zwellington commited on
Commit
bc5c4bc
1 Parent(s): 72b024d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +101 -0
README.md ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: bert-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - azaheadhealth
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ - precision
12
+ - recall
13
+ model-index:
14
+ - name: bert-azahead-v1.1
15
+ results:
16
+ - task:
17
+ name: Text Classification
18
+ type: text-classification
19
+ dataset:
20
+ name: azaheadhealth
21
+ type: azaheadhealth
22
+ config: small
23
+ split: test
24
+ args: small
25
+ metrics:
26
+ - name: Accuracy
27
+ type: accuracy
28
+ value: 0.7916666666666666
29
+ - name: F1
30
+ type: f1
31
+ value: 0.6153846153846154
32
+ - name: Precision
33
+ type: precision
34
+ value: 0.6666666666666666
35
+ - name: Recall
36
+ type: recall
37
+ value: 0.5714285714285714
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # bert-azahead-v1.1
44
+
45
+ This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the azaheadhealth dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.4785
48
+ - Accuracy: 0.7917
49
+ - F1: 0.6154
50
+ - Precision: 0.6667
51
+ - Recall: 0.5714
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 2e-05
71
+ - train_batch_size: 2
72
+ - eval_batch_size: 8
73
+ - seed: 42
74
+ - gradient_accumulation_steps: 8
75
+ - total_train_batch_size: 16
76
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
77
+ - lr_scheduler_type: linear
78
+ - num_epochs: 10
79
+
80
+ ### Training results
81
+
82
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
83
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
84
+ | 0.6318 | 1.0 | 10 | 0.5247 | 0.6667 | 0.0 | 0.0 | 0.0 |
85
+ | 0.5623 | 2.0 | 20 | 0.4065 | 0.7917 | 0.5455 | 0.75 | 0.4286 |
86
+ | 0.4688 | 3.0 | 30 | 0.3514 | 0.7917 | 0.5455 | 0.75 | 0.4286 |
87
+ | 0.4252 | 4.0 | 40 | 0.3224 | 0.8333 | 0.6667 | 0.8 | 0.5714 |
88
+ | 0.2409 | 5.0 | 50 | 0.4115 | 0.75 | 0.4 | 0.6667 | 0.2857 |
89
+ | 0.2196 | 6.0 | 60 | 0.3672 | 0.7917 | 0.6667 | 0.625 | 0.7143 |
90
+ | 0.1417 | 7.0 | 70 | 0.4441 | 0.7917 | 0.5455 | 0.75 | 0.4286 |
91
+ | 0.0842 | 8.0 | 80 | 0.4422 | 0.7917 | 0.6154 | 0.6667 | 0.5714 |
92
+ | 0.065 | 9.0 | 90 | 0.4556 | 0.7917 | 0.6154 | 0.6667 | 0.5714 |
93
+ | 0.0657 | 10.0 | 100 | 0.4785 | 0.7917 | 0.6154 | 0.6667 | 0.5714 |
94
+
95
+
96
+ ### Framework versions
97
+
98
+ - Transformers 4.31.0
99
+ - Pytorch 2.2.0+cu121
100
+ - Datasets 2.16.1
101
+ - Tokenizers 0.13.2