisionConfig):
|
308 |
+
super().__init__()
|
309 |
+
self.config = config
|
310 |
+
# stochastic depth decay rule
|
311 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
|
312 |
+
self.layers = nn.ModuleList([
|
313 |
+
InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
|
314 |
+
self.gradient_checkpointing = True
|
315 |
+
|
316 |
+
def forward(
|
317 |
+
self,
|
318 |
+
inputs_embeds,
|
319 |
+
output_hidden_states: Optional[bool] = None,
|
320 |
+
return_dict: Optional[bool] = None,
|
321 |
+
) -> Union[Tuple, BaseModelOutput]:
|
322 |
+
r"""
|
323 |
+
Args:
|
324 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
325 |
+
Embedded representation of the inputs. Should be float, not int tokens.
|
326 |
+
output_hidden_states (`bool`, *optional*):
|
327 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
328 |
+
for more detail.
|
329 |
+
return_dict (`bool`, *optional*):
|
330 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
331 |
+
"""
|
332 |
+
output_hidden_states = (
|
333 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
334 |
+
)
|
335 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
336 |
+
|
337 |
+
encoder_states = () if output_hidden_states else None
|
338 |
+
hidden_states = inputs_embeds
|
339 |
+
|
340 |
+
for idx, encoder_layer in enumerate(self.layers):
|
341 |
+
if output_hidden_states:
|
342 |
+
encoder_states = encoder_states + (hidden_states,)
|
343 |
+
if self.gradient_checkpointing and self.training:
|
344 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
345 |
+
encoder_layer,
|
346 |
+
hidden_states)
|
347 |
+
else:
|
348 |
+
layer_outputs = encoder_layer(
|
349 |
+
hidden_states,
|
350 |
+
)
|
351 |
+
hidden_states = layer_outputs
|
352 |
+
|
353 |
+
if output_hidden_states:
|
354 |
+
encoder_states = encoder_states + (hidden_states,)
|
355 |
+
|
356 |
+
if not return_dict:
|
357 |
+
return tuple(v for v in [hidden_states, encoder_states] if v is not None)
|
358 |
+
return BaseModelOutput(
|
359 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states
|
360 |
+
)
|
361 |
+
|
362 |
+
|
363 |
+
class InternVisionModel(PreTrainedModel):
|
364 |
+
main_input_name = 'pixel_values'
|
365 |
+
_supports_flash_attn_2 = True
|
366 |
+
config_class = InternVisionConfig
|
367 |
+
_no_split_modules = ['InternVisionEncoderLayer']
|
368 |
+
|
369 |
+
def __init__(self, config: InternVisionConfig):
|
370 |
+
super().__init__(config)
|
371 |
+
self.config = config
|
372 |
+
|
373 |
+
self.embeddings = InternVisionEmbeddings(config)
|
374 |
+
self.encoder = InternVisionEncoder(config)
|
375 |
+
|
376 |
+
def resize_pos_embeddings(self, old_size, new_size, patch_size):
|
377 |
+
pos_emb = self.embeddings.position_embedding
|
378 |
+
_, num_positions, embed_dim = pos_emb.shape
|
379 |
+
cls_emb = pos_emb[:, :1, :]
|
380 |
+
pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
|
381 |
+
pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
|
382 |
+
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
|
383 |
+
pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
|
384 |
+
self.embeddings.position_embedding = nn.Parameter(pos_emb)
|
385 |
+
self.embeddings.image_size = new_size
|
386 |
+
logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
|
387 |
+
|
388 |
+
def get_input_embeddings(self):
|
389 |
+
return self.embeddings
|
390 |
+
|
391 |
+
def forward(
|
392 |
+
self,
|
393 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
394 |
+
output_hidden_states: Optional[bool] = None,
|
395 |
+
return_dict: Optional[bool] = None,
|
396 |
+
pixel_embeds: Optional[torch.FloatTensor] = None,
|
397 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
398 |
+
output_hidden_states = (
|
399 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
400 |
+
)
|
401 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
402 |
+
|
403 |
+
if pixel_values is None and pixel_embeds is None:
|
404 |
+
raise ValueError('You have to specify pixel_values or pixel_embeds')
|
405 |
+
|
406 |
+
if pixel_embeds is not None:
|
407 |
+
hidden_states = pixel_embeds
|
408 |
+
else:
|
409 |
+
if len(pixel_values.shape) == 4:
|
410 |
+
hidden_states = self.embeddings(pixel_values)
|
411 |
+
else:
|
412 |
+
raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
|
413 |
+
encoder_outputs = self.encoder(
|
414 |
+
inputs_embeds=hidden_states,
|
415 |
+
output_hidden_states=output_hidden_states,
|
416 |
+
return_dict=return_dict,
|
417 |
+
)
|
418 |
+
last_hidden_state = encoder_outputs.last_hidden_state
|
419 |
+
pooled_output = last_hidden_state[:, 0, :]
|
420 |
+
|
421 |
+
if not return_dict:
|
422 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
423 |
+
|
424 |
+
return BaseModelOutputWithPooling(
|
425 |
+
last_hidden_state=last_hidden_state,
|
426 |
+
pooler_output=pooled_output,
|
427 |
+
hidden_states=encoder_outputs.hidden_states,
|
428 |
+
attentions=encoder_outputs.attentions,
|
429 |
+
)
|
modeling_internvl_chat.py
ADDED
@@ -0,0 +1,365 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
import warnings
|
7 |
+
from typing import Any, List, Optional, Tuple, Union
|
8 |
+
import os
|
9 |
+
import torch.utils.checkpoint
|
10 |
+
import transformers
|
11 |
+
from torch import nn
|
12 |
+
from torch.nn import CrossEntropyLoss
|
13 |
+
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
|
14 |
+
LlamaTokenizer)
|
15 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
16 |
+
from transformers.modeling_utils import PreTrainedModel
|
17 |
+
from transformers.utils import ModelOutput, logging
|
18 |
+
|
19 |
+
from .configuration_internvl_chat import InternVLChatConfig
|
20 |
+
from .conversation import get_conv_template
|
21 |
+
from .modeling_intern_vit import InternVisionModel, has_flash_attn
|
22 |
+
from .modeling_phi3 import Phi3ForCausalLM
|
23 |
+
import os
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
image_token_num = 0
|
27 |
+
|
28 |
+
def version_cmp(v1, v2, op='eq'):
|
29 |
+
import operator
|
30 |
+
|
31 |
+
from packaging import version
|
32 |
+
op_func = getattr(operator, op)
|
33 |
+
return op_func(version.parse(v1), version.parse(v2))
|
34 |
+
|
35 |
+
|
36 |
+
class InternVLChatModel(PreTrainedModel):
|
37 |
+
config_class = InternVLChatConfig
|
38 |
+
main_input_name = 'pixel_values'
|
39 |
+
base_model_prefix = 'language_model'
|
40 |
+
_supports_flash_attn_2 = True
|
41 |
+
_no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'Phi3DecoderLayer']
|
42 |
+
|
43 |
+
def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
|
44 |
+
super().__init__(config)
|
45 |
+
|
46 |
+
assert version_cmp(transformers.__version__, '4.36.2', 'ge')
|
47 |
+
image_size = config.force_image_size or config.vision_config.image_size
|
48 |
+
patch_size = config.vision_config.patch_size
|
49 |
+
self.patch_size = patch_size
|
50 |
+
self.select_layer = config.select_layer
|
51 |
+
self.template = config.template
|
52 |
+
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
|
53 |
+
self.downsample_ratio = config.downsample_ratio
|
54 |
+
self.ps_version = config.ps_version
|
55 |
+
use_flash_attn = use_flash_attn if has_flash_attn else False
|
56 |
+
use_flash_attn = False
|
57 |
+
config.vision_config.use_flash_attn = True if use_flash_attn else False
|
58 |
+
config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
logger.info(f'num_image_token: {self.num_image_token}')
|
63 |
+
logger.info(f'ps_version: {self.ps_version}')
|
64 |
+
if vision_model is not None:
|
65 |
+
self.vision_model = vision_model
|
66 |
+
else:
|
67 |
+
self.vision_model = InternVisionModel(config.vision_config)
|
68 |
+
if language_model is not None:
|
69 |
+
self.language_model = language_model
|
70 |
+
else:
|
71 |
+
if config.llm_config.architectures[0] == 'LlamaForCausalLM':
|
72 |
+
self.language_model = LlamaForCausalLM(config.llm_config)
|
73 |
+
elif config.llm_config.architectures[0] == 'Phi3ForCausalLM':
|
74 |
+
self.language_model = Phi3ForCausalLM(config.llm_config)
|
75 |
+
else:
|
76 |
+
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
|
77 |
+
|
78 |
+
vit_hidden_size = config.vision_config.hidden_size
|
79 |
+
llm_hidden_size = config.llm_config.hidden_size
|
80 |
+
|
81 |
+
self.mlp1 = nn.Sequential(
|
82 |
+
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
|
83 |
+
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
|
84 |
+
nn.GELU(),
|
85 |
+
nn.Linear(llm_hidden_size, llm_hidden_size)
|
86 |
+
)
|
87 |
+
|
88 |
+
self.img_context_token_id = None
|
89 |
+
self.conv_template = get_conv_template(self.template)
|
90 |
+
self.system_message = self.conv_template.system_message
|
91 |
+
|
92 |
+
|
93 |
+
def forward(
|
94 |
+
self,
|
95 |
+
pixel_values: torch.FloatTensor,
|
96 |
+
input_ids: torch.LongTensor = None,
|
97 |
+
attention_mask: Optional[torch.Tensor] = None,
|
98 |
+
position_ids: Optional[torch.LongTensor] = None,
|
99 |
+
image_flags: Optional[torch.LongTensor] = None,
|
100 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
101 |
+
labels: Optional[torch.LongTensor] = None,
|
102 |
+
use_cache: Optional[bool] = None,
|
103 |
+
output_attentions: Optional[bool] = None,
|
104 |
+
output_hidden_states: Optional[bool] = None,
|
105 |
+
return_dict: Optional[bool] = None,
|
106 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
107 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
108 |
+
# import pdb; pdb.set_trace()
|
109 |
+
image_flags = image_flags.squeeze(-1)
|
110 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
|
111 |
+
|
112 |
+
vit_embeds = self.extract_feature(pixel_values)
|
113 |
+
vit_embeds = vit_embeds[image_flags == 1]
|
114 |
+
vit_batch_size = pixel_values.shape[0]
|
115 |
+
|
116 |
+
B, N, C = input_embeds.shape
|
117 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
118 |
+
|
119 |
+
if torch.distributed.get_rank() == 0:
|
120 |
+
print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
|
121 |
+
|
122 |
+
input_ids = input_ids.reshape(B * N)
|
123 |
+
selected = (input_ids == self.img_context_token_id)
|
124 |
+
try:
|
125 |
+
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
|
126 |
+
except Exception as e:
|
127 |
+
vit_embeds = vit_embeds.reshape(-1, C)
|
128 |
+
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
|
129 |
+
f'vit_embeds.shape={vit_embeds.shape}')
|
130 |
+
n_token = selected.sum()
|
131 |
+
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
|
132 |
+
|
133 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
134 |
+
|
135 |
+
outputs = self.language_model(
|
136 |
+
inputs_embeds=input_embeds,
|
137 |
+
attention_mask=attention_mask,
|
138 |
+
position_ids=position_ids,
|
139 |
+
past_key_values=past_key_values,
|
140 |
+
use_cache=use_cache,
|
141 |
+
output_attentions=output_attentions,
|
142 |
+
output_hidden_states=output_hidden_states,
|
143 |
+
return_dict=return_dict,
|
144 |
+
)
|
145 |
+
logits = outputs.logits
|
146 |
+
|
147 |
+
loss = None
|
148 |
+
if labels is not None:
|
149 |
+
# Shift so that tokens < n predict n
|
150 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
151 |
+
shift_labels = labels[..., 1:].contiguous()
|
152 |
+
# Flatten the tokens
|
153 |
+
loss_fct = CrossEntropyLoss()
|
154 |
+
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
|
155 |
+
shift_labels = shift_labels.view(-1)
|
156 |
+
# Enable model parallelism
|
157 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
158 |
+
loss = loss_fct(shift_logits, shift_labels)
|
159 |
+
|
160 |
+
if not return_dict:
|
161 |
+
output = (logits,) + outputs[1:]
|
162 |
+
return (loss,) + output if loss is not None else output
|
163 |
+
|
164 |
+
return CausalLMOutputWithPast(
|
165 |
+
loss=loss,
|
166 |
+
logits=logits,
|
167 |
+
past_key_values=outputs.past_key_values,
|
168 |
+
hidden_states=outputs.hidden_states,
|
169 |
+
attentions=outputs.attentions,
|
170 |
+
)
|
171 |
+
|
172 |
+
def pixel_shuffle(self, x, scale_factor=0.5):
|
173 |
+
n, w, h, c = x.size()
|
174 |
+
# N, W, H, C --> N, W, H * scale, C // scale
|
175 |
+
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
|
176 |
+
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
|
177 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
178 |
+
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
|
179 |
+
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
|
180 |
+
int(c / (scale_factor * scale_factor)))
|
181 |
+
if self.ps_version == 'v1':
|
182 |
+
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
|
183 |
+
'which results in a transposed image.')
