jinzr commited on
Commit
567b113
·
1 Parent(s): af64d67

init commit

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +1 -0
  2. data/lang_bpe_2000/.gitattributes +2 -0
  3. data/lang_bpe_2000/L.pt +3 -0
  4. data/lang_bpe_2000/LG.pt +3 -0
  5. data/lang_bpe_2000/L_disambig.pt +3 -0
  6. data/lang_bpe_2000/Linv.pt +3 -0
  7. data/lang_bpe_2000/bpe.model +3 -0
  8. data/lang_bpe_2000/tokens.txt +2002 -0
  9. data/lang_bpe_2000/unigram_2000.model +3 -0
  10. data/lang_bpe_2000/unigram_2000.vocab +2000 -0
  11. data/lm/G_3_gram.pt +3 -0
  12. decoding_results/ctc-decoding/errs-aidatatang_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  13. decoding_results/ctc-decoding/errs-aidatatang_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  14. decoding_results/ctc-decoding/errs-aishell-2_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  15. decoding_results/ctc-decoding/errs-aishell-2_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  16. decoding_results/ctc-decoding/errs-aishell-4-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  17. decoding_results/ctc-decoding/errs-aishell_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  18. decoding_results/ctc-decoding/errs-aishell_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  19. decoding_results/ctc-decoding/errs-alimeeting_eval-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  20. decoding_results/ctc-decoding/errs-alimeeting_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  21. decoding_results/ctc-decoding/errs-kespeech-asr_dev_phase1-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  22. decoding_results/ctc-decoding/errs-kespeech-asr_dev_phase2-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  23. decoding_results/ctc-decoding/errs-kespeech-asr_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  24. decoding_results/ctc-decoding/errs-magicdata_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  25. decoding_results/ctc-decoding/errs-magicdata_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  26. decoding_results/ctc-decoding/errs-wenetspeech-meeting_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  27. decoding_results/ctc-decoding/errs-wenetspeech-net_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  28. decoding_results/ctc-decoding/errs-wenetspeech_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  29. decoding_results/ctc-decoding/log-decode-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model-2023-11-01-14-46-39 +6 -0
  30. decoding_results/ctc-decoding/log-decode-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model-2023-11-01-14-47-28 +273 -0
  31. decoding_results/ctc-decoding/recogs-aidatatang_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  32. decoding_results/ctc-decoding/recogs-aidatatang_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  33. decoding_results/ctc-decoding/recogs-aishell-2_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  34. decoding_results/ctc-decoding/recogs-aishell-2_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  35. decoding_results/ctc-decoding/recogs-aishell-4-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  36. decoding_results/ctc-decoding/recogs-aishell_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  37. decoding_results/ctc-decoding/recogs-aishell_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  38. decoding_results/ctc-decoding/recogs-alimeeting_eval-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  39. decoding_results/ctc-decoding/recogs-alimeeting_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  40. decoding_results/ctc-decoding/recogs-kespeech-asr_dev_phase1-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  41. decoding_results/ctc-decoding/recogs-kespeech-asr_dev_phase2-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  42. decoding_results/ctc-decoding/recogs-kespeech-asr_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  43. decoding_results/ctc-decoding/recogs-magicdata_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  44. decoding_results/ctc-decoding/recogs-magicdata_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  45. decoding_results/ctc-decoding/recogs-wenetspeech-meeting_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  46. decoding_results/ctc-decoding/recogs-wenetspeech-net_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  47. decoding_results/ctc-decoding/recogs-wenetspeech_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +0 -0
  48. decoding_results/ctc-decoding/wer-summary-aidatatang_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +2 -0
  49. decoding_results/ctc-decoding/wer-summary-aidatatang_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +2 -0
  50. decoding_results/ctc-decoding/wer-summary-aishell-2_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt +2 -0
README.md ADDED
@@ -0,0 +1 @@
 
 
1
+ See https://github.com/k2-fsa/icefall/pull/1369
data/lang_bpe_2000/.gitattributes ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ bpe.model filter=lfs diff=lfs merge=lfs -text
2
+ unigram_2000.model filter=lfs diff=lfs merge=lfs -text
data/lang_bpe_2000/L.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae30f58562448d6e9a5393cd8ad469b064921dd86536dfa9b10d9e92d10d74bc
3
+ size 93103207
data/lang_bpe_2000/LG.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9dc74a2507e1c7ca3a754a416f838725a118e2d51bc571ffa8b4799f9cc89405
3
+ size 3570026147
data/lang_bpe_2000/L_disambig.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38fed9050ae18e7ec409d4479da6fe3357bbcb7a40ce3b2bc01ec0f73e4dc421
3
+ size 96103079
data/lang_bpe_2000/Linv.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e3c38c816a79b7874469573891dd1d172633e47bb7c0e1e645f307f3bb2407e
3
+ size 93103207
data/lang_bpe_2000/bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:867a7355801cb43939962ad757ba1cb7941b6171b5a6902772483b4e3a623377
3
+ size 263956
data/lang_bpe_2000/tokens.txt ADDED
@@ -0,0 +1,2002 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <blk> 0
2
+ <sos/eos> 1
3
+ <unk> 2
4
+ <0x00> 3
5
+ <0x01> 4
6
+ <0x02> 5
7
+ <0x03> 6
8
+ <0x04> 7
9
+ <0x05> 8
10
+ <0x06> 9
11
+ <0x07> 10
12
+ <0x08> 11
13
+ <0x09> 12
14
