zwellington
commited on
Commit
•
bc5c4bc
1
Parent(s):
72b024d
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: bert-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- azaheadhealth
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
- f1
|
11 |
+
- precision
|
12 |
+
- recall
|
13 |
+
model-index:
|
14 |
+
- name: bert-azahead-v1.1
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Text Classification
|
18 |
+
type: text-classification
|
19 |
+
dataset:
|
20 |
+
name: azaheadhealth
|
21 |
+
type: azaheadhealth
|
22 |
+
config: small
|
23 |
+
split: test
|
24 |
+
args: small
|
25 |
+
metrics:
|
26 |
+
- name: Accuracy
|
27 |
+
type: accuracy
|
28 |
+
value: 0.7916666666666666
|
29 |
+
- name: F1
|
30 |
+
type: f1
|
31 |
+
value: 0.6153846153846154
|
32 |
+
- name: Precision
|
33 |
+
type: precision
|
34 |
+
value: 0.6666666666666666
|
35 |
+
- name: Recall
|
36 |
+
type: recall
|
37 |
+
value: 0.5714285714285714
|
38 |
+
---
|
39 |
+
|
40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
+
should probably proofread and complete it, then remove this comment. -->
|
42 |
+
|
43 |
+
# bert-azahead-v1.1
|
44 |
+
|
45 |
+
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the azaheadhealth dataset.
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.4785
|
48 |
+
- Accuracy: 0.7917
|
49 |
+
- F1: 0.6154
|
50 |
+
- Precision: 0.6667
|
51 |
+
- Recall: 0.5714
|
52 |
+
|
53 |
+
## Model description
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Intended uses & limitations
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training and evaluation data
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training procedure
|
66 |
+
|
67 |
+
### Training hyperparameters
|
68 |
+
|
69 |
+
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 2e-05
|
71 |
+
- train_batch_size: 2
|
72 |
+
- eval_batch_size: 8
|
73 |
+
- seed: 42
|
74 |
+
- gradient_accumulation_steps: 8
|
75 |
+
- total_train_batch_size: 16
|
76 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
77 |
+
- lr_scheduler_type: linear
|
78 |
+
- num_epochs: 10
|
79 |
+
|
80 |
+
### Training results
|
81 |
+
|
82 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
83 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
84 |
+
| 0.6318 | 1.0 | 10 | 0.5247 | 0.6667 | 0.0 | 0.0 | 0.0 |
|
85 |
+
| 0.5623 | 2.0 | 20 | 0.4065 | 0.7917 | 0.5455 | 0.75 | 0.4286 |
|
86 |
+
| 0.4688 | 3.0 | 30 | 0.3514 | 0.7917 | 0.5455 | 0.75 | 0.4286 |
|
87 |
+
| 0.4252 | 4.0 | 40 | 0.3224 | 0.8333 | 0.6667 | 0.8 | 0.5714 |
|
88 |
+
| 0.2409 | 5.0 | 50 | 0.4115 | 0.75 | 0.4 | 0.6667 | 0.2857 |
|
89 |
+
| 0.2196 | 6.0 | 60 | 0.3672 | 0.7917 | 0.6667 | 0.625 | 0.7143 |
|
90 |
+
| 0.1417 | 7.0 | 70 | 0.4441 | 0.7917 | 0.5455 | 0.75 | 0.4286 |
|
91 |
+
| 0.0842 | 8.0 | 80 | 0.4422 | 0.7917 | 0.6154 | 0.6667 | 0.5714 |
|
92 |
+
| 0.065 | 9.0 | 90 | 0.4556 | 0.7917 | 0.6154 | 0.6667 | 0.5714 |
|
93 |
+
| 0.0657 | 10.0 | 100 | 0.4785 | 0.7917 | 0.6154 | 0.6667 | 0.5714 |
|
94 |
+
|
95 |
+
|
96 |
+
### Framework versions
|
97 |
+
|
98 |
+
- Transformers 4.31.0
|
99 |
+
- Pytorch 2.2.0+cu121
|
100 |
+
- Datasets 2.16.1
|
101 |
+
- Tokenizers 0.13.2
|