|
184 |
+
else:
|
185 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
186 |
+
return x
|
187 |
+
|
188 |
+
def extract_feature(self, pixel_values):
|
189 |
+
if self.select_layer == -1:
|
190 |
+
vit_embeds = self.vision_model(
|
191 |
+
pixel_values=pixel_values,
|
192 |
+
output_hidden_states=False,
|
193 |
+
return_dict=True).last_hidden_state
|
194 |
+
else:
|
195 |
+
vit_embeds = self.vision_model(
|
196 |
+
pixel_values=pixel_values,
|
197 |
+
output_hidden_states=True,
|
198 |
+
return_dict=True).hidden_states[self.select_layer]
|
199 |
+
vit_embeds = vit_embeds[:, 1:, :]
|
200 |
+
|
201 |
+
h = w = int(vit_embeds.shape[1] ** 0.5)
|
202 |
+
|
203 |
+
os.environ['IMAGE_H'] = str(h)
|
204 |
+
|
205 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
|
206 |
+
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
|
207 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
|
208 |
+
vit_embeds = self.mlp1(vit_embeds)
|
209 |
+
return vit_embeds
|
210 |
+
|
211 |
+
def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
|
212 |
+
history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
|
213 |
+
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
|
214 |
+
if history is not None or return_history:
|
215 |
+
print('Now multi-turn chat is not supported in batch_chat.')
|
216 |
+
raise NotImplementedError
|
217 |
+
|
218 |
+
if image_counts is not None:
|
219 |
+
num_patches_list = image_counts
|
220 |
+
print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
|
221 |
+
|
222 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
223 |
+
self.img_context_token_id = img_context_token_id
|
224 |
+
|
225 |
+
if verbose and pixel_values is not None:
|
226 |
+
image_bs = pixel_values.shape[0]
|
227 |
+
print(f'dynamic ViT batch size: {image_bs}')
|
228 |
+
|
229 |
+
queries = []
|
230 |
+
for idx, num_patches in enumerate(num_patches_list):
|
231 |
+
question = questions[idx]
|
232 |
+
if pixel_values is not None and '<image>' not in question:
|
233 |
+
question = '<image>\n' + question
|
234 |
+
template = get_conv_template(self.template)
|
235 |
+
template.system_message = self.system_message
|
236 |
+
template.append_message(template.roles[0], question)
|
237 |
+
template.append_message(template.roles[1], None)
|
238 |
+
query = template.get_prompt()
|
239 |
+
|
240 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
241 |
+
query = query.replace('<image>', image_tokens, 1)
|
242 |
+
queries.append(query)
|
243 |
+
|
244 |
+
tokenizer.padding_side = 'left'
|
245 |
+
model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
|
246 |
+
input_ids = model_inputs['input_ids'].to(self.device)
|
247 |
+
attention_mask = model_inputs['attention_mask'].to(self.device)
|
248 |
+
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
|
249 |
+
generation_config['eos_token_id'] = eos_token_id
|
250 |
+
generation_output = self.generate(
|
251 |
+
pixel_values=pixel_values,
|
252 |
+
input_ids=input_ids,
|
253 |
+
attention_mask=attention_mask,
|
254 |
+
**generation_config
|
255 |
+
)
|
256 |
+
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
|
257 |
+
responses = [response.split(template.sep)[0].strip() for response in responses]
|
258 |
+
return responses
|
259 |
+
|
260 |
+
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
|
261 |
+
num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
|
262 |
+
verbose=False):
|
263 |
+
|
264 |
+
if history is None and pixel_values is not None and '<image>' not in question:
|
265 |
+
question = '<image>\n' + question
|
266 |
+
|
267 |
+
if num_patches_list is None:
|
268 |
+
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
|
269 |
+
assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
|
270 |
+
|
271 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
272 |
+
self.img_context_token_id = img_context_token_id
|
273 |
+
|
274 |
+
template = get_conv_template(self.template)
|
275 |
+
template.system_message = self.system_message
|
276 |
+
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
|
277 |
+
|
278 |
+
history = [] if history is None else history
|
279 |
+
for (old_question, old_answer) in history:
|
280 |
+
template.append_message(template.roles[0], old_question)
|
281 |
+
template.append_message(template.roles[1], old_answer)
|
282 |
+
template.append_message(template.roles[0], question)
|
283 |
+
template.append_message(template.roles[1], None)
|
284 |
+
query = template.get_prompt()
|
285 |
+
|
286 |
+
if verbose and pixel_values is not None:
|
287 |
+
image_bs = pixel_values.shape[0]
|
288 |
+
print(f'dynamic ViT batch size: {image_bs}')
|
289 |
+
|
290 |
+
for num_patches in num_patches_list:
|
291 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
292 |
+
query = query.replace('<image>', image_tokens, 1)
|
293 |
+
|
294 |
+
model_inputs = tokenizer(query, return_tensors='pt')
|
295 |
+
input_ids = model_inputs['input_ids'].to(self.device)
|
296 |
+
attention_mask = model_inputs['attention_mask'].to(self.device)
|
297 |
+
generation_config['eos_token_id'] = eos_token_id
|
298 |
+
generation_output = self.generate(
|
299 |
+
pixel_values=pixel_values,
|
300 |
+
input_ids=input_ids,
|
301 |
+
attention_mask=attention_mask,
|
302 |
+
**generation_config
|
303 |
+
)
|
304 |
+
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
|
305 |
+
response = response.split(template.sep)[0].strip()
|
306 |
+
history.append((question, response))
|
307 |
+
if return_history:
|
308 |
+
return response, history
|
309 |
+
else:
|
310 |
+
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
|
311 |
+
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
|
312 |
+
if verbose:
|
313 |
+
print(query_to_print, response)
|
314 |
+
return response
|
315 |
+
|
316 |
+
@torch.no_grad()
|
317 |
+
def generate(
|
318 |
+
self,
|
319 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
320 |
+
input_ids: Optional[torch.FloatTensor] = None,
|
321 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
322 |
+
visual_features: Optional[torch.FloatTensor] = None,
|
323 |
+
generation_config: Optional[GenerationConfig] = None,
|
324 |
+
output_hidden_states: Optional[bool] = None,
|
325 |
+
return_dict: Optional[bool] = None,
|
326 |
+
**generate_kwargs,
|
327 |
+
) -> torch.LongTensor:
|
328 |
+
|
329 |
+
assert self.img_context_token_id is not None
|
330 |
+
# global image_token_num
|
331 |
+
if pixel_values is not None:
|
332 |
+
if visual_features is not None:
|
333 |
+
vit_embeds = visual_features
|
334 |
+
else:
|
335 |
+
vit_embeds = self.extract_feature(pixel_values)
|
336 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
337 |
+
B, N, C = input_embeds.shape
|
338 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
339 |
+
|
340 |
+
input_ids = input_ids.reshape(B * N)
|
341 |
+
selected = (input_ids == self.img_context_token_id)
|
342 |
+
assert selected.sum() != 0
|
343 |
+
|
344 |
+
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
|
345 |
+
|
346 |
+
image_token_num = vit_embeds.shape[0] * vit_embeds.shape[1]
|
347 |
+
os.environ['IMAGE_TOKEN_NUM'] = str(image_token_num)
|
348 |
+
|
349 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
350 |
+
else:
|
351 |
+
image_token_num = 0
|
352 |
+
os.environ['IMAGE_TOKEN_NUM'] = str(image_token_num)
|
353 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
354 |
+
# import pdb; pdb.set_trace()
|
355 |
+
outputs = self.language_model.generate(
|
356 |
+
inputs_embeds=input_embeds,
|
357 |
+
attention_mask=attention_mask,
|
358 |
+
generation_config=generation_config,
|
359 |
+
output_hidden_states=output_hidden_states,
|
360 |
+
return_dict=return_dict,
|
361 |
+
use_cache=True,
|
362 |
+
**generate_kwargs,
|
363 |
+
)
|
364 |
+
|
365 |
+
return outputs
|
modeling_phi3.py
ADDED
@@ -0,0 +1,1680 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
""" PyTorch Phi-3 model."""
|
16 |
+
|
17 |
+
import inspect
|
18 |
+
import math
|
19 |
+
import warnings
|
20 |
+
from typing import List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.nn.functional as F
|
24 |
+
import torch.utils.checkpoint
|
25 |
+
from torch import nn
|
26 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
27 |
+
from transformers.activations import ACT2FN
|
28 |
+
from transformers.cache_utils import Cache, DynamicCache
|
29 |
+
from transformers.modeling_attn_mask_utils import \
|
30 |
+
_prepare_4d_causal_attention_mask
|
31 |
+
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
32 |
+
CausalLMOutputWithPast,
|
33 |
+
SequenceClassifierOutputWithPast,
|
34 |
+
TokenClassifierOutput)
|
35 |
+
from transformers.modeling_utils import PreTrainedModel
|
36 |
+
from transformers.utils import (add_code_sample_docstrings,
|
37 |
+
add_start_docstrings,
|
38 |
+
add_start_docstrings_to_model_forward,
|
39 |
+
is_flash_attn_2_available,
|
40 |
+
is_flash_attn_greater_or_equal_2_10, logging,
|
41 |
+
replace_return_docstrings)
|
42 |
+
|
43 |
+
from .configuration_phi3 import Phi3Config
|
44 |
+
import os
|
45 |
+
logger = logging.get_logger(__name__)
|
46 |
+
|
47 |
+
# Transformers scans dependencies in the modeling file, causing issues on conditional loading. The regex only ignores try/catch blocks, but not if statements
|
48 |
+
# if is_flash_attn_2_available():
|
49 |
+
_flash_supports_window_size = False
|
50 |
+
try:
|
51 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
52 |
+
from flash_attn.bert_padding import (index_first_axis, pad_input, # noqa
|
53 |
+
unpad_input)
|
54 |
+
|
55 |
+
_flash_supports_window_size = 'window_size' in list(inspect.signature(flash_attn_func).parameters)
|
56 |
+
has_flash_attn = True
|
57 |
+
except ImportError as error:
|
58 |
+
logger.warning(
|
59 |
+
f'`flash-attention` package not found, consider installing for better performance: {error}.'