+ <0x0A> 13
15
+ <0x0B> 14
16
+ <0x0C> 15
17
+ <0x0D> 16
18
+ <0x0E> 17
19
+ <0x0F> 18
20
+ <0x10> 19
21
+ <0x11> 20
22
+ <0x12> 21
23
+ <0x13> 22
24
+ <0x14> 23
25
+ <0x15> 24
26
+ <0x16> 25
27
+ <0x17> 26
28
+ <0x18> 27
29
+ <0x19> 28
30
+ <0x1A> 29
31
+ <0x1B> 30
32
+ <0x1C> 31
33
+ <0x1D> 32
34
+ <0x1E> 33
35
+ <0x1F> 34
36
+ <0x20> 35
37
+ <0x21> 36
38
+ <0x22> 37
39
+ <0x23> 38
40
+ <0x24> 39
41
+ <0x25> 40
42
+ <0x26> 41
43
+ <0x27> 42
44
+ <0x28> 43
45
+ <0x29> 44
46
+ <0x2A> 45
47
+ <0x2B> 46
48
+ <0x2C> 47
49
+ <0x2D> 48
50
+ <0x2E> 49
51
+ <0x2F> 50
52
+ <0x30> 51
53
+ <0x31> 52
54
+ <0x32> 53
55
+ <0x33> 54
56
+ <0x34> 55
57
+ <0x35> 56
58
+ <0x36> 57
59
+ <0x37> 58
60
+ <0x38> 59
61
+ <0x39> 60
62
+ <0x3A> 61
63
+ <0x3B> 62
64
+ <0x3C> 63
65
+ <0x3D> 64
66
+ <0x3E> 65
67
+ <0x3F> 66
68
+ <0x40> 67
69
+ <0x41> 68
70
+ <0x42> 69
71
+ <0x43> 70
72
+ <0x44> 71
73
+ <0x45> 72
74
+ <0x46> 73
75
+ <0x47> 74
76
+ <0x48> 75
77
+ <0x49> 76
78
+ <0x4A> 77
79
+ <0x4B> 78
80
+ <0x4C> 79
81
+ <0x4D> 80
82
+ <0x4E> 81
83
+ <0x4F> 82
84
+ <0x50> 83
85
+ <0x51> 84
86
+ <0x52> 85
87
+ <0x53> 86
88
+ <0x54> 87
89
+ <0x55> 88
90
+ <0x56> 89
91
+ <0x57> 90
92
+ <0x58> 91
93
+ <0x59> 92
94
+ <0x5A> 93
95
+ <0x5B> 94
96
+ <0x5C> 95
97
+ <0x5D> 96
98
+ <0x5E> 97
99
+ <0x5F> 98
100
+ <0x60> 99
101
+ <0x61> 100
102
+ <0x62> 101
103
+ <0x63> 102
104
+ <0x64> 103
105
+ <0x65> 104
106
+ <0x66> 105
107
+ <0x67> 106
108
+ <0x68> 107
109
+ <0x69> 108
110
+ <0x6A> 109
111
+ <0x6B> 110
112
+ <0x6C> 111
113
+ <0x6D> 112
114
+ <0x6E> 113
115
+ <0x6F> 114
116
+ <0x70> 115
117
+ <0x71> 116
118
+ <0x72> 117
119
+ <0x73> 118
120
+ <0x74> 119
121
+ <0x75> 120
122
+ <0x76> 121
123
+ <0x77> 122
124
+ <0x78> 123
125
+ <0x79> 124
126
+ <0x7A> 125
127
+ <0x7B> 126
128
+ <0x7C> 127
129
+ <0x7D> 128
130
+ <0x7E> 129
131
+ <0x7F> 130
132
+ <0x80> 131
133
+ <0x81> 132
134
+ <0x82> 133
135
+ <0x83> 134
136
+ <0x84> 135
137
+ <0x85> 136
138
+ <0x86> 137
139
+ <0x87> 138
140
+ <0x88> 139
141
+ <0x89> 140
142
+ <0x8A> 141
143
+ <0x8B> 142
144
+ <0x8C> 143
145
+ <0x8D> 144
146
+ <0x8E> 145
147
+ <0x8F> 146
148
+ <0x90> 147
149
+ <0x91> 148
150
+ <0x92> 149
151
+ <0x93> 150
152
+ <0x94> 151
153
+ <0x95> 152
154
+ <0x96> 153
155
+ <0x97> 154
156
+ <0x98> 155
157
+ <0x99> 156
158
+ <0x9A> 157
159
+ <0x9B> 158
160
+ <0x9C> 159
161
+ <0x9D> 160
162
+ <0x9E> 161
163
+ <0x9F> 162
164
+ <0xA0> 163
165
+ <0xA1> 164
166
+ <0xA2> 165
167
+ <0xA3> 166
168
+ <0xA4> 167
169
+ <0xA5> 168
170
+ <0xA6> 169
171
+ <0xA7> 170
172
+ <0xA8> 171
173
+ <0xA9> 172
174
+ <0xAA> 173
175
+ <0xAB> 174
176
+ <0xAC> 175
177
+ <0xAD> 176
178
+ <0xAE> 177
179
+ <0xAF> 178
180
+ <0xB0> 179
181
+ <0xB1> 180
182
+ <0xB2> 181
183
+ <0xB3> 182
184
+ <0xB4> 183
185
+ <0xB5> 184
186
+ <0xB6> 185
187
+ <0xB7> 186
188
+ <0xB8> 187
189
+ <0xB9> 188
190
+ <0xBA> 189
191
+ <0xBB> 190
192
+ <0xBC> 191
193
+ <0xBD> 192
194
+ <0xBE> 193
195
+ <0xBF> 194
196
+ <0xC0> 195
197
+ <0xC1> 196
198
+ <0xC2> 197
199
+ <0xC3> 198
200
+ <0xC4> 199
201
+ <0xC5> 200
202
+ <0xC6> 201
203
+ <0xC7> 202
204
+ <0xC8> 203
205
+ <0xC9> 204
206
+ <0xCA> 205
207
+ <0xCB> 206
208
+ <0xCC> 207
209
+ <0xCD> 208
210
+ <0xCE> 209
211
+ <0xCF> 210
212
+ <0xD0> 211
213
+ <0xD1> 212
214
+ <0xD2> 213
215
+ <0xD3> 214
216
+ <0xD4> 215
217
+ <0xD5> 216
218
+ <0xD6> 217
219
+ <0xD7> 218
220
+ <0xD8> 219
221
+ <0xD9> 220
222
+ <0xDA> 221
223
+ <0xDB> 222
224
+ <0xDC> 223
225
+ <0xDD> 224
226
+ <0xDE> 225
227
+ <0xDF> 226
228
+ <0xE0> 227
229
+ <0xE1> 228
230
+ <0xE2> 229
231
+ <0xE3> 230
232
+ <0xE4> 231
233
+ <0xE5> 232
234
+ <0xE6> 233
235
+ <0xE7> 234
236
+ <0xE8> 235
237
+ <0xE9> 236
238
+ <0xEA> 237
239
+ <0xEB> 238
240
+ <0xEC> 239
241
+ <0xED> 240
242
+ <0xEE> 241
243
+ <0xEF> 242
244
+ <0xF0> 243
245
+ <0xF1> 244
246
+ <0xF2> 245
247
+ <0xF3> 246
248
+ <0xF4> 247
249
+ <0xF5> 248
250
+ <0xF6> 249
251
+ <0xF7> 250
252
+ <0xF8> 251
253
+ <0xF9> 252
254
+ <0xFA> 253
255
+ <0xFB> 254
256
+ <0xFC> 255
257
+ <0xFD> 256
258
+ <0xFE> 257
259
+ <0xFF> 258
260
+ ▁ 259
261
+ ▁的 260
262
+ ▁我 261
263
+ ▁是 262
264
+ ▁你 263
265
+ ▁了 264
266
+ ▁一 265
267
+ ▁不 266
268
+ ▁这 267
269
+ ▁个 268
270
+ ▁有 269
271
+ ▁就 270
272
+ ▁们 271
273
+ ▁在 272
274
+ ▁他 273
275
+ ▁人 274
276
+ ▁么 275
277
+ ▁来 276
278
+ ▁说 277
279
+ ▁那 278
280
+ ▁要 279
281
+ ▁好 280
282
+ ▁啊 281
283
+ ▁大 282
284
+ ▁到 283
285
+ ▁上 284
286
+ ▁也 285
287
+ ▁没 286
288
+ ▁都 287
289
+ ▁去 288
290
+ ▁能 289
291
+ ▁子 290
292
+ ▁会 291
293
+ ▁为 292
294
+ ▁得 293
295
+ ▁时 294
296
+ ▁还 295
297
+ ▁可 296
298
+ ▁以 297
299
+ ▁什 298
300
+ ▁家 299
301
+ ▁后 300
302
+ ▁看 301
303
+ ▁呢 302
304
+ ▁对 303
305
+ ▁事 304
306
+ ▁天 305
307
+ ▁下 306
308
+ ▁过 307
309
+ ▁想 308
310
+ ▁多 309
311
+ ▁小 310
312
+ ▁出 311
313
+ ▁自 312
314
+ ▁儿 313
315
+ ▁生 314
316
+ ▁给 315
317
+ ▁里 316
318
+ ▁现 317
319
+ ▁着 318
320
+ ▁然 319
321
+ ▁吧 320
322
+ ▁样 321
323
+ ▁道 322
324
+ ▁吗 323
325
+ ▁心 324
326
+ ▁跟 325
327
+ ▁中 326
328
+ ▁很 327
329
+ ▁点 328
330
+ ▁年 329
331
+ ▁和 330
332
+ ▁地 331
333
+ ▁怎 332
334
+ ▁知 333
335
+ ▁十 334
336
+ ▁老 335
337
+ ▁当 336
338
+ ▁把 337
339
+ ▁话 338
340
+ ▁别 339
341
+ ▁所 340
342
+ ▁之 341
343
+ ▁情 342
344
+ ▁实 343
345
+ ▁开 344
346
+ ▁面 345
347
+ ▁回 346
348
+ ▁行 347
349
+ ▁国 348
350
+ ▁做 349
351
+ ▁己 350
352
+ ▁经 351
353
+ ▁如 352
354
+ ▁真 353
355
+ ▁起 354
356
+ ▁候 355
357
+ ▁些 356
358
+ ▁让 357
359
+ ▁发 358
360
+ ▁她 359
361
+ ▁觉 360
362
+ ▁但 361
363
+ ▁成 362
364
+ ▁定 363
365
+ ▁意 364
366
+ ▁二 365
367
+ ▁长 366
368
+ ▁最 367
369
+ ▁方 368
370
+ ▁三 369
371
+ ▁前 370
372
+ ▁因 371
373
+ ▁用 372
374
+ ▁呀 373
375
+ ▁种 374
376
+ ▁只 375
377
+ ▁走 376
378
+ ▁其 377
379
+ ▁问 378
380
+ ▁再 379
381
+ ▁果 380
382
+ ▁而 381
383
+ ▁分 382
384
+ ▁两 383
385
+ ▁打 384
386
+ ▁学 385
387
+ ▁间 386
388
+ ▁您 387
389
+ ▁本 388
390
+ ▁于 389
391
+ ▁明 390
392
+ ▁手 391
393
+ ▁公 392
394
+ ▁听 393
395
+ ▁比 394
396
+ ▁作 395
397
+ ▁女 396
398
+ ▁太 397
399
+ ▁今 398
400
+ ▁从 399
401
+ ▁关 400
402
+ ▁妈 401
403
+ ▁同 402
404
+ ▁法 403
405
+ ▁动 404
406
+ ▁已 405
407
+ ▁见 406
408
+ ▁才 407
409
+ ▁孩 408
410
+ ▁感 409
411
+ ▁吃 410
412
+ ▁常 411
413
+ ▁次 412
414
+ ▁它 413
415
+ ▁进 414
416
+ ▁先 415
417
+ ▁找 416
418
+ ▁身 417
419
+ ▁全 418
420
+ ▁理 419
421
+ ▁又 420
422
+ ▁力 421
423
+ ▁正 422
424
+ ▁主 423
425
+ ▁应 424
426
+ ▁高 425
427
+ ▁被 426
428
+ ▁钱 427
429
+ ▁快 428