|
60 |
+
)
|
61 |
+
if not _flash_supports_window_size:
|
62 |
+
logger.warning(
|
63 |
+
"Current `flash-attenton` does not support `window_size`. Either upgrade or use `attn_implementation='eager'`."
|
64 |
+
)
|
65 |
+
has_flash_attn = False
|
66 |
+
|
67 |
+
_CHECKPOINT_FOR_DOC = 'microsoft/Phi-3-mini-4k-instruct'
|
68 |
+
_CONFIG_FOR_DOC = 'Phi3Config'
|
69 |
+
|
70 |
+
PHI3_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
71 |
+
'microsoft/Phi-3-mini-4k-instruct',
|
72 |
+
'microsoft/Phi-3-mini-128k-instruct',
|
73 |
+
# See all Phi-3 models at https://huggingface.co/models?filter=Phi-3
|
74 |
+
]
|
75 |
+
|
76 |
+
|
77 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Phi3
|
78 |
+
class Phi3RMSNorm(nn.Module):
|
79 |
+
def __init__(self, hidden_size, eps=1e-6):
|
80 |
+
"""
|
81 |
+
Phi3RMSNorm is equivalent to T5LayerNorm
|
82 |
+
"""
|
83 |
+
super().__init__()
|
84 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
85 |
+
self.variance_epsilon = eps
|
86 |
+
|
87 |
+
def forward(self, hidden_states):
|
88 |
+
input_dtype = hidden_states.dtype
|
89 |
+
hidden_states = hidden_states.to(torch.float32)
|
90 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
91 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
92 |
+
return self.weight * hidden_states.to(input_dtype)
|
93 |
+
|
94 |
+
|
95 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
96 |
+
def _get_unpad_data(attention_mask):
|
97 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
98 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
99 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
100 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
101 |
+
return (
|
102 |
+
indices,
|
103 |
+
cu_seqlens,
|
104 |
+
max_seqlen_in_batch,
|
105 |
+
)
|
106 |
+
|
107 |
+
|
108 |
+
# Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with gemma->phi3, Gemma->Phi3
|
109 |
+
class Phi3RotaryEmbedding(nn.Module):
|
110 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
111 |
+
super().__init__()
|
112 |
+
|
113 |
+
self.dim = dim
|
114 |
+
self.max_position_embeddings = max_position_embeddings
|
115 |
+
self.base = base
|
116 |
+
self.register_buffer('inv_freq', None, persistent=False)
|
117 |
+
|
118 |
+
@torch.no_grad()
|
119 |
+
def forward(self, x, position_ids, seq_len=None):
|
120 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
121 |
+
if self.inv_freq is None:
|
122 |
+
self.inv_freq = 1.0 / (
|
123 |
+
self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
|
124 |
+
)
|
125 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
126 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
127 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
128 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
129 |
+
device_type = x.device.type
|
130 |
+
device_type = device_type if isinstance(device_type, str) and device_type != 'mps' else 'cpu'
|
131 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
132 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
133 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
134 |
+
cos = emb.cos()
|
135 |
+
sin = emb.sin()
|
136 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
137 |
+
|
138 |
+
|
139 |
+
class Phi3SuScaledRotaryEmbedding(Phi3RotaryEmbedding):
|
140 |
+
def __init__(self, dim, config, device=None):
|
141 |
+
super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
|
142 |
+
|
143 |
+
self.short_factor = config.rope_scaling['short_factor']
|
144 |
+
self.long_factor = config.rope_scaling['long_factor']
|
145 |
+
self.original_max_position_embeddings = config.original_max_position_embeddings
|
146 |
+
|
147 |
+
@torch.no_grad()
|
148 |
+
def forward(self, x, position_ids, seq_len=None):
|
149 |
+
seq_len = torch.max(position_ids) + 1
|
150 |
+
if seq_len > self.original_max_position_embeddings:
|
151 |
+
ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
|
152 |
+
else:
|
153 |
+
ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
|
154 |
+
|
155 |
+
inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
|
156 |
+
self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
|
157 |
+
|
158 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
159 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
160 |
+
|
161 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
162 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
163 |
+
device_type = x.device.type
|
164 |
+
device_type = device_type if isinstance(device_type, str) and device_type != 'mps' else 'cpu'
|
165 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
166 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
167 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
168 |
+
|
169 |
+
scale = self.max_position_embeddings / self.original_max_position_embeddings
|
170 |
+
if scale <= 1.0:
|
171 |
+
scaling_factor = 1.0
|
172 |
+
else:
|
173 |
+
scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings))
|
174 |
+
|
175 |
+
cos = emb.cos() * scaling_factor
|
176 |
+
sin = emb.sin() * scaling_factor
|
177 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
178 |
+
|
179 |
+
|
180 |
+
class Phi3YarnScaledRotaryEmbedding(Phi3RotaryEmbedding):
|
181 |
+
def __init__(self, dim, config, device=None):
|
182 |
+
super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
|
183 |
+
|
184 |
+
self.short_factor = config.rope_scaling['short_factor']
|
185 |
+
self.long_factor = config.rope_scaling['long_factor']
|
186 |
+
self.original_max_position_embeddings = config.original_max_position_embeddings
|
187 |
+
|
188 |
+
@torch.no_grad()
|
189 |
+
def forward(self, x, position_ids, seq_len=None):
|
190 |
+
seq_len = torch.max(position_ids) + 1
|
191 |
+
if seq_len > self.original_max_position_embeddings:
|
192 |
+
ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
|
193 |
+
else:
|
194 |
+
ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
|
195 |
+
|
196 |
+
inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
|
197 |
+
self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
|
198 |
+
|
199 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
200 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
201 |
+
|
202 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
203 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
204 |
+
device_type = x.device.type
|
205 |
+
device_type = device_type if isinstance(device_type, str) and device_type != 'mps' else 'cpu'
|
206 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
207 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
208 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
209 |
+
|
210 |
+
scale = self.max_position_embeddings / self.original_max_position_embeddings
|
211 |
+
if scale <= 1.0:
|
212 |
+
scaling_factor = 1.0
|
213 |
+
else:
|
214 |
+
scaling_factor = 0.1 * math.log(scale) + 1.0
|
215 |
+
|
216 |
+
cos = emb.cos() * scaling_factor
|
217 |
+
sin = emb.sin() * scaling_factor
|
218 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
219 |
+
|
220 |
+
|
221 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
222 |
+
def rotate_half(x):
|
223 |
+
"""Rotates half the hidden dims of the input."""
|
224 |
+
x1 = x[..., : x.shape[-1] // 2]
|
225 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
226 |
+
return torch.cat((-x2, x1), dim=-1)
|
227 |
+
|
228 |
+
|
229 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
230 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
231 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
232 |
+
|
233 |
+
Args:
|
234 |
+
q (`torch.Tensor`): The query tensor.
|
235 |
+
k (`torch.Tensor`): The key tensor.
|
236 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
237 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
238 |
+
position_ids (`torch.Tensor`, *optional*):
|
239 |
+
Deprecated and unused.
|
240 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
241 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
242 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
243 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
244 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
245 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
246 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
247 |
+
Returns:
|
248 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
249 |
+
"""
|
250 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
251 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
252 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
253 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
254 |
+
return q_embed, k_embed
|
255 |
+
|
256 |
+
|
257 |
+
class Phi3MLP(nn.Module):
|
258 |
+
def __init__(self, config):
|
259 |
+
super().__init__()
|
260 |
+
|
261 |
+
self.config = config
|
262 |
+
self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
|
263 |
+
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
264 |
+
|
265 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
266 |
+
|
267 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
268 |
+
up_states = self.gate_up_proj(hidden_states)
|
269 |
+
|
270 |
+
gate, up_states = up_states.chunk(2, dim=-1)
|
271 |
+
up_states = up_states * self.activation_fn(gate)
|
272 |
+
|
273 |
+
return self.down_proj(up_states)
|
274 |
+
|
275 |
+
|
276 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi
|
277 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
278 |
+
"""
|
279 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
280 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
281 |
+
"""
|
282 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
283 |
+
if n_rep == 1:
|
284 |
+
return hidden_states
|
285 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
286 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
287 |
+
|
288 |
+
|
289 |
+
class Phi3Attention(nn.Module):
|
290 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
291 |
+
|
292 |
+
def __init__(self, config: Phi3Config, layer_idx: Optional[int] = None):
|
293 |
+
super().__init__()
|
294 |
+
self.config = config
|
295 |
+
self.layer_idx = layer_idx
|
296 |
+
if layer_idx is None:
|
297 |
+
logger.warning_once(
|
298 |
+
f'Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will '
|
299 |
+
'lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` '
|
300 |
+
'when creating this class.'
|
301 |
+
)
|
302 |
+
|
303 |
+
self.attention_dropout = config.attention_dropout
|
304 |
+
self.hidden_size = config.hidden_size
|
305 |
+
self.num_heads = config.num_attention_heads
|
306 |
+
self.head_dim = self.hidden_size // self.num_heads
|
307 |
+
self.num_key_value_heads = config.num_key_value_heads
|
308 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
309 |
+
self.max_position_embeddings = config.max_position_embeddings
|
310 |
+
self.original_max_position_embeddings = config.original_max_position_embeddings
|
311 |
+
self.rope_theta = config.rope_theta
|
312 |
+
self.rope_scaling = config.rope_scaling
|
313 |
+
self.is_causal = True
|
314 |
+
|
315 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
316 |
+
raise ValueError(
|
317 |
+
f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
|
318 |
+
f' and `num_heads`: {self.num_heads}).'
|
319 |
+
)
|
320 |
+
|
321 |
+
op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim)
|
322 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
323 |
+
self.qkv_proj = nn.Linear(self.hidden_size, op_size, bias=False)
|
324 |
+
self._init_rope()
|
325 |
+
|
326 |
+
# self.mask = torch.load("headcut_mask/internvl2.0_4B/mask.pth")
|
327 |
+
|
328 |
+
self.attncut = True
|
329 |
+
self.headcut = True
|
330 |
+
self.layercut = False
|
331 |
+
self.layercut_idx = 24
|
332 |
+
self.offset = 70
|
333 |
+
head_num=24
|
334 |
+
self.mask = torch.load("headcut_mask/internvl2.0_4B/mask_"+str(head_num)+".pth")
|
335 |
+
|
336 |
+
def _init_rope(self):
|
337 |
+
if self.rope_scaling is None:
|
338 |
+
self.rotary_emb = Phi3RotaryEmbedding(
|
339 |
+
self.head_dim,
|
340 |
+
max_position_embeddings=self.max_position_embeddings,
|
341 |
+
base=self.rope_theta,
|
342 |
+
)
|
343 |
+
else:
|
344 |
+
scaling_type = self.config.rope_scaling['type']
|
345 |
+
if scaling_type == 'su':
|
346 |
+
self.rotary_emb = Phi3SuScaledRotaryEmbedding(self.head_dim, self.config)
|
347 |
+
elif scaling_type == 'yarn':
|
348 |
+
self.rotary_emb = Phi3YarnScaledRotaryEmbedding(self.head_dim, self.config)
|
349 |
+
else:
|
350 |
+
raise ValueError(f'Unknown RoPE scaling type {scaling_type}')
|
351 |
+
|
352 |
+
def local_mask(self,h, w, window):
|
353 |
+
height, width = h, w
|
354 |
+
num_pixels = height * width
|
355 |
+
|
356 |
+
# Generate grid of positions
|
357 |
+
rows = torch.arange(height)
|
358 |
+
cols = torch.arange(width)
|
359 |
+
grid_r, grid_c = torch.meshgrid(rows, cols, indexing='ij') # Shape: (24, 24)
|
360 |
+
positions = torch.stack([grid_r.flatten(), grid_c.flatten()], dim=1) # Shape: (576, 2)
|
361 |
+
|
362 |
+
# Compute pairwise differences between positions
|
363 |
+
positions_i = positions.unsqueeze(1) # Shape: (576, 1, 2)
|
364 |
+
positions_j = positions.unsqueeze(0) # Shape: (1, 576, 2)
|
365 |
+
delta = positions_i - positions_j # Shape: (576, 576, 2)
|
366 |
+
delta_abs = delta.abs() # Absolute differences
|
367 |
+
|
368 |
+
# Create neighbor mask for 3x3 neighborhood
|
369 |
+
neighbor_mask = (delta_abs[..., 0] <= int((window-1)/2)) & (delta_abs[..., 1] <= int((window-1)/2)) # Shape: (576, 576)
|
370 |
+
|
371 |
+
# Initialize the attention mask
|
372 |
+
attention_mask = torch.full((num_pixels, num_pixels), float('-inf'))
|
373 |
+
attention_mask[neighbor_mask] = 0.0 # Set 3x3 neighborhood to 0, others to -inf
|
374 |
+
return attention_mask
|
375 |
+
|
376 |
+
def forward(
|
377 |
+
self,
|
378 |
+
hidden_states: torch.Tensor,
|
379 |
+
attention_mask: Optional[torch.Tensor] = None,
|
380 |
+
position_ids: Optional[torch.LongTensor] = None,
|
381 |
+
past_key_value: Optional[Cache] = None,
|
382 |
+
output_attentions: bool = False,
|
383 |
+
use_cache: bool = False,
|
384 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
385 |
+
logger.warning_once('You are not running the flash-attention implementation, expect numerical differences.')
|
386 |
+
|
387 |
+
bsz, q_len, _ = hidden_states.size()
|
388 |
+
|
389 |
+
qkv = self.qkv_proj(hidden_states)
|
390 |
+
query_pos = self.num_heads * self.head_dim
|
391 |
+
query_states = qkv[..., :query_pos]
|
392 |
+
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
|
393 |
+
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
|
394 |
+
|
395 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
396 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
397 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
398 |
+
|
399 |
+
kv_seq_len = key_states.shape[-2]
|
400 |
+
if past_key_value is not None:
|
401 |
+
if self.layer_idx is None:
|
402 |
+
raise ValueError(
|
403 |
+
f'The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} '
|
404 |
+
'for auto-regressive decoding with k/v caching, please make sure to initialize the attention class '
|
405 |
+
'with a layer index.'
|
406 |
+
)
|
407 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
408 |
+
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
|
409 |
+
|
410 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
411 |
+
|
412 |
+
if past_key_value is not None:
|
413 |
+
cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
|
414 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
415 |
+
|
416 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
417 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
418 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
419 |
+
|
420 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
421 |
+
|
422 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
423 |
+
raise ValueError(
|
424 |
+
f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
|
425 |
+
f' {attn_weights.size()}'
|
426 |
+
)
|
427 |
+
if attention_mask is not None:
|
428 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
429 |
+
raise ValueError(
|
430 |
+
f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
|
431 |
+
)
|
432 |
+
attn_weights = attn_weights + attention_mask
|
433 |
+
image_token_num = int(os.environ.get('IMAGE_TOKEN_NUM'))
|
434 |
+
|
435 |
+
if self.attncut:
|
436 |
+
h = int(int(os.environ.get('IMAGE_H'))/2)
|
437 |
+
if attn_weights.shape[2]>image_token_num:
|
438 |
+
self.mask_local = self.local_mask(h, h, int(h/2)) # 1/4 window
|
439 |
+
mask = attn_weights.clone()*0
|
440 |
+
temp = mask[:,:,self.offset:self.offset+image_token_num,self.offset:self.offset+image_token_num]
|
441 |
+
temp = temp.reshape(temp.shape[0],32, int(temp.shape[2]/(h*h)),h*h,int(temp.shape[2]/(h*h)),h*h)
|
442 |
+
temp2 = self.mask_local.unsqueeze(1).unsqueeze(0).unsqueeze(0).unsqueeze(0)
|
443 |
+
temp[:,:,:,:,:,:]=temp2.cuda()
|
444 |
+
attn_weights = attn_weights + mask
|
445 |
+
|
446 |
+
# upcast attention to fp32
|
447 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
|
448 |
+
|
449 |
+
if self.headcut:
|
450 |
+
'''
|
451 |
+
# compute headmask based on attn weights ratio.
|
452 |
+
if attn_weights.shape[2]==1:
|
453 |
+
res_v = torch.sum(attn_weights[0,:,:,70:70+image_token_num],dim=[1,2])
|
454 |
+
res_t = torch.sum(attn_weights[0,:,:,70+image_token_num:],dim=[1,2])
|
455 |
+
res_s = torch.sum(attn_weights[0,:,:,:70],dim=[1,2])
|
456 |
+
res = res_v/(res_t+res_s)
|
457 |
+
torch.save(res, 'headcut_mask_4B/'+str(self.layer_idx)+'.pth')
|
458 |
+
if self.layer_idx ==31:
|
459 |
+
exit()
|
460 |
+
'''
|
461 |
+
if self.layer_idx>=2:
|
462 |
+
mask = self.mask[self.layer_idx].unsqueeze(1).unsqueeze(1).unsqueeze(0).cuda()
|
463 |
+
attn_weights[:,:,:,self.offset:self.offset+image_token_num]= attn_weights[:,:,:,self.offset:self.offset+image_token_num] * mask
|
464 |
+
|
465 |
+
|
466 |
+
if self.layercut and self.layer_idx>=self.layercut_idx:
|
467 |
+
if attn_weights.shape[2]>image_token_num:
|
468 |
+
attn_weights[:,:,image_token_num+self.offset:,self.offset:self.offset+image_token_num]=0
|
469 |
+
else:
|
470 |
+
attn_weights[:,:,:,self.offset:self.offset+image_token_num]=0
|
471 |
+
|
472 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
473 |
+
|
474 |
+
|
475 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
476 |
+
|
477 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
478 |
+
raise ValueError(
|
479 |
+
f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
|
480 |
+
f' {attn_output.size()}'
|
481 |
+
)
|
482 |
+
|
483 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
484 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
485 |
+
|
486 |
+
attn_output = self.o_proj(attn_output)
|
487 |
+
|
488 |
+
if not output_attentions:
|
489 |
+
attn_weights = None
|
490 |
+
|
491 |
+
return attn_output, attn_weights, past_key_value
|
492 |
+
|
493 |
+
|
494 |
+
class Phi3FlashAttention2(Phi3Attention):
|
495 |
+
"""
|
496 |
+
Phi-3 flash attention module. This module inherits from `Phi3Attention` as the weights of the module stays
|
497 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
498 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
499 |
+
"""
|
500 |
+
|
501 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
502 |
+
def __init__(self, *args, **kwargs):
|
503 |
+
super().__init__(*args, **kwargs)
|
504 |
+
|
505 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
506 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
507 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
508 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
509 |
+
|
510 |
+
def forward(
|
511 |
+
self,
|
512 |
+
hidden_states: torch.Tensor,
|
513 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
514 |
+
position_ids: Optional[torch.LongTensor] = None,
|
515 |
+
past_key_value: Optional[Cache] = None,
|
516 |
+
output_attentions: bool = False,
|
517 |
+
use_cache: bool = False,
|
518 |
+
**kwargs,
|
519 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
520 |
+
# Phi3FlashAttention2 attention does not support output_attentions
|
521 |
+
|
522 |
+
if not _flash_supports_window_size:
|
523 |
+
logger.warning_once(
|
524 |
+
"The current flash attention version does not support sliding window attention. Please use `attn_implementation='eager'` or upgrade flash-attn library."
|
525 |
+
)
|
526 |
+
raise ValueError('The current flash attention version does not support sliding window attention.')
|
527 |
+
|
528 |
+
output_attentions = False
|
529 |
+
|
530 |
+
if 'padding_mask' in kwargs:
|
531 |
+
warnings.warn(
|
532 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`'
|
533 |
+
)
|
534 |
+
|
535 |
+
# overwrite attention_mask with padding_mask
|
536 |
+
attention_mask = kwargs.pop('padding_mask')
|
537 |
+
|
538 |
+
bsz, q_len, _ = hidden_states.size()
|
539 |
+
|
540 |
+
qkv = self.qkv_proj(hidden_states)
|
541 |
+
query_pos = self.num_heads * self.head_dim
|
542 |
+
query_states = qkv[..., :query_pos]
|
543 |
+
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
|
544 |
+
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
|
545 |
+
|
546 |
+
# Flash attention requires the input to have the shape
|
547 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
548 |
+
# therefore we just need to keep the original shape
|
549 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
550 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
551 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
552 |
+
|
553 |
+
kv_seq_len = key_states.shape[-2]
|
554 |
+
if past_key_value is not None:
|
555 |
+
if self.layer_idx is None:
|
556 |
+
raise ValueError(
|
557 |
+
f'The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} '
|
558 |
+
'for auto-regressive decoding with k/v caching, please make sure to initialize the attention class '
|
559 |
+
'with a layer index.'
|
560 |
+
)
|
561 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
562 |
+
|
563 |
+
# Because the input can be padded, the absolute sequence length depends on the max position id.
|
564 |
+
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
|
565 |
+
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=rotary_seq_len)
|
566 |
+
|
567 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
568 |
+
|
569 |
+
use_sliding_windows = (
|
570 |
+
_flash_supports_window_size
|
571 |
+
and getattr(self.config, 'sliding_window', None) is not None
|
572 |
+
and kv_seq_len > self.config.sliding_window
|
573 |
+
)
|
574 |
+
|
575 |
+
if past_key_value is not None:
|
576 |
+
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
577 |
+
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
|
578 |
+
if (
|
579 |
+
getattr(self.config, 'sliding_window', None) is not None
|
580 |
+
and kv_seq_len > self.config.sliding_window
|
581 |
+
and cache_has_contents
|
582 |
+
):
|
583 |
+
slicing_tokens = 1 - self.config.sliding_window
|
584 |
+
|
585 |
+
past_key = past_key_value[self.layer_idx][0]
|
586 |
+
past_value = past_key_value[self.layer_idx][1]
|
587 |
+
|
588 |
+
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
589 |
+
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
590 |
+
|
591 |
+
if past_key.shape[-2] != self.config.sliding_window - 1:
|
592 |
+
raise ValueError(
|
593 |
+
f'past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got'
|
594 |
+
f' {past_key.shape}'
|
595 |
+
)
|
596 |
+
|
597 |
+
if attention_mask is not None:
|
598 |
+
attention_mask = attention_mask[:, slicing_tokens:]
|
599 |
+
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
|
600 |
+
|
601 |
+
cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
|
602 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
603 |
+
|
604 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
605 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
606 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
607 |
+
|
608 |
+
attn_dropout = self.attention_dropout if self.training else 0.0
|
609 |
+
|
610 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
611 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
612 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
613 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
614 |
+
# in fp32.
|
615 |
+
|
616 |
+
if query_states.dtype == torch.float32:
|
617 |
+
if torch.is_autocast_enabled():
|
618 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
619 |
+
# Handle the case where the model is quantized
|
620 |
+
elif hasattr(self.config, '_pre_quantization_dtype'):
|
621 |
+
target_dtype = self.config._pre_quantization_dtype
|
622 |
+
else:
|
623 |
+
target_dtype = self.qkv_proj.weight.dtype
|
624 |
+
|
625 |
+
logger.warning_once(
|
626 |
+
f'The input hidden states seems to be silently casted in float32, this might be related to'
|
627 |
+
f' the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in'
|
628 |
+
f' {target_dtype}.'