430
+ ▁等 429
431
+ ▁头 430
432
+ ▁重 431
433
+ ▁车 432
434
+ ▁谢 433
435
+ ▁��� 434
436
+ ▁东 435
437
+ ▁放 436
438
+ ▁无 437
439
+ ▁工 438
440
+ ▁咱 439
441
+ ▁哪 440
442
+ ▁五 441
443
+ ▁者 442
444
+ ▁像 443
445
+ ▁西 444
446
+ ▁该 445
447
+ ▁干 446
448
+ ▁相 447
449
+ ▁信 448
450
+ ▁机 449
451
+ ▁百 450
452
+ ▁特 451
453
+ ▁业 452
454
+ ▁活 453
455
+ ▁师 454
456
+ ▁边 455
457
+ ▁爱 456
458
+ ▁友 457
459
+ ▁新 458
460
+ ▁外 459
461
+ ▁位 460
462
+ ▁更 461
463
+ ▁直 462
464
+ ▁几 463
465
+ ▁第 464
466
+ ▁非 465
467
+ ▁四 466
468
+ ▁题 467
469
+ ▁接 468
470
+ ▁少 469
471
+ ▁哥 470
472
+ ▁死 471
473
+ ▁完 472
474
+ ▁刚 473
475
+ ▁电 474
476
+ ▁气 475
477
+ ▁安 476
478
+ ▁爸 477
479
+ ▁白 478
480
+ ▁告 479
481
+ ▁美 480
482
+ ▁解 481
483
+ ▁叫 482
484
+ ▁月 483
485
+ ▁带 484
486
+ ▁欢 485
487
+ ▁谁 486
488
+ ▁体 487
489
+ ▁喜 488
490
+ ▁部 489
491
+ ▁场 490
492
+ ▁姐 491
493
+ ▁军 492
494
+ ▁万 493
495
+ ▁结 494
496
+ ▁合 495
497
+ ▁难 496
498
+ ▁八 497
499
+ ▁每 498
500
+ ▁目 499
501
+ ▁亲 500
502
+ ▁朋 501
503
+ ▁认 502
504
+ ▁总 503
505
+ ▁加 504
506
+ ▁通 505
507
+ ▁办 506
508
+ ▁马 507
509
+ ▁件 508
510
+ ▁受 509
511
+ ▁任 510
512
+ ▁请 511
513
+ ▁住 512
514
+ ▁王 513
515
+ ▁思 514
516
+ ▁门 515
517
+ ▁名 516
518
+ ▁平 517
519
+ ▁系 518
520
+ ▁文 519
521
+ ▁帮 520
522
+ ▁路 521
523
+ ▁变 522
524
+ ▁记 523
525
+ ▁水 524
526
+ ▁九 525
527
+ ▁算 526
528
+ ▁将 527
529
+ ▁口 528
530
+ ▁男 529
531
+ ▁度 530
532
+ ▁报 531
533
+ ▁六 532
534
+ ▁张 533
535
+ ▁管 534
536
+ ▁够 535
537
+ ▁性 536
538
+ ▁表 537
539
+ ▁提 538
540
+ ▁何 539
541
+ ▁讲 540
542
+ ▁期 541
543
+ ▁拿 542
544
+ ▁保 543
545
+ ▁嘛 544
546
+ ▁司 545
547
+ ▁原 546
548
+ ▁始 547
549
+ ▁此 548
550
+ ▁诉 549
551
+ ▁处 550
552
+ ▁清 551
553
+ ▁内 552
554
+ ▁产 553
555
+ ▁金 554
556
+ ▁晚 555
557
+ ▁早 556
558
+ ▁交 557
559
+ ▁离 558
560
+ ▁眼 559
561
+ ▁队 560
562
+ ▁七 561
563
+ ▁入 562
564
+ ▁山 563
565
+ ▁代 564
566
+ ▁市 565
567
+ ▁海 566
568
+ ▁物 567
569
+ ▁零 568
570
+ ▁望 569
571
+ ▁世 570
572
+ ▁婚 571
573
+ ▁命 572
574
+ ▁越 573
575
+ 虽 574
576
+ 既 575
577
+ 湾 576
578
+ 倍 577
579
+ 厨 578
580
+ 档 579
581
+ 闺 580
582
+ 乔 581
583
+ 励 582
584
+ 朕 583
585
+ 扫 584
586
+ 娶 585
587
+ 末 586
588
+ 碎 587
589
+ 扔 588
590
+ 踪 589
591
+ 豪 590
592
+ 迫 591
593
+ 柔 592
594
+ 鸟 593
595
+ 欲 594
596
+ 扎 595
597
+ 诊 596
598
+ 俺 597
599
+ 郭 598
600
+ 载 599
601
+ 捕 600
602
+ 辑 601
603
+ 阅 602
604
+ 冠 603
605
+ 尸 604
606
+ 均 605
607
+ 逐 606
608
+ 禁 607
609
+ 妖 608
610
+ 厚 609
611
+ 奥 610
612
+ 摇 611
613
+ 尾 612
614
+ 毁 613
615
+ 篇 614
616
+ 骑 615
617
+ 摄 616
618
+ 吐 617
619
+ 蜜 618
620
+ 竞 619
621
+ 固 620
622
+ 幕 621
623
+ 狠 622
624
+ 鼠 623
625
+ 狂 624
626
+ 宽 625
627
+ 残 626
628
+ 偶 627
629
+ 订 628
630
+ 圣 629
631
+ 汇 630
632
+ 奋 631
633
+ 糖 632
634
+ 债 633
635
+ 幅 634
636
+ 奔 635
637
+ 锅 636
638
+ 屁 637
639
+ 碗 638
640
+ 凤 639
641
+ 递 640
642
+ 瞎 641
643
+ 扬 642
644
+ 丹 643
645
+ 迪 644
646
+ 序 645
647
+ 娃 646
648
+ 墙 647
649
+ 呐 648
650
+ 寒 649
651
+ 颗 650
652
+ 凉 651
653
+ 滚 652
654
+ 库 653
655
+ 屈 654
656
+ 述 655
657
+ 羊 656
658
+ 魂 657
659
+ 锁 658
660
+ 撒 659
661
+ 涉 660
662
+ 踏 661
663
+ 彼 662
664
+ 附 663
665
+ 闲 664
666
+ 宇 665
667
+ 窗 666
668
+ 赏 667
669
+ 脾 668
670
+ 棒 669
671
+ 拒 670
672
+ 菲 671
673
+ 趟 672
674
+ 培 673
675
+ 粮 674
676
+ 仗 675
677
+ 泡 676
678
+ 违 677
679
+ 币 678
680
+ 娜 679
681
+ 剑 680
682
+ 徒 681
683
+ 撤 682
684
+ 糊 683
685
+ 悲 684
686
+ 阴 685
687
+ 尼 686
688
+ 陷 687
689
+ 忠 688
690
+ 欠 689
691
+ 珠 690
692
+ 拾 691
693
+ 岛 692
694
+ 射 693
695
+ 暂 694
696
+ 绩 695
697
+ 毫 696
698
+ 唉 697
699
+ 忽 698
700
+ 绿 699
701
+ 悔 700
702
+ 罚 701
703
+ 穷 702
704
+ 遭 703
705
+ 拖 704
706
+ 吹 705
707
+ 泪 706
708
+ 肚 707
709
+ 慧 708
710
+ 赞 709
711
+ 圆 710
712
+ 扰 711
713
+ 宾 712
714
+ 歉 713
715
+ 郑 714
716
+ 淡 715
717
+ 迟 716
718
+ 辞 717
719
+ 喂 718
720
+ 仍 719
721
+ 饿 720
722
+ 刷 721
723
+ 诺 722
724
+ 胆 723
725
+ 漫 724
726
+ 瞧 725
727
+ 疯 726
728
+ 敏 727
729
+ 途 728
730
+ 沟 729
731
+ 撞 730
732
+ 染 731
733
+ 尚 732
734
+ 桥 733
735
+ 彻 734
736
+ 孕 735
737
+ 盛 736
738
+ 析 737
739
+ 甜 738
740
+ 距 739
741
+ 缘 740
742
+ 瓶 741
743
+ 版 742
744
+ 延 743
745
+ 熊 744
746
+ 聪 745
747
+ 贴 746
748
+ 纯 747
749
+ 宜 748
750
+ 赔 749
751
+ 摸 750
752
+ 桌 751
753
+ 启 752
754
+ 汤 753
755
+ 涨 754
756
+ 搭 755
757
+ 废 756
758
+ 瑞 757
759
+ 迹 758
760
+ 典 759
761
+ 川 760
762
+ 吉 761
763
+ 纳 762
764
+ 朵 763
765
+ 稍 764
766
+ 佛 765
767
+ 怨 766
768
+ 患 767
769
+ 庄 768
770
+ 袋 769
771
+ 伟 770
772
+ 蒙 771
773
+ 征 772
774
+ 鞋 773
775
+ 洲 774
776
+ 丰 775
777
+ 箱 776
778
+ 针 777
779
+ 旧 778
780
+ 躲 779
781
+ 梁 780
782
+ 殿 781
783
+ 讯 782
784
+ 蓝 783
785
+ 喊 784
786
+ 症 785
787
+ 盖 786
788
+ 亏 787
789
+ 旦 788
790
+ 谷 789
791
+ 刑 790
792
+ 欺 791
793
+ 晨 792
794
+ 仇 793
795
+ 赢 794
796
+ 胖 795
797
+ 镜 796
798
+ 颜 797
799
+ 仙 798
800
+ 猪 799
801
+ 隔 800
802
+ 握 801
803
+ 鼓 802
804
+ 授 803
805
+ 驾 804
806
+ 席 805
807
+ 航 806
808
+ 编 807
809
+ 朱 808
810
+ 龄 809
811
+ 搬 810
812
+ 挣 811
813
+ 雄 812
814
+ 灭 813
815
+ 魔 814
816
+ 凶 815
817
+ 冬 816
818
+ 摆 817
819
+ 闭 818
820
+ 劝 819
821
+ 抽 820
822
+ 洞 821
823
+ 聚 822
824
+ 凡 823
825
+ 售 824
826
+ 峰 825
827
+ 渐 826
828
+ 狼 827
829
+ 冒 828
830
+ 诗 829
831
+ 豆 830
832
+ 孤 831
833
+ 谋 832
834
+ 丁 833
835
+ 巧 834
836
+ 恨 835
837
+ 珍 836
838
+ 弱 837
839
+ 络 838
840
+ 透 839
841
+ 挥 840
842
+ 厅 841
843
+ 额 842
844
+ 略 843
845
+ 移 844
846
+ 软 845
847
+ 央 846
848
+ 耳 847
849
+ 童 848
850
+ 帅 849
851
+ 丈 850
852
+ 登 851
853
+ 忆 852
854
+ 巨 853
855
+ 董 854
856
+ 挂 855
857
+ 惜 856
858
+ 损 857
859
+ 敬 858
860
+ 租 859
861
+ 硬 860
862
+ 剩 861
863
+ 估 862
864
+ 灯 863
865
+ 镇 864
866
+ 阶 865
867
+ 鲜 866
868
+ 核 867
869
+ 访 868
870
+ 荣 869
871
+ 阵 870
872
+ 虚 871
873
+ 曲 872
874
+ 磨 873
875
+ 腿 874
876
+ 净 875
877
+ 佳 876
878
+ 猜 877
879
+ 暖 878
880
+ 季 879
881
+ 烈 880
882
+ 域 881
883
+ 爆 882
884
+ 麦 883
885
+ 避 884
886
+ 骂 885
887
+ 炸 886
888
+ 账 887
889
+ 戴 888
890
+ 媒 889
891
+ 诚 890
892
+ 齐 891
893
+ 刺 892
894
+ 奖 893
895
+ 拼 894
896
+ 腾 895
897
+ 疫 896
898
+ 赚 897
899
+ 尤 898
900
+ 舍 899
901
+ 祖 900
902
+ 梅 901
903
+ 列 902
904
+ 沈 903
905
+ 辆 904
906
+ 吓 905
907
+ 唯 906
908
+ 触 907
909
+ 偏 908
910
+ 宗 909
911
+ 劲 910
912
+ 港 911
913
+ 旁 912
914
+ 杰 913
915
+ 莫 914
916
+ 湖 915
917
+ 牙 916
918
+ 傅 917
919
+ 签 918
920
+ 祝 919
921
+ 伯 920
922
+ 猫 921
923
+ 革 922
924
+ 拥 923
925
+ 纸 924
926
+ 秦 925
927
+ 亡 926
928
+ 键 927
929
+ 尝 928
930
+ 协 929
931
+ 杂 930
932
+ 遗 931
933
+ 粉 932
934
+ 购 933
935