|
629 |
+
)
|
630 |
+
|
631 |
+
query_states = query_states.to(target_dtype)
|
632 |
+
key_states = key_states.to(target_dtype)
|
633 |
+
value_states = value_states.to(target_dtype)
|
634 |
+
|
635 |
+
# Reashape to the expected shape for Flash Attention
|
636 |
+
query_states = query_states.transpose(1, 2)
|
637 |
+
key_states = key_states.transpose(1, 2)
|
638 |
+
value_states = value_states.transpose(1, 2)
|
639 |
+
|
640 |
+
attn_output = self._flash_attention_forward(
|
641 |
+
query_states,
|
642 |
+
key_states,
|
643 |
+
value_states,
|
644 |
+
attention_mask,
|
645 |
+
q_len,
|
646 |
+
dropout=attn_dropout,
|
647 |
+
use_sliding_windows=use_sliding_windows,
|
648 |
+
)
|
649 |
+
|
650 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
651 |
+
attn_output = self.o_proj(attn_output)
|
652 |
+
|
653 |
+
if not output_attentions:
|
654 |
+
attn_weights = None
|
655 |
+
|
656 |
+
return attn_output, attn_weights, past_key_value
|
657 |
+
|
658 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._flash_attention_forward
|
659 |
+
def _flash_attention_forward(
|
660 |
+
self,
|
661 |
+
query_states,
|
662 |
+
key_states,
|
663 |
+
value_states,
|
664 |
+
attention_mask,
|
665 |
+
query_length,
|
666 |
+
dropout=0.0,
|
667 |
+
softmax_scale=None,
|
668 |
+
use_sliding_windows=False,
|
669 |
+
):
|
670 |
+
"""
|
671 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
672 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
673 |
+
|
674 |
+
Args:
|
675 |
+
query_states (`torch.Tensor`):
|
676 |
+
Input query states to be passed to Flash Attention API
|
677 |
+
key_states (`torch.Tensor`):
|
678 |
+
Input key states to be passed to Flash Attention API
|
679 |
+
value_states (`torch.Tensor`):
|
680 |
+
Input value states to be passed to Flash Attention API
|
681 |
+
attention_mask (`torch.Tensor`):
|
682 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
683 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
684 |
+
dropout (`float`):
|
685 |
+
Attention dropout
|
686 |
+
softmax_scale (`float`, *optional*):
|
687 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
688 |
+
use_sliding_windows (`bool`, *optional*):
|
689 |
+
Whether to activate sliding window attention.
|
690 |
+
"""
|
691 |
+
if not self._flash_attn_uses_top_left_mask:
|
692 |
+
causal = self.is_causal
|
693 |
+
else:
|
694 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
695 |
+
causal = self.is_causal and query_length != 1
|
696 |
+
|
697 |
+
# Contains at least one padding token in the sequence
|
698 |
+
if attention_mask is not None:
|
699 |
+
batch_size = query_states.shape[0]
|
700 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
701 |
+
query_states, key_states, value_states, attention_mask, query_length
|
702 |
+
)
|
703 |
+
|
704 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
705 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
706 |
+
|
707 |
+
if not use_sliding_windows:
|
708 |
+
attn_output_unpad = flash_attn_varlen_func(
|
709 |
+
query_states,
|
710 |
+
key_states,
|
711 |
+
value_states,
|
712 |
+
cu_seqlens_q=cu_seqlens_q,
|
713 |
+
cu_seqlens_k=cu_seqlens_k,
|
714 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
715 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
716 |
+
dropout_p=dropout,
|
717 |
+
softmax_scale=softmax_scale,
|
718 |
+
causal=causal,
|
719 |
+
)
|
720 |
+
else:
|
721 |
+
attn_output_unpad = flash_attn_varlen_func(
|
722 |
+
query_states,
|
723 |
+
key_states,
|
724 |
+
value_states,
|
725 |
+
cu_seqlens_q=cu_seqlens_q,
|
726 |
+
cu_seqlens_k=cu_seqlens_k,
|
727 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
728 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
729 |
+
dropout_p=dropout,
|
730 |
+
softmax_scale=softmax_scale,
|
731 |
+
causal=causal,
|
732 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
733 |
+
)
|
734 |
+
|
735 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
736 |
+
else:
|
737 |
+
if not use_sliding_windows:
|
738 |
+
attn_output = flash_attn_func(
|
739 |
+
query_states,
|
740 |
+
key_states,
|
741 |
+
value_states,
|
742 |
+
dropout,
|
743 |
+
softmax_scale=softmax_scale,
|
744 |
+
causal=causal,
|
745 |
+
)
|
746 |
+
else:
|
747 |
+
attn_output = flash_attn_func(
|
748 |
+
query_states,
|
749 |
+
key_states,
|
750 |
+
value_states,
|
751 |
+
dropout,
|
752 |
+
softmax_scale=softmax_scale,
|
753 |
+
causal=causal,
|
754 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
755 |
+
)
|
756 |
+
|
757 |
+
return attn_output
|
758 |
+
|
759 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input
|
760 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
761 |
+
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
762 |
+
|
763 |
+
# On the first iteration we need to properly re-create the padding mask
|
764 |
+
# by slicing it on the proper place
|
765 |
+
if kv_seq_len != attention_mask.shape[-1]:
|
766 |
+
attention_mask_num_tokens = attention_mask.shape[-1]
|
767 |
+
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
|
768 |
+
|
769 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
770 |
+
|
771 |
+
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
772 |
+
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
773 |
+
|
774 |
+
if query_length == kv_seq_len:
|
775 |
+
query_layer = index_first_axis(
|
776 |
+
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
|
777 |
+
)
|
778 |
+
cu_seqlens_q = cu_seqlens_k
|
779 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
780 |
+
indices_q = indices_k
|
781 |
+
elif query_length == 1:
|
782 |
+
max_seqlen_in_batch_q = 1
|
783 |
+
cu_seqlens_q = torch.arange(
|
784 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
785 |
+
) # There is a memcpy here, that is very bad.
|
786 |
+
indices_q = cu_seqlens_q[:-1]
|
787 |
+
query_layer = query_layer.squeeze(1)
|
788 |
+
else:
|
789 |
+
# The -q_len: slice assumes left padding.
|
790 |
+
attention_mask = attention_mask[:, -query_length:]
|
791 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
792 |
+
|
793 |
+
return (
|
794 |
+
query_layer,
|
795 |
+
key_layer,
|
796 |
+
value_layer,
|
797 |
+
indices_q,
|
798 |
+
(cu_seqlens_q, cu_seqlens_k),
|
799 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
800 |
+
)
|
801 |
+
|
802 |
+
|
803 |
+
# copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Phi3
|
804 |
+
# TODO @Arthur no longer copied from LLama after static cache
|
805 |
+
class Phi3SdpaAttention(Phi3Attention):
|
806 |
+
"""
|
807 |
+
Phi3 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
808 |
+
`Phi3Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
809 |
+
SDPA API.
|
810 |
+
"""
|
811 |
+
|
812 |
+
# Adapted from Phi3Attention.forward
|
813 |
+
def forward(
|
814 |
+
self,
|
815 |
+
hidden_states: torch.Tensor,
|
816 |
+
attention_mask: Optional[torch.Tensor] = None,
|
817 |
+
position_ids: Optional[torch.LongTensor] = None,
|
818 |
+
past_key_value: Optional[Cache] = None,
|
819 |
+
output_attentions: bool = False,
|
820 |
+
use_cache: bool = False,
|
821 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
822 |
+
if output_attentions:
|
823 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
824 |
+
logger.warning_once(
|
825 |
+
'Phi3Model is using Phi3SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, '
|
826 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
827 |
+
)
|
828 |
+
return super().forward(
|
829 |
+
hidden_states=hidden_states,
|
830 |
+
attention_mask=attention_mask,
|
831 |
+
position_ids=position_ids,
|
832 |
+
past_key_value=past_key_value,
|
833 |
+
output_attentions=output_attentions,
|
834 |
+
use_cache=use_cache,
|
835 |
+
)
|
836 |
+
|
837 |
+
bsz, q_len, _ = hidden_states.size()
|
838 |
+
|
839 |
+
qkv = self.qkv_proj(hidden_states)
|
840 |
+
query_pos = self.num_heads * self.head_dim
|
841 |
+
query_states = qkv[..., :query_pos]
|
842 |
+
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
|
843 |
+
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
|
844 |
+
|
845 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
846 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
847 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
848 |
+
|
849 |
+
kv_seq_len = key_states.shape[-2]
|
850 |
+
if past_key_value is not None:
|
851 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
852 |
+
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
|
853 |
+
|
854 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
855 |
+
|
856 |
+
if past_key_value is not None:
|
857 |
+
cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
|
858 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
859 |
+
|
860 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
861 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
862 |
+
|
863 |
+
if attention_mask is not None:
|
864 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
865 |
+
raise ValueError(
|
866 |
+
f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
|
867 |
+
)
|
868 |
+
|
869 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
870 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
871 |
+
if query_states.device.type == 'cuda' and attention_mask is not None:
|
872 |
+
query_states = query_states.contiguous()
|
873 |
+
key_states = key_states.contiguous()
|
874 |
+
value_states = value_states.contiguous()
|
875 |
+
|
876 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
877 |
+
query_states,
|
878 |
+
key_states,
|
879 |
+
value_states,
|
880 |
+
attn_mask=attention_mask,
|
881 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
882 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
883 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
884 |
+
)
|
885 |
+
|
886 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
887 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
888 |
+
|
889 |
+
attn_output = self.o_proj(attn_output)
|
890 |
+
|
891 |
+
return attn_output, None, past_key_value
|
892 |
+
|
893 |
+
|
894 |
+
PHI3_ATTENTION_CLASSES = {
|
895 |
+
'eager': Phi3Attention,
|
896 |
+
'flash_attention_2': Phi3FlashAttention2,
|
897 |
+
'sdpa': Phi3SdpaAttention,
|
898 |
+
}
|
899 |
+
|
900 |
+
|
901 |
+
class Phi3DecoderLayer(nn.Module):
|
902 |
+
def __init__(self, config: Phi3Config, layer_idx: int):
|
903 |
+
super().__init__()
|
904 |
+
|
905 |
+
self.config = config
|
906 |
+
self.self_attn = PHI3_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
|
907 |
+
|
908 |
+
self.mlp = Phi3MLP(config)
|
909 |
+
self.input_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
910 |
+
|
911 |
+
self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
|
912 |
+
self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
|
913 |
+
self.post_attention_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
914 |
+
|
915 |
+
def forward(
|
916 |
+
self,
|
917 |
+
hidden_states: torch.Tensor,
|
918 |
+
attention_mask: Optional[torch.Tensor] = None,
|
919 |
+
position_ids: Optional[torch.LongTensor] = None,
|
920 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
921 |
+
output_attentions: Optional[bool] = False,
|
922 |
+
use_cache: Optional[bool] = False,
|
923 |
+
**kwargs,
|
924 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
925 |
+
if 'padding_mask' in kwargs:
|
926 |
+
warnings.warn(
|
927 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`'
|
928 |
+
)
|
929 |
+
"""
|
930 |
+
Args:
|
931 |
+
hidden_states (`torch.FloatTensor`):
|
932 |
+
input to the layer of shape `(batch, seq_len, embed_dim)`
|
933 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
934 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
935 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
936 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
|
937 |
+
`[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
|
938 |
+
output_attentions (`bool`, *optional*):
|
939 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
940 |
+
returned tensors for more detail.
|
941 |
+
use_cache (`bool`, *optional*):
|
942 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
943 |
+
(see `past_key_values`).
|
944 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
945 |
+
"""
|
946 |
+
|
947 |
+
residual = hidden_states
|
948 |
+
|
949 |
+
hidden_states = self.input_layernorm(hidden_states)
|
950 |
+
|
951 |
+
# Self Attention
|
952 |
+
attn_outputs, self_attn_weights, present_key_value = self.self_attn(
|
953 |
+
hidden_states=hidden_states,
|
954 |
+
attention_mask=attention_mask,
|
955 |
+
position_ids=position_ids,
|
956 |
+
past_key_value=past_key_value,
|
957 |
+
output_attentions=output_attentions,
|
958 |
+
use_cache=use_cache,
|
959 |
+
)
|
960 |
+
|
961 |
+
hidden_states = residual + self.resid_attn_dropout(attn_outputs)
|
962 |
+
|
963 |
+
residual = hidden_states
|
964 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
965 |
+
hidden_states = self.mlp(hidden_states)
|
966 |
+
hidden_states = residual + self.resid_mlp_dropout(hidden_states)
|
967 |
+
|
968 |
+
outputs = (hidden_states,)
|
969 |
+
|
970 |
+
if output_attentions:
|
971 |
+
outputs += (self_attn_weights,)
|
972 |
+
|
973 |
+
if use_cache:
|
974 |
+
outputs += (present_key_value,)
|
975 |
+
|
976 |
+
return outputs
|
977 |
+
|
978 |
+
|
979 |
+
PHI3_START_DOCSTRING = r"""
|
980 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
981 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
982 |
+
etc.)
|
983 |
+
|
984 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
985 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
986 |
+
and behavior.
|
987 |
+
|
988 |
+
Parameters:
|
989 |
+
config ([`Phi3Config`]):
|
990 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
991 |
+
load the weights associated with the model, only the configuration. Check out the
|
992 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
993 |
+
"""
|
994 |
+
|
995 |
+
|
996 |
+
@add_start_docstrings(
|
997 |
+
'The bare Phi-3 model outputting raw hidden-states without any specific head on top.',
|
998 |
+
PHI3_START_DOCSTRING,
|
999 |
+
)
|
1000 |
+
class Phi3PreTrainedModel(PreTrainedModel):
|
1001 |
+
config_class = Phi3Config
|
1002 |
+
base_model_prefix = 'model'
|
1003 |
+
supports_gradient_checkpointing = True
|
1004 |
+
_no_split_modules = ['Phi3DecoderLayer']
|
1005 |
+
_skip_keys_device_placement = 'past_key_values'
|
1006 |
+
_supports_flash_attn_2 = True
|
1007 |
+
_supports_sdpa = False
|
1008 |
+
_supports_cache_class = True
|
1009 |
+
|
1010 |
+
_version = '0.0.5'
|
1011 |
+
|
1012 |
+
def __init__(self, config: Phi3Config):
|
1013 |
+
if not has_flash_attn:
|
1014 |
+
config._attn_implementation = 'eager'
|
1015 |
+
print('Warning: Flash attention is not available, using eager attention instead.')
|
1016 |
+
super().__init__(config)
|
1017 |
+
|
1018 |
+
def _init_weights(self, module):
|
1019 |
+
std = self.config.initializer_range
|
1020 |
+
if isinstance(module, nn.Linear):
|
1021 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1022 |
+
if module.bias is not None:
|
1023 |
+
module.bias.data.zero_()
|
1024 |
+
elif isinstance(module, nn.Embedding):
|
1025 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1026 |
+
if module.padding_idx is not None:
|
1027 |
+
module.weight.data[module.padding_idx].zero_()
|
1028 |
+
|
1029 |
+
|
1030 |
+
PHI3_INPUTS_DOCSTRING = r"""
|
1031 |
+
Args:
|
1032 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1033 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
1034 |
+
it.
|
1035 |
+
|
1036 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1037 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1038 |
+
|
1039 |
+
[What are input IDs?](../glossary#input-ids)
|
1040 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1041 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1042 |
+
|
1043 |
+
- 1 for tokens that are **not masked**,
|
1044 |
+
- 0 for tokens that are **masked**.
|
1045 |
+
|
1046 |
+
[What are attention masks?](../glossary#attention-mask)
|
1047 |
+
|
1048 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1049 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1050 |
+
|
1051 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
1052 |
+
`past_key_values`).
|
1053 |
+
|
1054 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
1055 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
1056 |
+
information on the default strategy.
|
1057 |
+
|
1058 |
+
- 1 indicates the head is **not masked**,
|
1059 |
+
- 0 indicates the head is **masked**.
|
1060 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1061 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1062 |
+
config.n_positions - 1]`.
|
1063 |
+
|
1064 |
+
[What are position IDs?](../glossary#position-ids)
|
1065 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
1066 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
1067 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
1068 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
1069 |
+
|
1070 |
+
Two formats are allowed:
|
1071 |
+
- a [`~cache_utils.Cache`] instance;
|
1072 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
1073 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
1074 |
+
cache format.
|
1075 |
+
|
1076 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
1077 |
+
legacy cache format will be returned.
|
1078 |
+
|
1079 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
1080 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
1081 |
+
of shape `(batch_size, sequence_length)`.
|
1082 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1083 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1084 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1085 |
+
model's internal embedding lookup matrix.
|
1086 |
+
use_cache (`bool`, *optional*):
|
1087 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1088 |
+
`past_key_values`).
|
1089 |
+
output_attentions (`bool`, *optional*):
|
1090 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1091 |
+
tensors for more detail.
|
1092 |
+
output_hidden_states (`bool`, *optional*):
|
1093 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1094 |
+
more detail.
|
1095 |
+
return_dict (`bool`, *optional*):
|
1096 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1097 |
+
"""
|
1098 |
+
|
1099 |
+
|
1100 |
+
@add_start_docstrings(
|
1101 |
+
'The bare Phi-3 model outputting raw hidden-states without any specific head on top.',
|
1102 |
+
PHI3_START_DOCSTRING,
|
1103 |
+
)
|
1104 |
+
class Phi3Model(Phi3PreTrainedModel):
|
1105 |
+
"""
|
1106 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`]
|
1107 |
+
|
1108 |
+
Args:
|
1109 |
+
config: Phi3Config
|
1110 |
+
"""
|
1111 |
+
|
1112 |
+
def __init__(self, config: Phi3Config):
|
1113 |
+
super().__init__(config)
|
1114 |
+
self.padding_idx = config.pad_token_id
|
1115 |
+
self.vocab_size = config.vocab_size
|
1116 |
+
|
1117 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
1118 |
+
self.embed_dropout = nn.Dropout(config.embd_pdrop)
|
1119 |
+
self.layers = nn.ModuleList(
|
1120 |
+
[Phi3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
1121 |
+
)
|
1122 |
+
self._attn_implementation = config._attn_implementation
|
1123 |
+
|
1124 |
+
self.norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1125 |
+
|
1126 |
+
self.gradient_checkpointing = False
|
1127 |
+
# Initialize weights and apply final processing
|
1128 |
+
self.post_init()
|
1129 |
+
|
1130 |
+
def get_input_embeddings(self):
|
1131 |
+
return self.embed_tokens
|
1132 |
+
|
1133 |
+
def set_input_embeddings(self, value):
|
1134 |
+
self.embed_tokens = value
|
1135 |
+
|
1136 |
+
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
|
1137 |
+
def forward(
|
1138 |
+
self,
|
1139 |
+
input_ids: torch.LongTensor = None,
|
1140 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1141 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1142 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1143 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1144 |
+
use_cache: Optional[bool] = None,
|
1145 |
+
output_attentions: Optional[bool] = None,
|
1146 |
+
output_hidden_states: Optional[bool] = None,
|
1147 |
+
return_dict: Optional[bool] = None,
|
1148 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
1149 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1150 |
+
output_hidden_states = (
|
1151 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1152 |
+
)
|
1153 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1154 |
+
|
1155 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1156 |
+
|
1157 |
+
# retrieve input_ids and inputs_embeds
|
1158 |
+
if input_ids is not None and inputs_embeds is not None:
|
1159 |
+
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
|
1160 |
+
elif input_ids is not None:
|
1161 |
+
batch_size, seq_length = input_ids.shape[:2]
|
1162 |
+
elif inputs_embeds is not None:
|
1163 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
1164 |
+
else:
|
1165 |
+
raise ValueError('You have to specify either input_ids or inputs_embeds')
|
1166 |
+
|
1167 |
+
past_key_values_length = 0
|
1168 |
+
|
1169 |
+
if self.gradient_checkpointing and self.training:
|
1170 |
+
if use_cache:
|
1171 |
+
logger.warning_once(
|
1172 |
+
'`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
|
1173 |
+
)
|
1174 |
+
use_cache = False
|
1175 |
+
|
1176 |
+
if use_cache:
|
1177 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
1178 |
+
if use_legacy_cache:
|
1179 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
1180 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
1181 |
+
|
1182 |
+
if position_ids is None:
|
1183 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1184 |
+
position_ids = torch.arange(
|
1185 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
1186 |
+
)
|
1187 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
1188 |
+
else:
|
1189 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
1190 |
+
|
1191 |
+
if inputs_embeds is None:
|
1192 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1193 |
+
|
1194 |
+
if attention_mask is not None and self._attn_implementation == 'flash_attention_2' and use_cache:
|
1195 |
+
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
1196 |
+
if is_padding_right:
|
1197 |
+
raise ValueError(
|
1198 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
1199 |
+
' this may lead to unexpected behaviour for Flash Attention version of Phi3. Make sure to '
|
1200 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
1201 |
+
)
|
1202 |
+
|
1203 |
+
if self._attn_implementation == 'flash_attention_2':
|
1204 |
+
# 2d mask is passed through the layers
|
1205 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