+ 嫁 934
936
+ 洋 935
937
+ 凭 936
938
+ 顿 937
939
+ 烟 938
940
+ 沉 939
941
+ 嫂 940
942
+ 隐 941
943
+ 暗 942
944
+ 汽 943
945
+ 混 944
946
+ 操 945
947
+ 减 946
948
+ 韩 947
949
+ 冰 948
950
+ 欧 949
951
+ 秋 950
952
+ 威 951
953
+ 端 952
954
+ 臣 953
955
+ 输 954
956
+ 睛 955
957
+ 呗 956
958
+ 稳 957
959
+ 雷 958
960
+ 攻 959
961
+ 审 960
962
+ 异 961
963
+ 融 962
964
+ 虎 963
965
+ 徐 964
966
+ 船 965
967
+ 暴 966
968
+ 占 967
969
+ 勇 968
970
+ 劳 969
971
+ 吸 970
972
+ 材 971
973
+ 哦 972
974
+ 搜 973
975
+ 寻 974
976
+ 默 975
977
+ 恶 976
978
+ 姻 977
979
+ 迷 978
980
+ 骨 979
981
+ 益 980
982
+ 街 981
983
+ 疗 982
984
+ 束 983
985
+ 傻 984
986
+ 逼 985
987
+ 杯 986
988
+ 策 987
989
+ 县 988
990
+ 托 989
991
+ 织 990
992
+ 施 991
993
+ 轮 992
994
+ 沙 993
995
+ 厉 994
996
+ 丢 995
997
+ 绪 996
998
+ 碰 997
999
+ 尊 998
1000
+ 嫌 999
1001
+ 抢 1000
1002
+ 宋 1001
1003
+ 嘉 1002
1004
+ 绍 1003
1005
+ 宣 1004
1006
+ 贝 1005
1007
+ 盘 1006
1008
+ 谓 1007
1009
+ 笔 1008
1010
+ 趣 1009
1011
+ 折 1010
1012
+ 野 1011
1013
+ 恩 1012
1014
+ 脱 1013
1015
+ 右 1014
1016
+ 惯 1015
1017
+ 雅 1016
1018
+ 执 1017
1019
+ 丝 1018
1020
+ 呼 1019
1021
+ 构 1020
1022
+ 顶 1021
1023
+ 舒 1022
1024
+ 遍 1023
1025
+ 农 1024
1026
+ 积 1025
1027
+ 恐 1026
1028
+ 余 1027
1029
+ 探 1028
1030
+ 媳 1029
1031
+ 吵 1030
1032
+ 词 1031
1033
+ 烧 1032
1034
+ 范 1033
1035
+ 训 1034
1036
+ 庆 1035
1037
+ 漂 1036
1038
+ 浪 1037
1039
+ 亚 1038
1040
+ 彩 1039
1041
+ 辛 1040
1042
+ 乡 1041
1043
+ 宁 1042
1044
+ 码 1043
1045
+ 茶 1044
1046
+ 餐 1045
1047
+ 床 1046
1048
+ 归 1047
1049
+ 忍 1048
1050
+ 释 1049
1051
+ 限 1050
1052
+ 测 1051
1053
+ 波 1052
1054
+ 降 1053
1055
+ 鸡 1054
1056
+ 销 1055
1057
+ 免 1056
1058
+ 胜 1057
1059
+ 缺 1058
1060
+ 翻 1059
1061
+ 采 1060
1062
+ 散 1061
1063
+ 敌 1062
1064
+ 陆 1063
1065
+ 败 1064
1066
+ 疼 1065
1067
+ 馆 1066
1068
+ 批 1067
1069
+ 逃 1068
1070
+ 封 1069
1071
+ 园 1070
1072
+ 困 1071
1073
+ 木 1072
1074
+ 田 1073
1075
+ 屋 1074
1076
+ 秘 1075
1077
+ 印 1076
1078
+ 弹 1077
1079
+ 厂 1078
1080
+ 晓 1079
1081
+ 副 1080
1082
+ 叶 1081
1083
+ 左 1082
1084
+ 舞 1083
1085
+ 斗 1084
1086
+ 树 1085
1087
+ 露 1086
1088
+ 唐 1087
1089
+ 挑 1088
1090
+ 临 1089
1091
+ 旅 1090
1092
+ 素 1091
1093
+ 吴 1092
1094
+ 私 1093
1095
+ 若 1094
1096
+ 午 1095
1097
+ 章 1096
1098
+ 升 1097
1099
+ 充 1098
1100
+ 刀 1099
1101
+ 补 1100
1102
+ 善 1101
1103
+ 录 1102
1104
+ 惊 1103
1105
+ 咋 1104
1106
+ 夏 1105
1107
+ 源 1106
1108
+ 讨 1107
1109
+ 抗 1108
1110
+ 伴 1109
1111
+ 检 1110
1112
+ 层 1111
1113
+ 兰 1112
1114
+ 秀 1113
1115
+ 弃 1114
1116
+ 纪 1115
1117
+ 架 1116
1118
+ 卡 1117
1119
+ 频 1118
1120
+ 预 1119
1121
+ 判 1120
1122
+ 蛋 1121
1123
+ 赵 1122
1124
+ 亿 1123
1125
+ 族 1124
1126
+ 率 1125
1127
+ 姓 1126
1128
+ 帝 1127
1129
+ 短 1128
1130
+ 例 1129
1131
+ 努 1130
1132
+ 供 1131
1133
+ 松 1132
1134
+ 草 1133
1135
+ 掌 1134
1136
+ 良 1135
1137
+ 恋 1136
1138
+ 君 1137
1139
+ 替 1138
1140
+ 监 1139
1141
+ 闻 1140
1142
+ 圈 1141
1143
+ 熟 1142
1144
+ 危 1143
1145
+ 激 1144
1146
+ 鱼 1145
1147
+ 健 1146
1148
+ 昨 1147
1149
+ 景 1148
1150
+ 赛 1149
1151
+ 雪 1150
1152
+ 骗 1151
1153
+ 艺 1152
1154
+ 姨 1153
1155
+ 货 1154
1156
+ 课 1155
1157
+ 称 1156
1158
+ 藏 1157
1159
+ 评 1158
1160
+ 灵 1159
1161
+ 孙 1160
1162
+ 介 1161
1163
+ 省 1162
1164
+ 智 1163
1165
+ 堂 1164
1166
+ 罗 1165
1167
+ 索 1166
1168
+ 宫 1167
1169
+ 富 1168
1170
+ 康 1169
1171
+ 普 1170
1172
+ 维 1171
1173
+ 套 1172
1174
+ 效 1173
1175
+ 般 1174
1176
+ 博 1175
1177
+ 抱 1176
1178
+ 偷 1177
1179
+ 票 1178
1180
+ 否 1179
1181
+ 拜 1180
1182
+ 洗 1181
1183
+ 退 1182
1184
+ 狗 1183
1185
+ 温 1184
1186
+ 银 1185
1187
+ 优 1186
1188
+ 闹 1187
1189
+ 招 1188
1190
+ 哭 1189
1191
+ 牛 1190
1192
+ 铁 1191
1193
+ 借 1192
1194
+ 丽 1193
1195
+ 肉 1194
1196
+ 济 1195
1197
+ 止 1196
1198
+ 皮 1197
1199
+ 休 1198
1200
+ 剧 1199
1201
+ 雨 1200
1202
+ 脚 1201
1203
+ 跳 1202
1204
+ 误 1203
1205
+ 获 1204
1206
+ 玉 1205
1207
+ 累 1206
1208
+ 冷 1207
1209
+ 唱 1208
1210
+ 毒 1209
1211
+ 土 1210
1212
+ 围 1211
1213
+ 搞 1212
1214
+ 概 1213
1215
+ 座 1214
1216
+ 痛 1215
1217
+ 举 1216
1218
+ 群 1217
1219
+ 苏 1218
1220
+ 嘴 1219
1221
+ 牌 1220
1222
+ 型 1221
1223
+ 史 1222
1224
+ 修 1223
1225
+ 卫 1224
1226
+ 毕 1225
1227
+ 括 1226
1228
+ 辈 1227
1229
+ 致 1228
1230
+ 杨 1229
1231
+ 胡 1230
1232
+ 防 1231
1233
+ 项 1232
1234
+ 育 1233
1235
+ 麻 1234
1236
+ 置 1235
1237
+ 冲 1236
1238
+ 企 1237
1239
+ 委 1238
1240
+ 弄 1239
1241
+ 爹 1240
1242
+ 妻 1241
1243
+ 枪 1242
1244
+ 汉 1243
1245
+ 虑 1244
1246
+ 守 1245
1247
+ 河 1246
1248
+ 财 1247
1249
+ 增 1248
1250
+ 款 1249
1251
+ 势 1250
1252
+ 妇 1251
1253
+ 古 1252
1254
+ 春 1253
1255
+ 巴 1254
1256
+ 伙 1255
1257
+ 环 1256
1258
+ 烦 1257
1259
+ 犯 1258
1260
+ 境 1259
1261
+ 尔 1260
1262
+ 划 1261
1263
+ 付 1262
1264
+ 似 1263
1265
+ 室 1264
1266
+ 朝 1265
1267
+ 庭 1266
1268
+ 速 1267
1269
+ 乱 1268
1270
+ 引 1269
1271
+ 州 1270
1272
+ 即 1271
1273
+ 模 1272
1274
+ 顺 1273
1275
+ 练 1274
1276
+ 居 1275
1277
+ 甚 1276
1278
+ 某 1277
1279
+ 坚 1278
1280
+ 府 1279
1281
+ 按 1280
1282
+ 料 1281
1283
+ 依 1282
1284
+ 鬼 1283
1285
+ 哈 1284
1286
+ 永 1285
1287
+ 职 1286
1288
+ 双 1287
1289
+ 图 1288
1290
+ 显 1289
1291
+ 控 1290
1292
+ 坏 1291
1293
+ 乎 1292
1294
+ 派 1293
1295
+ 属 1294
1296
+ 村 1295
1297
+ 贵 1296
1298
+ 压 1297
1299
+ 互 1298
1300
+ 研 1299
1301
+ 菜 1300
1302
+ 楼 1301
1303
+ 器 1302
1304
+ 油 1303
1305
+ 则 1304
1306
+ 味 1305
1307
+ 停 1306
1308
+ 极 1307
1309
+ 钟 1308
1310
+ 米 1309
1311
+ 细 1310
1312
+ 低 1311
1313
+ 仅 1312
1314
+ 语 1313
1315
+ 靠 1314
1316
+ 配 1315
1317
+ 状 1316
1318
+ 香 1317
1319
+ 毛 1318
1320
+ 享 1319
1321
+ 罪 1320
1322
+ 具 1321
1323
+ 醒 1322
1324
+ 血 1323
1325
+ 忘 1324
1326
+ 独 1325
1327
+ 适 1326
1328
+ 婆 1327
1329
+ 怀 1328
1330
+ 追 1329
1331
+ 股 1330
1332
+ 石 1331
1333
+ 角 1332
1334
+ 验 1333
1335
+ 响 1334
1336
+ 梦 1335
1337
+ 拍 1336
1338
+ 初 1337
1339
+ 武 1338
1340
+ 背 1339
1341
+ 静 1340
1342
+ 礼 1341
1343
+ 级 1342
1344
+ 集 1343
1345
+ 食 1344
1346
+ 超 1345
1347
+ 察 1346
1348
+ 营 1347
1349
+ 云 1348
1350
+ 标 1349
1351
+ 际 1350
1352
+ 击 1351
1353
+ 校 1352
1354
+ 承 1353
1355
+ 穿 1354
1356
+ 存 1355
1357
+ 克 1356
1358
+ 密 1357
1359
+ 严 1358
1360
+ 议 1359
1361
+ 疑 1360
1362
+ 约 1361
1363
+ 权 1362
1364
+ 党 1363
1365
+ 斯 1364
1366
+ 脑 1365
1367
+ 店 1366
1368
+ 足 1367
1369
+ 龙 1368
1370
+ 究 1369
1371
+ 择 1370
1372
+ 律 1371
1373
+ 户 1372
1374
+ 竟 1373
1375
+ 争 1374
1376
+ 另 1375
1377
+ 破 1376
1378
+ 抓 1377
1379
+ 幸 1378
1380
+ 迎 1379
1381
+ 念 1380
1382
+ 须 1381
1383
+ 险 1382
1384
+ 阳 1383
1385
+ 陪 1384
1386
+ 奇 1385
1387
+ 画 1386
1388