1206 |
+
else:
|
1207 |
+
# 4d mask is passed through the layers
|
1208 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1209 |
+
attention_mask,
|
1210 |
+
(batch_size, seq_length),
|
1211 |
+
inputs_embeds,
|
1212 |
+
past_key_values_length,
|
1213 |
+
sliding_window=self.config.sliding_window,
|
1214 |
+
)
|
1215 |
+
|
1216 |
+
hidden_states = inputs_embeds
|
1217 |
+
|
1218 |
+
# decoder layers
|
1219 |
+
all_hidden_states = () if output_hidden_states else None
|
1220 |
+
all_self_attns = () if output_attentions else None
|
1221 |
+
next_decoder_cache = None
|
1222 |
+
|
1223 |
+
for decoder_layer in self.layers:
|
1224 |
+
if output_hidden_states:
|
1225 |
+
all_hidden_states += (hidden_states,)
|
1226 |
+
|
1227 |
+
if self.gradient_checkpointing and self.training:
|
1228 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1229 |
+
decoder_layer.__call__,
|
1230 |
+
hidden_states,
|
1231 |
+
attention_mask,
|
1232 |
+
position_ids,
|
1233 |
+
past_key_values,
|
1234 |
+
output_attentions,
|
1235 |
+
use_cache,
|
1236 |
+
)
|
1237 |
+
else:
|
1238 |
+
layer_outputs = decoder_layer(
|
1239 |
+
hidden_states,
|
1240 |
+
attention_mask=attention_mask,
|
1241 |
+
position_ids=position_ids,
|
1242 |
+
past_key_value=past_key_values,
|
1243 |
+
output_attentions=output_attentions,
|
1244 |
+
use_cache=use_cache,
|
1245 |
+
)
|
1246 |
+
|
1247 |
+
hidden_states = layer_outputs[0]
|
1248 |
+
|
1249 |
+
if use_cache:
|
1250 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1251 |
+
|
1252 |
+
if output_attentions:
|
1253 |
+
all_self_attns += (layer_outputs[1],)
|
1254 |
+
|
1255 |
+
hidden_states = self.norm(hidden_states)
|
1256 |
+
|
1257 |
+
# add hidden states from the last decoder layer
|
1258 |
+
if output_hidden_states:
|
1259 |
+
all_hidden_states += (hidden_states,)
|
1260 |
+
|
1261 |
+
next_cache = None
|
1262 |
+
if use_cache:
|
1263 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
1264 |
+
if not return_dict:
|
1265 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1266 |
+
return BaseModelOutputWithPast(
|
1267 |
+
last_hidden_state=hidden_states,
|
1268 |
+
past_key_values=next_cache,
|
1269 |
+
hidden_states=all_hidden_states,
|
1270 |
+
attentions=all_self_attns,
|
1271 |
+
)
|
1272 |
+
|
1273 |
+
|
1274 |
+
class Phi3ForCausalLM(Phi3PreTrainedModel):
|
1275 |
+
_tied_weights_keys = ['lm_head.weight']
|
1276 |
+
|
1277 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi3
|
1278 |
+
def __init__(self, config):
|
1279 |
+
super().__init__(config)
|
1280 |
+
self.model = Phi3Model(config)
|
1281 |
+
self.vocab_size = config.vocab_size
|
1282 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1283 |
+
|
1284 |
+
# Initialize weights and apply final processing
|
1285 |
+
self.post_init()
|
1286 |
+
|
1287 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
|
1288 |
+
def get_input_embeddings(self):
|
1289 |
+
return self.model.embed_tokens
|
1290 |
+
|
1291 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
|
1292 |
+
def set_input_embeddings(self, value):
|
1293 |
+
self.model.embed_tokens = value
|
1294 |
+
|
1295 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
|
1296 |
+
def get_output_embeddings(self):
|
1297 |
+
return self.lm_head
|
1298 |
+
|
1299 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
|
1300 |
+
def set_output_embeddings(self, new_embeddings):
|
1301 |
+
self.lm_head = new_embeddings
|
1302 |
+
|
1303 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
|
1304 |
+
def set_decoder(self, decoder):
|
1305 |
+
self.model = decoder
|
1306 |
+
|
1307 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
|
1308 |
+
def get_decoder(self):
|
1309 |
+
return self.model
|
1310 |
+
|
1311 |
+
# Ignore copy
|
1312 |
+
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
|
1313 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1314 |
+
def forward(
|
1315 |
+
self,
|
1316 |
+
input_ids: torch.LongTensor = None,
|
1317 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1318 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1319 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1320 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1321 |
+
labels: Optional[torch.LongTensor] = None,
|
1322 |
+
use_cache: Optional[bool] = None,
|
1323 |
+
output_attentions: Optional[bool] = None,
|
1324 |
+
output_hidden_states: Optional[bool] = None,
|
1325 |
+
return_dict: Optional[bool] = None,
|
1326 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1327 |
+
r"""
|
1328 |
+
Args:
|
1329 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1330 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1331 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1332 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1333 |
+
|
1334 |
+
Returns:
|
1335 |
+
|
1336 |
+
Example:
|
1337 |
+
|
1338 |
+
```python
|
1339 |
+
>>> from transformers import AutoTokenizer, Phi3ForCausalLM
|
1340 |
+
|
1341 |
+
>>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
1342 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
1343 |
+
|
1344 |
+
>>> prompt = "This is an example script ."
|
1345 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1346 |
+
|
1347 |
+
>>> # Generate
|
1348 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1349 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1350 |
+
'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
|
1351 |
+
```"""
|
1352 |
+
|
1353 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1354 |
+
output_hidden_states = (
|
1355 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1356 |
+
)
|
1357 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1358 |
+
|
1359 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1360 |
+
outputs = self.model(
|
1361 |
+
input_ids=input_ids,
|
1362 |
+
attention_mask=attention_mask,
|
1363 |
+
position_ids=position_ids,
|
1364 |
+
past_key_values=past_key_values,
|
1365 |
+
inputs_embeds=inputs_embeds,
|
1366 |
+
use_cache=use_cache,
|
1367 |
+
output_attentions=output_attentions,
|
1368 |
+
output_hidden_states=output_hidden_states,
|
1369 |
+
return_dict=return_dict,
|
1370 |
+
)
|
1371 |
+
|
1372 |
+
hidden_states = outputs[0]
|
1373 |
+
logits = self.lm_head(hidden_states)
|
1374 |
+
logits = logits.float()
|
1375 |
+
|
1376 |
+
loss = None
|
1377 |
+
if labels is not None:
|
1378 |
+
# Shift so that tokens < n predict n
|
1379 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1380 |
+
shift_labels = labels[..., 1:].contiguous()
|
1381 |
+
# Flatten the tokens
|
1382 |
+
loss_fct = CrossEntropyLoss()
|
1383 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1384 |
+
shift_labels = shift_labels.view(-1)
|
1385 |
+
# Enable model parallelism
|
1386 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1387 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1388 |
+
|
1389 |
+
if not return_dict:
|
1390 |
+
output = (logits,) + outputs[1:]
|
1391 |
+
return (loss,) + output if loss is not None else output
|
1392 |
+
|
1393 |
+
return CausalLMOutputWithPast(
|
1394 |
+
loss=loss,
|
1395 |
+
logits=logits,
|
1396 |
+
past_key_values=outputs.past_key_values,
|
1397 |
+
hidden_states=outputs.hidden_states,
|
1398 |
+
attentions=outputs.attentions,
|
1399 |
+
)
|
1400 |
+
|
1401 |
+
# Copied from transformers.models.persimmon.modeling_persimmon.PersimmonForCausalLM.prepare_inputs_for_generation
|
1402 |
+
def prepare_inputs_for_generation(
|
1403 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1404 |
+
):
|
1405 |
+
if past_key_values is not None:
|
1406 |
+
if isinstance(past_key_values, Cache):
|
1407 |
+
cache_length = past_key_values.get_seq_length()
|
1408 |
+
past_length = past_key_values.seen_tokens
|
1409 |
+
max_cache_length = past_key_values.get_max_length()
|
1410 |
+
else:
|
1411 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1412 |
+
max_cache_length = None
|
1413 |
+
|
1414 |
+
# Keep only the unprocessed tokens:
|
1415 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1416 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1417 |
+
# input)
|
1418 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1419 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1420 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1421 |
+
# input_ids based on the past_length.
|
1422 |
+
elif past_length < input_ids.shape[1]:
|
1423 |
+
input_ids = input_ids[:, past_length:]
|
1424 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1425 |
+
|
1426 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1427 |
+
if (
|
1428 |
+
max_cache_length is not None
|
1429 |
+
and attention_mask is not None
|
1430 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1431 |
+
):
|
1432 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1433 |
+
|
1434 |
+
position_ids = kwargs.get('position_ids', None)
|
1435 |
+
if attention_mask is not None and position_ids is None:
|
1436 |
+
# create position_ids on the fly for batch generation
|
1437 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1438 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1439 |
+
if past_key_values:
|
1440 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1441 |
+
|
1442 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1443 |
+
if (inputs_embeds is not None and past_key_values is None) or (inputs_embeds is not None and len(past_key_values) == 0):
|
1444 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
1445 |
+
else:
|
1446 |
+
model_inputs = {'input_ids': input_ids}
|
1447 |
+
|
1448 |
+
model_inputs.update(
|
1449 |
+
{
|
1450 |
+
'position_ids': position_ids,
|
1451 |
+
'past_key_values': past_key_values,
|
1452 |
+
'use_cache': kwargs.get('use_cache'),
|
1453 |
+
'attention_mask': attention_mask,
|
1454 |
+
}
|
1455 |
+
)
|
1456 |
+
return model_inputs
|
1457 |
+
|
1458 |
+
@staticmethod
|
1459 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM._reorder_cache
|
1460 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1461 |
+
reordered_past = ()
|
1462 |
+
for layer_past in past_key_values:
|
1463 |
+
reordered_past += (
|
1464 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1465 |
+
)
|
1466 |
+
return reordered_past
|
1467 |
+
|
1468 |
+
|
1469 |
+
@add_start_docstrings(
|
1470 |
+
"""
|
1471 |
+
The [`Phi3Model`] with a sequence classification head on top (linear layer).
|
1472 |
+
|
1473 |
+
[`Phi3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1474 |
+
(e.g. GPT-2) do.
|
1475 |
+
|
1476 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1477 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1478 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1479 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1480 |
+
each row of the batch).