+ 简 1387
1389
+ 继 1388
1390
+ 广 1389
1391
+ 参 1390
1392
+ 歌 1391
1393
+ 球 1392
1394
+ 助 1393
1395
+ 形 1394
1396
+ 治 1395
1397
+ 黄 1396
1398
+ 质 1397
1399
+ 英 1398
1400
+ 技 1399
1401
+ 令 1400
1402
+ 类 1401
1403
+ 假 1402
1404
+ 推 1403
1405
+ 落 1404
1406
+ 青 1405
1407
+ 布 1406
1408
+ 负 1407
1409
+ 兵 1408
1410
+ 江 1409
1411
+ 亮 1410
1412
+ 陈 1411
1413
+ 夜 1412
1414
+ 叔 1413
1415
+ 懂 1414
1416
+ 怪 1415
1417
+ 戏 1416
1418
+ 顾 1417
1419
+ 遇 1418
1420
+ 黑 1419
1421
+ 刻 1420
1422
+ 脸 1421
1423
+ 示 1422
1424
+ 组 1423
1425
+ 衣 1424
1426
+ 德 1425
1427
+ 换 1426
1428
+ 统 1427
1429
+ 士 1428
1430
+ 值 1429
1431
+ 京 1430
1432
+ 排 1431
1433
+ 责 1432
1434
+ 华 1433
1435
+ 除 1434
1436
+ 突 1435
1437
+ 曾 1436
1438
+ 姑 1437
1439
+ 星 1438
1440
+ 板 1439
1441
+ 支 1440
1442
+ 久 1441
1443
+ 社 1442
1444
+ 尽 1443
1445
+ 断 1444
1446
+ 切 1445
1447
+ 刘 1446
1448
+ 掉 1447
1449
+ 规 1448
1450
+ 忙 1449
1451
+ 历 1450
1452
+ 担 1451
1453
+ 药 1452
1454
+ 福 1453
1455
+ 读 1454
1456
+ 游 1455
1457
+ 设 1456
1458
+ 取 1457
1459
+ 奶 1458
1460
+ 热 1459
1461
+ 装 1460
1462
+ 护 1461
1463
+ 飞 1462
1464
+ 楚 1463
1465
+ 兴 1464
1466
+ 局 1465
1467
+ 急 1466
1468
+ 态 1467
1469
+ 专 1468
1470
+ 皇 1469
1471
+ 元 1470
1472
+ 兄 1471
1473
+ 习 1472
1474
+ 投 1473
1475
+ 志 1474
1476
+ 象 1475
1477
+ 领 1476
1478
+ 创 1477
1479
+ 播 1478
1480
+ 卖 1479
1481
+ 谈 1480
1482
+ 差 1481
1483
+ 妹 1482
1484
+ 站 1483
1485
+ 众 1484
1486
+ 绝 1485
1487
+ 答 1486
1488
+ 展 1487
1489
+ 养 1488
1490
+ 续 1489
1491
+ 造 1490
1492
+ 术 1491
1493
+ 及 1492
1494
+ 精 1493
1495
+ 敢 1494
1496
+ 班 1495
1497
+ 试 1496
1498
+ 救 1497
1499
+ 随 1498
1500
+ 费 1499
1501
+ 待 1500
1502
+ 苦 1501
1503
+ 运 1502
1504
+ 科 1503
1505
+ 使 1504
1506
+ 林 1505
1507
+ 警 1506
1508
+ 义 1507
1509
+ 倒 1508
1510
+ 阿 1509
1511
+ 呃 1510
1512
+ 啦 1511
1513
+ 复 1512
1514
+ 终 1513
1515
+ 转 1514
1516
+ 政 1515
1517
+ 价 1516
1518
+ 色 1517
1519
+ 视 1518
1520
+ 份 1519
1521
+ 观 1520
1522
+ 睡 1521
1523
+ 基 1522
1524
+ 格 1523
1525
+ 未 1524
1526
+ 客 1525
1527
+ 聊 1526
1528
+ 功 1527
1529
+ 音 1528
1530
+ 步 1529
1531
+ 满 1530
1532
+ 啥 1531
1533
+ 改 1532
1534
+ 片 1533
1535
+ 论 1534
1536
+ 深 1535
1537
+ 写 1536
1538
+ 指 1537
1539
+ 慢 1538
1540
+ 团 1539
1541
+ 导 1540
1542
+ 首 1541
1543
+ 拉 1542
1544
+ 线 1543
1545
+ 火 1544
1546
+ 易 1545
1547
+ 轻 1546
1548
+ 官 1547
1549
+ 达 1548
1550
+ 红 1549
1551
+ 岁 1550
1552
+ 区 1551
1553
+ 笑 1552
1554
+ 跑 1553
1555
+ 赶 1554
1556
+ 肯 1555
1557
+ 言 1556
1558
+ 微 1557
1559
+ 联 1558
1560
+ 酒 1559
1561
+ 却 1560
1562
+ 半 1561
1563
+ 空 1562
1564
+ 共 1563
1565
+ 调 1564
1566
+ 许 1565
1567
+ 注 1566
1568
+ 建 1567
1569
+ 坐 1568
1570
+ 故 1569
1571
+ 希 1570
1572
+ 演 1571
1573
+ 根 1572
1574
+ 伤 1573
1575
+ 消 1574
1576
+ 流 1575
1577
+ 传 1576
1578
+ 愿 1577
1579
+ 式 1578
1580
+ 网 1579
1581
+ 识 1580
1582
+ 商 1581
1583
+ 南 1582
1584
+ 杀 1583
1585
+ 据 1584
1586
+ 李 1585
1587
+ 紧 1586
1588
+ 句 1587
1589
+ 由 1588
1590
+ 周 1589
1591
+ 段 1590
1592
+ 挺 1591
1593
+ 便 1592
1594
+ 块 1593
1595
+ 查 1594
1596
+ 玩 1595
1597
+ 台 1596
1598
+ 立 1597
1599
+ 失 1598
1600
+ 字 1599
1601
+ 害 1600
1602
+ 喝 1601
1603
+ 程 1602
1604
+ 制 1603
1605
+ 选 1604
1606
+ 证 1605
1607
+ 持 1606
1608
+ 较 1607
1609
+ 母 1608
1610
+ 况 1609
1611
+ 容 1610
1612
+ 界 1611
1613
+ 案 1612
1614
+ 备 1613
1615
+ 考 1614
1616
+ 近 1615
1617
+ 神 1616
1618
+ 宝 1617
1619
+ 留 1618
1620
+ 饭 1619
1621
+ 至 1620
1622
+ 北 1621
1623
+ 远 1622
1624
+ 息 1623
1625
+ 乐 1624
1626
+ 连 1625
1627
+ 声 1626
1628
+ 决 1627
1629
+ 俩 1628
1630
+ 夫 1629
1631
+ 城 1630
1632
+ 影 1631
1633
+ 务 1632
1634
+ 强 1633
1635
+ 照 1634
1636
+ 计 1635
1637
+ 嗯 1636
1638
+ 弟 1637
1639
+ 病 1638
1640
+ 整 1639
1641
+ 光 1640
1642
+ 准 1641
1643
+ 包 1642
1644
+ 条 1643
1645
+ 必 1644
1646
+ 送 1645
1647
+ 风 1646
1648
+ 单 1647
1649
+ 各 1648
1650
+ 确 1649
1651
+ 往 1650
1652
+ 利 1651
1653
+ 书 1652
1654
+ 院 1653
1655
+ 数 1654
1656
+ 医 1655
1657
+ 娘 1656
1658
+ 教 1657
1659
+ 求 1658
1660
+ 资 1659
1661
+ 需 1660
1662
+ 服 1661
1663
+ 与 1662
1664
+ 并 1663
1665
+ 爷 1664
1666
+ 化 1665
1667
+ 民 1666
1668
+ 品 1667
1669
+ 且 1668
1670
+ 底 1669
1671
+ 怕 1670
1672
+ 千 1671
1673
+ 号 1672
1674
+ 员 1673
1675
+ 或 1674
1676
+ 量 1675
1677
+ 买 1676
1678
+ 战 1677
1679
+ 反 1678
1680
+ 父 1679
1681
+ 节 1680
1682
+ 错 1681
1683
+ 房 1682
1684
+ 花 1683
1685
+ 向 1684
1686
+ 收 1685
1687
+ 越 1686
1688
+ 命 1687
1689
+ 婚 1688
1690
+ 世 1689
1691
+ 望 1690
1692
+ 零 1691
1693
+ 物 1692
1694
+ 海 1693
1695
+ 市 1694
1696
+ 代 1695
1697
+ 山 1696
1698
+ 入 1697
1699
+ 七 1698
1700
+ 队 1699
1701
+ 眼 1700
1702
+ 离 1701
1703
+ 交 1702
1704
+ 早 1703
1705
+ 晚 1704
1706
+ 金 1705
1707
+ 产 1706
1708
+ 内 1707
1709
+ 清 1708
1710
+ 处 1709
1711
+ 诉 1710
1712
+ 此 1711
1713
+ 始 1712
1714
+ 原 1713
1715
+ 司 1714
1716
+ 嘛 1715
1717
+ 保 1716
1718
+ 拿 1717
1719
+ 期 1718
1720
+ 讲 1719
1721
+ 何 1720
1722
+ 提 1721
1723
+ 表 1722
1724
+ 性 1723
1725
+ 够 1724
1726
+ 管 1725
1727
+ 张 1726
1728
+ 六 1727
1729
+ 报 1728
1730
+ 度 1729
1731
+ 男 1730
1732
+ 口 1731
1733
+ 将 1732
1734
+ 算 1733
1735
+ 九 1734
1736
+ 水 1735
1737
+ 记 1736
1738
+ 变 1737
1739
+ 路 1738
1740
+ 帮 1739
1741
+ 文 1740
1742
+ 系 1741
1743
+ 平 1742
1744
+ 名 1743
1745
+ 门 1744
1746
+ 思 1745
1747
+ 王 1746
1748
+ 住 1747
1749
+ 请 1748
1750
+ 任 1749
1751
+ 受 1750
1752
+ 件 1751
1753
+ 马 1752
1754
+ 办 1753
1755
+ 通 1754
1756
+ 加 1755
1757
+ 总 1756
1758
+ 认 1757
1759
+ 朋 1758
1760
+ 亲 1759
1761
+ 目 1760
1762
+ 每 1761
1763
+ 八 1762
1764
+ 难 1763
1765
+ 合 1764
1766
+ 结 1765
1767
+ 万 1766
1768
+ 军 1767
1769
+ 姐 1768
1770
+ 场 1769
1771
+ 部 1770
1772
+ 喜 1771
1773
+ 体 1772
1774
+ 谁 1773
1775
+ 欢 1774
1776
+ 带 1775
1777
+ 月 1776
1778
+ 叫 1777
1779
+ 解 1778
1780
+ 美 1779
1781
+ 告 1780
1782
+ 白 1781
1783
+ 爸 1782
1784
+ 安 1783
1785
+ 气 1784
1786
+ 电 1785
1787
+ 刚 1786
1788
+ 完 1787
1789
+ 死 1788
1790
+ 哥 1789
1791
+ 少 1790
1792
+ 接 1791
1793
+ 题 1792
1794
+ 四 1793
1795
+ 非 1794
1796
+ 第 1795
1797
+ 几 1796
1798
+ 直 1797
1799
+ 更 1798
1800
+ 位 1799
1801
+ 外 1800
1802
+ 新 1801
1803
+ 友 1802
1804
+ 爱 1803
1805
+ 边 1804
1806
+ 师 1805
1807
+ 活 1806
1808
+ 业 1807
1809
+ 特 1808
1810
+ 百 1809
1811
+ 机 1810
1812
+ 信 1811
1813
+ 相 1812
1814
+ 干 1813
1815
+ 该 1814
1816
+ 西 1815
1817
+ 像 1816
1818
+ 者 1817
1819
+ 五 1818
1820
+ 哪 1819
1821
+ 咱 1820
1822
+ 工 1821
1823
+ 无 1822
1824
+ 放 1823
1825
+ 东 1824
1826
+ 日 1825
1827
+ 谢 1826
1828
+ 车 1827
1829
+ 重 1828
1830
+ 头 1829
1831
+ 等 1830
1832
+ 快 1831
1833
+ 钱 1832
1834
+ 被 1833
1835
+ 高 1834
1836
+ 应 1835
1837
+ 主 1836
1838
+ 正 1837
1839
+ 力 1838
1840
+ 又 1839
1841
+ 理 1840
1842
+ 全 1841
1843
+ 身 1842
1844
+ 找 1843
1845
+ 先 1844
1846
+ 进 1845
1847
+ 它 1846
1848
+ 次 1847
1849
+ 常 1848
1850
+ 吃 1849
1851
+ 感 1850
1852
+ 孩 1851
1853
+ 才 1852
1854
+ 见 1853
1855
+ 已 1854
1856
+ 动 1855
1857
+ 法 1856
1858
+ 同 1857
1859
+ 妈 1858
1860
+ 关 1859
1861
+ 从 1860
1862
+ 今 1861
1863
+ 太 1862
1864
+ 女 1863
1865
+ 作 1864
1866
+ 比 1865
1867
+ 听 1866
1868
+ 公 1867
1869
+ 手 1868
1870
+ 明 1869
1871
+ 于 1870
1872
+ 本 1871
1873
+ 您 1872
1874
+ 间 1873
1875
+ 学 1874
1876
+ 打 1875
1877
+ 两 1876
1878
+ 分 1877
1879
+ 而 1878
1880
+ 果 1879
1881
+ 再 1880
1882
+ 问 1881
1883
+ 其 1882
1884
+ 走 1883
1885
+ 只 1884
1886
+ 种 1885
1887
+ 呀 1886
1888
+ 用 1887
1889
+ 因 1888
1890
+ 前 1889
1891
+ 三 1890
1892
+ 方 1891
1893
+ 最 1892
1894
+ 长 1893
1895
+ 二 1894
1896
+ 意 1895
1897
+ 定 1896
1898
+ 成 1897
1899
+ 但 1898
1900
+ 觉 1899
1901
+ 她 1900
1902
+ 发 1901
1903
+ 让 1902
1904
+ 些 1903
1905
+ 候 1904
1906
+ 起 1905
1907
+ 真 1906
1908
+ 如 1907
1909
+ 经 1908
1910
+ 己 1909
1911
+ 做 1910
1912
+ 国 1911
1913
+ 行 1912
1914
+ 回 1913
1915
+ 面 1914
1916
+ 开 1915
1917
+ 实 1916
1918
+ 情 1917
1919
+ 之 1918
1920
+ 所 1919
1921
+ 别 1920
1922
+ 话 1921
1923
+ 把 1922
1924
+ 当 1923
1925
+ 老 1924
1926
+ 十 1925
1927
+ 知 1926
1928
+ 怎 1927
1929
+ 地 1928
1930
+ 和 1929
1931
+ 年 1930
1932
+ 点 1931
1933
+ 很 1932
1934
+ 中 1933
1935
+ 跟 1934
1936
+ 心 1935
1937
+ 吗 1936
1938
+ 道 1937
1939
+ 样 1938
1940
+ 吧 1939
1941
+ 然 1940
1942
+ 着 1941
1943
+ 现 1942
1944
+ 里 1943
1945
+ 给 1944
1946
+ 生 1945
1947
+ 儿 1946
1948
+ 自 1947
1949
+ 出 1948
1950
+ 小 1949
1951
+ 多 1950
1952
+ 想 1951
1953
+ 过 1952
1954
+ 下 1953
1955
+ 天 1954
1956
+ 事 1955
1957
+ 对 1956
1958
+ 呢 1957
1959
+ 看 1958
1960
+ 后 1959
1961
+ 家 1960
1962
+ 什 1961
1963
+ 以 1962
1964
+ 可 1963
1965
+ 还 1964
1966
+ 时 1965
1967
+ 得 1966
1968
+ 为 1967
1969
+ 会 1968
1970
+ 子 1969
1971
+ 能 1970
1972
+ 去 1971
1973
+ 都 1972
1974
+ 没 1973
1975
+ 也 1974
1976
+ 上 1975
1977
+ 到 1976
1978
+ 大 1977
1979
+ 啊 1978
1980
+ 好 1979
1981
+ 要 1980
1982
+ 那 1981
1983
+ 说 1982
1984
+ 来 1983
1985
+ 么 1984
1986
+ 人 1985
1987
+ 他 1986
1988
+ 在 1987
1989
+ 们 1988
1990
+ 就 1989
1991
+ 有 1990
1992
+ 个 1991
1993
+ 这 1992
1994
+ 不 1993
1995
+ 一 1994
1996
+ 了 1995
1997
+ 你 1996
1998
+ 是 1997
1999
+ 我 1998
2000
+ 的 1999
2001
+ #0 2000
2002
+ #1 2001
data/lang_bpe_2000/unigram_2000.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:867a7355801cb43939962ad757ba1cb7941b6171b5a6902772483b4e3a623377
3
+ size 263956
data/lang_bpe_2000/unigram_2000.vocab ADDED
@@ -0,0 +1,2000 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <blk> 0
2
+ <sos/eos> 0
3
+ <unk> 0
4
+ <0x00> 0
5
+ <0x01> 0
6
+ <0x02> 0
7
+ <0x03> 0
8
+ <0x04> 0
9
+ <0x05> 0
10
+ <0x06> 0
11
+ <0x07> 0
12
+ <0x08> 0
13
+ <0x09> 0
14
+ <0x0A> 0
15
+ <0x0B> 0
16
+ <0x0C> 0
17
+ <0x0D> 0
18
+ <0x0E> 0
19
+ <0x0F> 0
20
+ <0x10> 0
21
+ <0x11> 0
22
+ <0x12> 0
23
+ <0x13> 0
24
+ <0x14> 0
25
+ <0x15> 0
26
+ <0x16> 0
27
+ <0x17> 0
28
+ <0x18> 0
29
+ <0x19> 0
30
+ <0x1A> 0
31
+ <0x1B> 0
32
+ <0x1C> 0
33
+ <0x1D> 0
34
+ <0x1E> 0
35
+ <0x1F> 0
36
+ <0x20> 0
37
+ <0x21> 0
38
+ <0x22> 0
39
+ <0x23> 0
40
+ <0x24> 0
41
+ <0x25> 0
42
+ <0x26> 0
43
+ <0x27> 0
44
+ <0x28> 0
45
+ <0x29> 0
46
+ <0x2A> 0
47
+ <0x2B> 0
48
+ <0x2C> 0
49
+ <0x2D> 0
50
+ <0x2E> 0
51
+ <0x2F> 0
52
+ <0x30> 0
53
+ <0x31> 0
54
+ <0x32> 0
55
+ <0x33> 0
56
+ <0x34> 0
57
+ <0x35> 0
58
+ <0x36> 0
59
+ <0x37> 0
60
+ <0x38> 0
61
+ <0x39> 0
62
+ <0x3A> 0
63
+ <0x3B> 0
64
+ <0x3C> 0
65
+ <0x3D> 0
66
+ <0x3E> 0
67
+ <0x3F> 0
68
+ <0x40> 0
69
+ <0x41> 0
70
+ <0x42> 0
71
+ <0x43> 0
72
+ <0x44> 0
73
+ <0x45> 0
74
+ <0x46> 0
75
+ <0x47> 0
76
+ <0x48> 0
77
+ <0x49> 0
78
+ <0x4A> 0
79
+ <0x4B> 0
80
+ <0x4C> 0
81
+ <0x4D> 0
82
+ <0x4E> 0
83
+ <0x4F> 0
84
+ <0x50> 0
85
+ <0x51> 0
86
+ <0x52> 0
87
+ <0x53> 0
88
+ <0x54> 0
89
+ <0x55> 0
90
+ <0x56> 0
91
+ <0x57> 0
92
+ <0x58> 0
93
+ <0x59> 0
94
+ <0x5A> 0
95
+ <0x5B> 0
96
+ <0x5C> 0
97
+ <0x5D> 0
98
+ <0x5E> 0
99
+ <0x5F> 0
100
+ <0x60> 0
101
+ <0x61> 0
102
+ <0x62> 0
103
+ <0x63> 0
104
+ <0x64> 0
105
+ <0x65> 0
106
+ <0x66> 0
107
+ <0x67> 0
108
+ <0x68> 0
109
+ <0x69> 0
110
+ <0x6A> 0
111
+ <0x6B> 0
112
+ <0x6C> 0
113
+ <0x6D> 0
114
+ <0x6E> 0
115
+ <0x6F> 0
116
+ <0x70> 0
117
+ <0x71> 0
118
+ <0x72> 0
119
+ <0x73> 0
120
+ <0x74> 0
121
+ <0x75> 0
122
+ <0x76> 0
123
+ <0x77> 0
124
+ <0x78> 0
125
+ <0x79> 0
126
+ <0x7A> 0
127
+ <0x7B> 0
128
+ <0x7C> 0
129
+ <0x7D> 0
130
+ <0x7E> 0
131
+ <0x7F> 0
132
+ <0x80> 0
133
+ <0x81> 0
134
+ <0x82> 0
135
+ <0x83> 0
136
+ <0x84> 0
137
+ <0x85> 0
138
+ <0x86> 0
139
+ <0x87> 0
140
+ <0x88> 0
141
+ <0x89> 0
142
+ <0x8A> 0
143
+ <0x8B> 0
144
+ <0x8C> 0
145
+ <0x8D> 0
146
+ <0x8E> 0
147
+ <0x8F> 0
148
+ <0x90> 0
149
+ <0x91> 0
150
+ <0x92> 0
151
+ <0x93> 0
152
+ <0x94> 0
153
+ <0x95> 0
154
+ <0x96> 0
155
+ <0x97> 0
156
+ <0x98> 0
157
+ <0x99> 0
158
+ <0x9A> 0
159
+ <0x9B> 0
160
+ <0x9C> 0
161
+ <0x9D> 0
162
+ <0x9E> 0
163
+ <0x9F> 0
164
+ <0xA0> 0
165
+ <0xA1> 0
166
+ <0xA2> 0
167
+ <0xA3> 0
168
+ <0xA4> 0
169
+ <0xA5> 0
170
+ <0xA6> 0
171
+ <0xA7> 0
172
+ <0xA8> 0
173
+ <0xA9> 0
174
+ <0xAA> 0
175
+ <0xAB> 0
176
+ <0xAC> 0
177
+ <0xAD> 0
178
+ <0xAE> 0
179
+ <0xAF> 0
180
+ <0xB0> 0
181
+ <0xB1> 0
182
+ <0xB2> 0
183
+ <0xB3> 0
184
+ <0xB4> 0
185
+ <0xB5> 0
186
+ <0xB6> 0
187
+ <0xB7> 0
188
+ <0xB8> 0
189
+ <0xB9> 0
190
+ <0xBA> 0
191
+ <0xBB> 0
192
+ <0xBC> 0
193
+ <0xBD> 0
194
+ <0xBE> 0
195
+ <0xBF> 0
196
+ <0xC0> 0
197
+ <0xC1> 0
198
+ <0xC2> 0
199
+ <0xC3> 0
200
+ <0xC4> 0
201
+ <0xC5> 0
202
+ <0xC6> 0
203
+ <0xC7> 0
204
+ <0xC8> 0
205
+ <0xC9> 0
206
+ <0xCA> 0
207
+ <0xCB> 0
208
+ <0xCC> 0
209
+ <0xCD> 0
210
+ <0xCE> 0
211
+ <0xCF> 0
212
+ <0xD0> 0
213
+ <0xD1> 0
214
+ <0xD2> 0
215
+ <0xD3> 0
216
+ <0xD4> 0
217
+ <0xD5> 0
218
+ <0xD6> 0
219
+ <0xD7> 0
220
+ <0xD8> 0
221
+ <0xD9> 0
222
+ <0xDA> 0
223
+ <0xDB> 0
224
+ <0xDC> 0
225
+ <0xDD> 0
226
+ <0xDE> 0
227
+ <0xDF> 0
228
+ <0xE0> 0
229
+ <0xE1> 0
230
+ <0xE2> 0
231
+ <0xE3> 0
232
+ <0xE4> 0
233
+ <0xE5> 0
234
+ <0xE6> 0
235
+ <0xE7> 0
236
+ <0xE8> 0
237
+ <0xE9> 0
238
+ <0xEA> 0
239
+ <0xEB> 0
240
+ <0xEC> 0
241
+ <0xED> 0
242
+ <0xEE> 0
243
+ <0xEF> 0
244