|
1481 |
+
""",
|
1482 |
+
PHI3_START_DOCSTRING,
|
1483 |
+
)
|
1484 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Phi3, LLAMA->PHI3, self.transformer->self.model, transformer_outputs->model_outputs
|
1485 |
+
class Phi3ForSequenceClassification(Phi3PreTrainedModel):
|
1486 |
+
def __init__(self, config):
|
1487 |
+
super().__init__(config)
|
1488 |
+
self.num_labels = config.num_labels
|
1489 |
+
self.model = Phi3Model(config)
|
1490 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1491 |
+
|
1492 |
+
# Initialize weights and apply final processing
|
1493 |
+
self.post_init()
|
1494 |
+
|
1495 |
+
def get_input_embeddings(self):
|
1496 |
+
return self.model.embed_tokens
|
1497 |
+
|
1498 |
+
def set_input_embeddings(self, value):
|
1499 |
+
self.model.embed_tokens = value
|
1500 |
+
|
1501 |
+
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
|
1502 |
+
def forward(
|
1503 |
+
self,
|
1504 |
+
input_ids: torch.LongTensor = None,
|
1505 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1506 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1507 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1508 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1509 |
+
labels: Optional[torch.LongTensor] = None,
|
1510 |
+
use_cache: Optional[bool] = None,
|
1511 |
+
output_attentions: Optional[bool] = None,
|
1512 |
+
output_hidden_states: Optional[bool] = None,
|
1513 |
+
return_dict: Optional[bool] = None,
|
1514 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1515 |
+
r"""
|
1516 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1517 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1518 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1519 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1520 |
+
"""
|
1521 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1522 |
+
|
1523 |
+
model_outputs = self.model(
|
1524 |
+
input_ids,
|
1525 |
+
attention_mask=attention_mask,
|
1526 |
+
position_ids=position_ids,
|
1527 |
+
past_key_values=past_key_values,
|
1528 |
+
inputs_embeds=inputs_embeds,
|
1529 |
+
use_cache=use_cache,
|
1530 |
+
output_attentions=output_attentions,
|
1531 |
+
output_hidden_states=output_hidden_states,
|
1532 |
+
return_dict=return_dict,
|
1533 |
+
)
|
1534 |
+
hidden_states = model_outputs[0]
|
1535 |
+
logits = self.score(hidden_states)
|
1536 |
+
|
1537 |
+
if input_ids is not None:
|
1538 |
+
batch_size = input_ids.shape[0]
|
1539 |
+
else:
|
1540 |
+
batch_size = inputs_embeds.shape[0]
|
1541 |
+
|
1542 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1543 |
+
raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
|
1544 |
+
if self.config.pad_token_id is None:
|
1545 |
+
sequence_lengths = -1
|
1546 |
+
else:
|
1547 |
+
if input_ids is not None:
|
1548 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1549 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1550 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1551 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1552 |
+
else:
|
1553 |
+
sequence_lengths = -1
|
1554 |
+
|
1555 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1556 |
+
|
1557 |
+
loss = None
|
1558 |
+
if labels is not None:
|
1559 |
+
labels = labels.to(logits.device)
|
1560 |
+
if self.config.problem_type is None:
|
1561 |
+
if self.num_labels == 1:
|
1562 |
+
self.config.problem_type = 'regression'
|
1563 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1564 |
+
self.config.problem_type = 'single_label_classification'
|
1565 |
+
else:
|
1566 |
+
self.config.problem_type = 'multi_label_classification'
|
1567 |
+
|
1568 |
+
if self.config.problem_type == 'regression':
|
1569 |
+
loss_fct = MSELoss()
|
1570 |
+
if self.num_labels == 1:
|
1571 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1572 |
+
else:
|
1573 |
+
loss = loss_fct(pooled_logits, labels)
|
1574 |
+
elif self.config.problem_type == 'single_label_classification':
|
1575 |
+
loss_fct = CrossEntropyLoss()
|
1576 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1577 |
+
elif self.config.problem_type == 'multi_label_classification':
|
1578 |
+
loss_fct = BCEWithLogitsLoss()
|
1579 |
+
loss = loss_fct(pooled_logits, labels)
|
1580 |
+
if not return_dict:
|
1581 |
+
output = (pooled_logits,) + model_outputs[1:]
|
1582 |
+
return ((loss,) + output) if loss is not None else output
|
1583 |
+
|
1584 |
+
return SequenceClassifierOutputWithPast(
|
1585 |
+
loss=loss,
|
1586 |
+
logits=pooled_logits,
|
1587 |
+
past_key_values=model_outputs.past_key_values,
|
1588 |
+
hidden_states=model_outputs.hidden_states,
|
1589 |
+
attentions=model_outputs.attentions,
|
1590 |
+
)
|
1591 |
+
|
1592 |
+
|
1593 |
+
@add_start_docstrings(
|
1594 |
+
"""
|
1595 |
+
[`Phi3Model`] with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1596 |
+
Named-Entity-Recognition (NER) tasks.
|
1597 |
+
""",
|
1598 |
+
PHI3_START_DOCSTRING,
|
1599 |
+
)
|
1600 |
+
# Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with Mpt->Phi3,MPT->PHI3,self.transformer->self.model,transformer_outputs->model_outputs
|
1601 |
+
class Phi3ForTokenClassification(Phi3PreTrainedModel):
|
1602 |
+
def __init__(self, config: Phi3Config):
|
1603 |
+
super().__init__(config)
|
1604 |
+
self.num_labels = config.num_labels
|
1605 |
+
|
1606 |
+
self.model = Phi3Model(config)
|
1607 |
+
if hasattr(config, 'classifier_dropout') and config.classifier_dropout is not None:
|
1608 |
+
classifier_dropout = config.classifier_dropout
|
1609 |
+
elif hasattr(config, 'hidden_dropout') and config.hidden_dropout is not None:
|
1610 |
+
classifier_dropout = config.hidden_dropout
|
1611 |
+
else:
|
1612 |
+
classifier_dropout = 0.1
|
1613 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1614 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1615 |
+
|
1616 |
+
# Initialize weights and apply final processing
|
1617 |
+
self.post_init()
|
1618 |
+
|
1619 |
+
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
|
1620 |
+
@add_code_sample_docstrings(
|
1621 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1622 |
+
output_type=TokenClassifierOutput,
|
1623 |
+
config_class=_CONFIG_FOR_DOC,
|
1624 |
+
)
|
1625 |
+
def forward(
|
1626 |
+
self,
|
1627 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1628 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
1629 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1630 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1631 |
+
labels: Optional[torch.Tensor] = None,
|
1632 |
+
use_cache: Optional[bool] = None,
|
1633 |
+
output_attentions: Optional[bool] = None,
|
1634 |
+
output_hidden_states: Optional[bool] = None,
|
1635 |
+
return_dict: Optional[bool] = None,
|
1636 |
+
**deprecated_arguments,
|
1637 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
1638 |
+
r"""
|
1639 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1640 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1641 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1642 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1643 |
+
"""
|
1644 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1645 |
+
|
1646 |
+
model_outputs = self.model(
|
1647 |
+
input_ids,
|
1648 |
+
past_key_values=past_key_values,
|
1649 |
+
attention_mask=attention_mask,
|
1650 |
+
inputs_embeds=inputs_embeds,
|
1651 |
+
use_cache=use_cache,
|
1652 |
+
output_attentions=output_attentions,
|
1653 |
+
output_hidden_states=output_hidden_states,
|
1654 |
+
return_dict=return_dict,
|
1655 |
+
)
|
1656 |
+
|
1657 |
+
hidden_states = model_outputs[0]
|
1658 |
+
hidden_states = self.dropout(hidden_states)
|
1659 |
+
logits = self.classifier(hidden_states)
|
1660 |
+
|
1661 |
+
loss = None
|
1662 |
+
if labels is not None:
|
1663 |
+
# move labels to correct device to enable model parallelism
|
1664 |
+
labels = labels.to(logits.device)
|
1665 |
+
batch_size, seq_length = labels.shape
|
1666 |
+
loss_fct = CrossEntropyLoss()
|
1667 |
+
loss = loss_fct(
|
1668 |
+
logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
|
1669 |
+
)
|
1670 |
+
|
1671 |
+
if not return_dict:
|
1672 |
+
output = (logits,) + model_outputs[2:]
|
1673 |
+
return ((loss,) + output) if loss is not None else output
|
1674 |
+
|
1675 |
+
return TokenClassifierOutput(
|
1676 |
+
loss=loss,
|
1677 |
+
logits=logits,
|
1678 |
+
hidden_states=model_outputs.hidden_states,
|
1679 |
+
attentions=model_outputs.attentions,
|
1680 |
+
)
|
preprocessor_config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": 448,
|
3 |
+
"do_center_crop": true,
|
4 |
+
"do_normalize": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"feature_extractor_type": "CLIPFeatureExtractor",
|
7 |
+
"image_mean": [
|
8 |
+
0.485,
|
9 |
+
0.456,
|
10 |
+
0.406
|
11 |
+
],
|
12 |
+
"image_std": [
|
13 |
+
0.229,
|
14 |
+
0.224,
|
15 |
+
0.225
|
16 |
+
],
|
17 |
+
"resample": 3,
|
18 |
+
"size": 448
|
19 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<img>",
|
4 |
+
"</img>",
|
5 |
+
"<IMG_CONTEXT>",
|
6 |
+
"<quad>",
|
7 |
+
"</quad>",
|
8 |
+
"<ref>",
|
9 |
+
"</ref>",
|
10 |
+
"<box>",
|
11 |
+
"</box>"
|
12 |
+
],
|
13 |
+
"bos_token": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
},
|
20 |
+
"eos_token": {
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": true,
|
25 |
+
"single_word": false
|
26 |
+
},
|
27 |
+
"pad_token": {
|
28 |
+
"content": "</s>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": true,
|
32 |
+
"single_word": false
|
33 |
+
},
|
34 |
+
"unk_token": {
|
35 |
+
"content": "<unk>",
|
36 |
+
"lstrip": false,
|
37 |
+
"normalized": false,
|
38 |
+
"rstrip": false,
|
39 |
+
"single_word": false
|
40 |
+
}
|
41 |
+
}
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": true,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"32000": {
|
30 |
+
"content": "<|endoftext|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"32001": {
|
38 |
+
"content": "<|assistant|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": true,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"32002": {
|
46 |
+
"content": "<|placeholder1|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": true,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"32003": {
|
54 |
+
"content": "<|placeholder2|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": true,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"32004": {
|
62 |
+
"content": "<|placeholder3|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": true,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"32005": {
|
70 |
+
"content": "<|placeholder4|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": true,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"32006": {
|
78 |
+
"content": "<|system|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": true,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"32007": {
|
86 |
+
"content": "<|end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": true,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"32008": {
|
94 |
+
"content": "<|placeholder5|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": true,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"32009": {
|
102 |
+
"content": "<|placeholder6|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": true,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"32010": {
|
110 |
+
"content": "<|user|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": true,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"32011": {
|
118 |
+
"content": "<img>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": true
|
124 |
+
},
|
125 |
+
"32012": {
|
126 |
+
"content": "</img>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": true
|
132 |
+
},
|
133 |
+
"32013": {
|
134 |
+
"content": "<IMG_CONTEXT>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": true
|
140 |
+
},
|
141 |
+
"32014": {
|
142 |
+
"content": "<quad>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": true
|
148 |
+
},
|
149 |
+
"32015": {
|
150 |
+
"content": "</quad>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": true
|
156 |
+
},
|
157 |
+
"32016": {
|
158 |
+
"content": "<ref>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": true
|
164 |
+
},
|
165 |
+
"32017": {
|
166 |
+
"content": "</ref>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": true
|
172 |
+
},
|
173 |
+
"32018": {
|
174 |
+
"content": "<box>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": true
|
180 |
+
},
|
181 |
+
"32019": {
|
182 |
+
"content": "</box>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": true
|
188 |
+
}
|
189 |
+
},
|
190 |
+
"additional_special_tokens": [
|
191 |
+
"<img>",
|
192 |
+
"</img>",
|
193 |
+
"<IMG_CONTEXT>",
|
194 |
+
"<quad>",
|
195 |
+
"</quad>",
|
196 |
+
"<ref>",
|
197 |
+
"</ref>",
|
198 |
+
"<box>",
|
199 |
+
"</box>"
|
200 |
+
],
|
201 |
+
"bos_token": "<s>",
|
202 |
+
"chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') %}{{'<|user|>' + '\n' + message['content'] + '<|end|>' + '\n' + '<|assistant|>' + '\n'}}{% elif (message['role'] == 'assistant') %}{{message['content'] + '<|end|>' + '\n'}}{% endif %}{% endfor %}",
|
203 |
+
"clean_up_tokenization_spaces": false,
|
204 |
+
"eos_token": "</s>",
|
205 |
+
"legacy": false,
|
206 |
+
"model_max_length": 8192,
|
207 |
+
"pad_token": "</s>",
|
208 |
+
"sp_model_kwargs": {},
|
209 |
+
"spaces_between_special_tokens": false,
|
210 |
+
"tokenizer_class": "LlamaTokenizer",
|
211 |
+
"unk_token": "<unk>",
|
212 |
+
"use_default_system_prompt": false
|
213 |
+
}
|