+ <0xF0> 0
245
+ <0xF1> 0
246
+ <0xF2> 0
247
+ <0xF3> 0
248
+ <0xF4> 0
249
+ <0xF5> 0
250
+ <0xF6> 0
251
+ <0xF7> 0
252
+ <0xF8> 0
253
+ <0xF9> 0
254
+ <0xFA> 0
255
+ <0xFB> 0
256
+ <0xFC> 0
257
+ <0xFD> 0
258
+ <0xFE> 0
259
+ <0xFF> 0
260
+ ▁ -2.56035
261
+ ▁的 -3.35391
262
+ ▁我 -3.67805
263
+ ▁是 -3.7986
264
+ ▁你 -3.9577
265
+ ▁了 -4.05536
266
+ ▁一 -4.08346
267
+ ▁不 -4.13619
268
+ ▁这 -4.19657
269
+ ▁个 -4.38873
270
+ ▁有 -4.55669
271
+ ▁就 -4.55958
272
+ ▁们 -4.70334
273
+ ▁在 -4.71716
274
+ ▁他 -4.75199
275
+ ▁人 -4.77417
276
+ ▁么 -4.79535
277
+ ▁来 -4.8794
278
+ ▁说 -4.89801
279
+ ▁那 -4.97717
280
+ ▁要 -5.11923
281
+ ▁好 -5.14611
282
+ ▁啊 -5.15638
283
+ ▁大 -5.24348
284
+ ▁到 -5.25633
285
+ ▁上 -5.33129
286
+ ▁也 -5.37051
287
+ ▁没 -5.37699
288
+ ▁都 -5.38006
289
+ ▁去 -5.4003
290
+ ▁能 -5.40748
291
+ ▁子 -5.41565
292
+ ▁会 -5.41887
293
+ ▁为 -5.43444
294
+ ▁得 -5.43537
295
+ ▁时 -5.45495
296
+ ▁还 -5.46184
297
+ ▁可 -5.47526
298
+ ▁以 -5.4769
299
+ ▁什 -5.56328
300
+ ▁家 -5.56475
301
+ ▁后 -5.57629
302
+ ▁看 -5.58298
303
+ ▁呢 -5.58565
304
+ ▁对 -5.64227
305
+ ▁事 -5.65304
306
+ ▁天 -5.66326
307
+ ▁下 -5.66932
308
+ ▁过 -5.67325
309
+ ▁想 -5.69681
310
+ ▁多 -5.73105
311
+ ▁小 -5.7903
312
+ ▁出 -5.80522
313
+ ▁自 -5.81682
314
+ ▁儿 -5.83106
315
+ ▁生 -5.84644
316
+ ▁给 -5.85313
317
+ ▁里 -5.85713
318
+ ▁现 -5.88088
319
+ ▁着 -5.89197
320
+ ▁然 -5.91608
321
+ ▁吧 -5.91937
322
+ ▁样 -5.92116
323
+ ▁道 -5.9253
324
+ ▁吗 -5.92562
325
+ ▁心 -5.95322
326
+ ▁跟 -5.95372
327
+ ▁中 -5.96617
328
+ ▁很 -5.98654
329
+ ▁点 -6.01873
330
+ ▁年 -6.03828
331
+ ▁和 -6.04443
332
+ ▁地 -6.06173
333
+ ▁怎 -6.09903
334
+ ▁知 -6.10382
335
+ ▁十 -6.12006
336
+ ▁老 -6.12998
337
+ ▁当 -6.1406
338
+ ▁把 -6.14283
339
+ ▁话 -6.15081
340
+ ▁别 -6.16551
341
+ ▁所 -6.17685
342
+ ▁之 -6.18423
343
+ ▁情 -6.18531
344
+ ▁实 -6.18996
345
+ ▁开 -6.21051
346
+ ▁面 -6.21698
347
+ ▁回 -6.21952
348
+ ▁行 -6.22586
349
+ ▁国 -6.22737
350
+ ▁做 -6.23287
351
+ ▁己 -6.23563
352
+ ▁经 -6.23791
353
+ ▁如 -6.23881
354
+ ▁真 -6.24361
355
+ ▁起 -6.24452
356
+ ▁候 -6.25045
357
+ ▁些 -6.25609
358
+ ▁让 -6.27748
359
+ ▁发 -6.28355
360
+ ▁她 -6.28431
361
+ ▁觉 -6.29841
362
+ ▁但 -6.29874
363
+ ▁成 -6.31229
364
+ ▁定 -6.31588
365
+ ▁意 -6.33619
366
+ ▁二 -6.36135
367
+ ▁长 -6.36206
368
+ ▁最 -6.36291
369
+ ▁方 -6.36813
370
+ ▁三 -6.37296
371
+ ▁前 -6.40152
372
+ ▁因 -6.43043
373
+ ▁用 -6.43695
374
+ ▁呀 -6.43939
375
+ ▁种 -6.44103
376
+ ▁只 -6.46913
377
+ ▁走 -6.48076
378
+ ▁其 -6.49886
379
+ ▁问 -6.50135
380
+ ▁再 -6.50868
381
+ ▁果 -6.52244
382
+ ▁而 -6.52259
383
+ ▁分 -6.52588
384
+ ▁两 -6.53282
385
+ ▁打 -6.55347
386
+ ▁学 -6.554
387
+ ▁间 -6.56088
388
+ ▁您 -6.56724
389
+ ▁本 -6.58932
390
+ ▁于 -6.58984
391
+ ▁明 -6.60756
392
+ ▁手 -6.60926
393
+ ▁公 -6.61903
394
+ ▁听 -6.62069
395
+ ▁比 -6.62269
396
+ ▁作 -6.62749
397
+ ▁女 -6.62818
398
+ ▁太 -6.65082
399
+ ▁今 -6.66672
400
+ ▁从 -6.66749
401
+ ▁关 -6.67439
402
+ ▁妈 -6.68471
403
+ ▁同 -6.70146
404
+ ▁法 -6.70643
405
+ ▁动 -6.70934
406
+ ▁已 -6.71502
407
+ ▁见 -6.7244
408
+ ▁才 -6.74248
409
+ ▁孩 -6.75172
410
+ ▁感 -6.75409
411
+ ▁吃 -6.75504
412
+ ▁常 -6.75644
413
+ ▁次 -6.75733
414
+ ▁它 -6.76879
415
+ ▁进 -6.77393
416
+ ▁先 -6.78323
417
+ ▁找 -6.78526
418
+ ▁身 -6.80625
419
+ ▁全 -6.80929
420
+ ▁理 -6.81579
421
+ ▁又 -6.81613
422
+ ▁力 -6.82138
423
+ ▁正 -6.82853
424
+ ▁主 -6.83683
425
+ ▁应 -6.83866
426
+ ▁高 -6.84135
427
+ ▁被 -6.8471
428
+ ▁钱 -6.86014
429
+ ▁快 -6.86596
430
+ ▁等 -6.86858
431
+ ▁头 -6.87098
432
+ ▁重 -6.87775
433
+ ▁车 -6.87913
434
+ ▁谢 -6.88166
435
+ ▁日 -6.90084
436
+ ▁东 -6.90622
437
+ ▁放 -6.90777
438
+ ▁无 -6.90822
439
+ ▁工 -6.90886
440
+ ▁咱 -6.91243
441
+ ▁哪 -6.91398
442
+ ▁五 -6.91486
443
+ ▁者 -6.92206
444
+ ▁像 -6.92272
445
+ ▁西 -6.9252
446
+ ▁该 -6.92839
447
+ ▁干 -6.92906
448
+ ▁相 -6.9304
449
+ ▁信 -6.93085
450
+ ▁机 -6.93906
451
+ ▁百 -6.94146
452
+ ▁特 -6.95283
453
+ ▁业 -6.95455
454
+ ▁活 -6.95562
455
+ ▁师 -6.96192
456
+ ▁边 -6.9645
457
+ ▁爱 -6.98098
458
+ ▁友 -6.98757
459
+ ▁新 -6.9919
460
+ ▁外 -6.99516
461
+ ▁位 -7.00258
462
+ ▁更 -7.00534
463
+ ▁直 -7.00995
464
+ ▁几 -7.01789
465
+ ▁第 -7.01837
466
+ ▁非 -7.02151
467
+ ▁四 -7.02492
468
+ ▁题 -7.02784
469
+ ▁接 -7.04961
470
+ ▁少 -7.06578
471
+ ▁哥 -7.06749
472
+ ▁死 -7.07372
473
+ ▁完 -7.09331
474
+ ▁刚 -7.094
475
+ ▁电 -7.09408
476
+ ▁气 -7.10419
477
+ ▁安 -7.10488
478
+ ▁爸 -7.1054
479
+ ▁白 -7.10542
480
+ ▁告 -7.10985
481
+ ▁美 -7.11168
482
+ ▁解 -7.12236
483
+ ▁叫 -7.12418
484
+ ▁月 -7.12889
485
+ ▁带 -7.13008
486
+ ▁欢 -7.13162
487
+ ▁谁 -7.13226
488
+ ▁体 -7.13737
489
+ ▁喜 -7.14842
490
+ ▁部 -7.1572
491
+ ▁场 -7.16472
492
+ ▁姐 -7.166
493
+ ▁军 -7.1669
494
+ ▁万 -7.18115
495
+ ▁结 -7.19278
496
+ ▁合 -7.1933
497
+ ▁难 -7.19418
498
+ ▁八 -7.19657
499
+ ▁每 -7.20662
500
+ ▁目 -7.21462
501
+ ▁亲 -7.22151
502
+ ▁朋 -7.22659
503
+ ▁认 -7.23087
504
+ ▁总 -7.23392
505
+ ▁加 -7.23404
506
+ ▁通 -7.2417
507
+ ▁办 -7.24662
508
+ ▁马 -7.24937
509
+ ▁件 -7.25099
510
+ ▁受 -7.26286
511
+ ▁任 -7.26954
512
+ ▁请 -7.27408
513
+ ▁住 -7.27458
514
+ ▁王 -7.27548
515
+ ▁思 -7.28242
516
+ ▁门 -7.28663
517
+ ▁名 -7.28946
518
+ ▁平 -7.29288
519
+ ▁系 -7.309
520
+ ▁文 -7.31947
521
+ ▁帮 -7.32212
522
+ ▁路 -7.32491
523
+ ▁变 -7.32649
524
+ ▁记 -7.32659
525
+ ▁水 -7.33044
526
+ ▁九 -7.33157
527
+ ▁算 -7.33487
528
+ ▁将 -7.33842
529
+ ▁口 -7.34028
530
+ ▁男 -7.34992
531
+ ▁度 -7.35591
532
+ ▁报 -7.35817
533
+ ▁六 -7.36147
534
+ ▁张 -7.36274
535
+ ▁管 -7.37304
536
+ ▁够 -7.37721
537
+ ▁性 -7.3776
538
+ ▁表 -7.38057
539
+ ▁提 -7.38751
540
+ ▁何 -7.38761
541
+ ▁讲 -7.39028
542
+ ▁期 -7.39177
543
+ ▁拿 -7.39958
544
+ ▁保 -7.39981
545
+ ▁嘛 -7.41103
546
+ ▁司 -7.41112
547
+ ▁原 -7.41492
548
+ ▁始 -7.42132
549
+ ▁此 -7.42822
550
+ ▁诉 -7.43132
551
+ ▁处 -7.43265
552
+ ▁清 -7.44697
553
+ ▁内 -7.44797
554
+ ▁产 -7.44851
555
+ ▁金 -7.45562
556
+ ▁晚 -7.4569
557
+ ▁早 -7.45789
558
+ ▁交 -7.45916
559
+ ▁离 -7.4623
560
+ ▁眼 -7.4667
561
+ ▁队 -7.47114
562
+ ▁七 -7.47481
563
+ ▁入 -7.47488
564
+ ▁山 -7.4758
565
+ ▁代 -7.47761
566
+ ▁市 -7.47826
567
+ ▁海 -7.48195
568
+ ▁物 -7.48202
569
+ ▁零 -7.48215
570
+ ▁望 -7.48228
571
+ ▁世 -7.48448
572
+ ▁婚 -7.48622
573
+ ▁命 -7.48779
574
+ ▁越 -7.49722
575
+ 虽 -8.28245
576
+ 既 -8.52553
577
+ 湾 -9.65378
578
+ 倍 -9.65388
579
+ 厨 -9.65398
580
+ 档 -9.65408
581
+ 闺 -9.65418
582
+ 乔 -9.65428
583
+ 励 -9.65438
584
+ 朕 -9.65448
585
+ 扫 -9.65458
586
+ 娶 -9.65468
587
+ 末 -9.65478
588
+ 碎 -9.65488
589
+ 扔 -9.65498
590
+ 踪 -9.65508
591
+ 豪 -9.65518
592
+ 迫 -9.65528
593
+ 柔 -9.65538
594
+ 鸟 -9.65548
595
+ 欲 -9.65558
596
+ 扎 -9.65568
597
+ 诊 -9.65578
598
+ 俺 -9.65588
599
+ 郭 -9.65598
600
+ 载 -9.65608
601
+ 捕 -9.65618
602
+ 辑 -9.65628
603
+ 阅 -9.65638
604
+ 冠 -9.65648
605
+ 尸 -9.65658
606
+ 均 -9.65668
607
+ 逐 -9.65678
608
+ 禁 -9.65688
609
+ 妖 -9.65698
610
+ 厚 -9.65708
611
+ 奥 -9.65718
612
+ 摇 -9.65728
613
+ 尾 -9.65738
614
+ 毁 -9.65748
615
+ 篇 -9.65758
616
+ 骑 -9.65768
617
+ 摄 -9.65778
618
+ 吐 -9.65788
619
+ 蜜 -9.65798
620
+ 竞 -9.65808
621
+ 固 -9.65818
622
+ 幕 -9.65828
623
+ 狠 -9.65838
624
+ 鼠 -9.65848
625
+ 狂 -9.65858
626
+ 宽 -9.65868
627
+ 残 -9.65878
628
+ 偶 -9.65888
629
+ 订 -9.65898
630
+ 圣 -9.65908
631
+ 汇 -9.65918
632
+ 奋 -9.65928
633
+ 糖 -9.65938
634
+ 债 -9.65948
635
+ 幅 -9.65958
636
+ 奔 -9.65968
637
+ 锅 -9.65978
638
+ 屁 -9.65988
639
+ 碗 -9.65998
640
+ 凤 -9.66008
641
+ 递 -9.66018
642
+ 瞎 -9.66028
643
+ 扬 -9.66038
644
+ 丹 -9.66048
645
+ 迪 -9.66058
646
+ 序 -9.66068
647
+ 娃 -9.66078
648
+ 墙 -9.66088
649
+ 呐 -9.66098
650
+ 寒 -9.66108
651
+ 颗 -9.66118
652
+ 凉 -9.66128
653
+ 滚 -9.66138
654
+ 库 -9.66148
655
+ 屈 -9.66158
656
+ 述 -9.66168
657
+ 羊 -9.66178
658
+ 魂 -9.66188
659
+ 锁 -9.66198
660
+ 撒 -9.66208
661
+ 涉 -9.66218
662
+ 踏 -9.66228
663
+ 彼 -9.66238
664
+ 附 -9.66248
665
+ 闲 -9.66258
666
+ 宇 -9.66268
667
+ 窗 -9.66278
668
+ 赏 -9.66288
669
+ 脾 -9.66298
670
+ 棒 -9.66308
671
+ 拒 -9.66318
672
+ 菲 -9.66328
673
+ 趟 -9.66338
674
+ 培 -9.66348
675
+ 粮 -9.66358
676
+ 仗 -9.66368
677
+ 泡 -9.66378
678
+ 违 -9.66388
679
+ 币 -9.66398
680
+ 娜 -9.66408
681
+ 剑 -9.66418
682
+ 徒 -9.66428
683
+ 撤 -9.66438
684
+ 糊 -9.66448
685
+ 悲 -9.66458
686
+ 阴 -9.66468
687
+ 尼 -9.66478
688
+ 陷 -9.66488
689
+ 忠 -9.66498
690
+ 欠 -9.66508
691
+ 珠 -9.66518
692
+ 拾 -9.66528
693
+ 岛 -9.66538
694
+ 射 -9.66548
695
+ 暂 -9.66558
696
+ 绩 -9.66568
697
+ 毫 -9.66578
698
+ 唉 -9.66588
699
+ 忽 -9.66598
700
+ 绿 -9.66608
701
+ 悔 -9.66618
702
+ 罚 -9.66628
703
+ 穷 -9.66638
704
+ 遭 -9.66648
705
+ 拖 -9.66658
706
+ 吹 -9.66668
707
+ 泪 -9.66678
708
+ 肚 -9.66688
709
+ 慧 -9.66698
710
+ 赞 -9.66708
711
+ 圆 -9.66718
712
+ 扰 -9.66728
713
+ 宾 -9.66738
714
+ 歉 -9.66748
715
+ 郑 -9.66758
716
+ 淡 -9.66768
717
+ 迟 -9.66778
718
+ 辞 -9.66788
719
+ 喂 -9.66798
720
+ 仍 -9.66808
721
+ 饿 -9.66818
722
+ 刷 -9.66828
723
+ 诺 -9.66838
724
+ 胆 -9.66848
725
+ 漫 -9.66858
726
+ 瞧 -9.66868
727
+ 疯 -9.66878
728
+ 敏 -9.66888
729
+ 途 -9.66898
730
+ 沟 -9.66908
731
+ 撞 -9.66918
732
+ 染 -9.66928
733
+ 尚 -9.66938
734
+ 桥 -9.66948
735
+ 彻 -9.66958
736
+ 孕 -9.66968
737
+ 盛 -9.66978
738
+ 析 -9.66988
739
+ 甜 -9.66998
740
+ 距 -9.67008
741
+ 缘 -9.67018
742
+ 瓶 -9.67028
743
+ 版 -9.67038
744
+ 延 -9.67048
745
+ 熊 -9.67058
746
+ 聪 -9.67068
747
+ 贴 -9.67078
748
+ 纯 -9.67088
749
+ 宜 -9.67098
750
+ 赔 -9.67108
751
+ 摸 -9.67118
752
+ 桌 -9.67128
753
+ 启 -9.67138
754
+ 汤 -9.67148
755
+ 涨 -9.67158
756
+ 搭 -9.67168
757
+ 废 -9.67178
758
+ 瑞 -9.67188
759
+ 迹 -9.67198
760
+ 典 -9.67208
761
+ 川 -9.67218
762
+ 吉 -9.67228
763
+ 纳 -9.67238
764
+ 朵 -9.67248
765
+ 稍 -9.67258
766
+ 佛 -9.67268
767
+ 怨 -9.67278
768
+ 患 -9.67288
769
+ 庄 -9.67298
770
+ 袋 -9.67308
771
+ 伟 -9.67318
772
+ 蒙 -9.67328
773
+ 征 -9.67338
774
+ 鞋 -9.67348
775
+ 洲 -9.67358
776
+ 丰 -9.67368
777
+ 箱 -9.67378
778
+ 针 -9.67388
779
+ 旧 -9.67398
780
+ 躲 -9.67408
781
+ 梁 -9.67418
782
+ 殿 -9.67428
783
+ 讯 -9.67438
784
+ 蓝 -9.67448
785
+ 喊 -9.67458
786
+ 症 -9.67468
787
+ 盖 -9.67478
788
+ 亏 -9.67488
789
+ 旦 -9.67498
790
+ 谷 -9.67508
791
+ 刑 -9.67518
792
+ 欺 -9.67528
793
+ 晨 -9.67538
794
+ 仇 -9.67548
795
+ 赢 -9.67558
796
+ 胖 -9.67568
797
+ 镜 -9.67578
798
+ 颜 -9.67588
799
+ 仙 -9.67598
800
+ 猪 -9.67608
801
+ 隔 -9.67618
802
+ 握 -9.67628
803
+ 鼓 -9.67638
804
+ 授 -9.67648
805
+ 驾 -9.67658
806
+ 席 -9.67668
807
+ 航 -9.67678
808
+ 编 -9.67688
809
+ 朱 -9.67698
810
+ 龄 -9.67708
811
+ 搬 -9.67718
812
+ 挣 -9.67728
813
+ 雄 -9.67738
814
+ 灭 -9.67748
815
+ 魔 -9.67758
816
+ 凶 -9.67768
817
+ 冬 -9.67778
818
+ 摆 -9.67788
819
+ 闭 -9.67798
820
+ 劝 -9.67808
821
+ 抽 -9.67818
822
+ 洞 -9.67828
823
+ 聚 -9.67838
824
+ 凡 -9.67848
825
+ 售 -9.67858
826
+ 峰 -9.67868
827
+ 渐 -9.67878
828
+ 狼 -9.67888
829
+ 冒 -9.67898
830
+ 诗 -9.67908
831
+ 豆 -9.67918
832
+ 孤 -9.67928
833
+ 谋 -9.67938
834
+ 丁 -9.67948
835
+ 巧 -9.67958
836
+ 恨 -9.67968
837
+ 珍 -9.67978
838
+ 弱 -9.67988
839
+ 络 -9.67998
840
+ 透 -9.68008
841
+ 挥 -9.68018
842
+ 厅 -9.68028
843
+ 额 -9.68038
844
+ 略 -9.68048
845
+ 移 -9.68058
846
+ 软 -9.68068
847
+ 央 -9.68078
848
+ 耳 -9.68088
849
+ 童 -9.68098
850
+ 帅 -9.68108
851
+ 丈 -9.68118
852
+ 登 -9.68128
853
+ 忆 -9.68138
854
+ 巨 -9.68148
855
+ 董 -9.68158
856
+ 挂 -9.68168
857
+ 惜 -9.68178
858
+ 损 -9.68188
859
+ 敬 -9.68198
860
+ 租 -9.68208
861
+ 硬 -9.68218
862
+ 剩 -9.68228
863
+ 估 -9.68238
864
+ 灯 -9.68248
865
+ 镇 -9.68258
866
+ 阶 -9.68268
867
+ 鲜 -9.68278
868
+ 核 -9.68288
869
+ 访 -9.68298
870
+ 荣 -9.68308
871
+ 阵 -9.68318
872
+ 虚 -9.68328
873
+ 曲 -9.68338
874
+ 磨 -9.68348
875
+ 腿 -9.68358
876
+ 净 -9.68368
877
+ 佳 -9.68378
878
+ 猜 -9.68388
879
+ 暖 -9.68398
880
+ 季 -9.68408
881
+ 烈 -9.68418
882
+ 域 -9.68428
883
+ 爆 -9.68438
884
+ 麦 -9.68448
885
+ 避 -9.68458
886
+ 骂 -9.68468
887
+ 炸 -9.68478
888
+ 账 -9.68488
889
+ 戴 -9.68498
890
+ 媒 -9.68508
891
+ 诚 -9.68518
892
+ 齐 -9.68528
893
+ 刺 -9.68538
894
+ 奖 -9.68548
895
+ 拼 -9.68558
896
+ 腾 -9.68568
897
+ 疫 -9.68578
898
+ 赚 -9.68588
899
+ 尤 -9.68598
900
+ 舍 -9.68608
901
+ 祖 -9.68618
902
+ 梅 -9.68628
903
+ 列 -9.68638
904
+ 沈 -9.68648
905
+ 辆 -9.68658
906
+ 吓 -9.68668
907
+ 唯 -9.68678
908
+ 触 -9.68688
909
+ 偏 -9.68698
910
+ 宗 -9.68708
911
+ 劲 -9.68718
912
+ 港 -9.68728
913
+ 旁 -9.68738
914
+ 杰 -9.68748
915
+ 莫 -9.68758
916
+ 湖 -9.68768
917
+ 牙 -9.68778
918
+ 傅 -9.68788
919
+ 签 -9.68798
920
+ 祝 -9.68808
921
+ 伯 -9.68818
922
+ 猫 -9.68828
923
+ 革 -9.68838
924
+ 拥 -9.68848
925
+ 纸 -9.68858
926
+ 秦 -9.68868
927
+ 亡 -9.68878
928
+ 键 -9.68888
929
+ 尝 -9.68898
930
+ 协 -9.68908
931
+ 杂 -9.68918
932
+ 遗 -9.68928
933
+ 粉 -9.68938
934
+ 购 -9.68948
935
+ 嫁 -9.68958
936
+ 洋 -9.68968
937
+ 凭 -9.68978
938
+ 顿 -9.68988
939
+ 烟 -9.68998
940
+ 沉 -9.69008
941
+ 嫂 -9.69018
942
+ 隐 -9.69028
943
+ 暗 -9.69038
944
+ 汽 -9.69048
945
+ 混 -9.69058
946
+ 操 -9.69068
947
+ 减 -9.69078
948
+ 韩 -9.69088
949
+ 冰 -9.69098
950
+ 欧 -9.69108
951
+ 秋 -9.69118
952
+ 威 -9.69128
953
+ 端 -9.69138
954
+ 臣 -9.69148
955
+ 输 -9.69158
956
+ 睛 -9.69168
957
+ 呗 -9.69178
958
+ 稳 -9.69188
959
+ 雷 -9.69198
960
+ 攻 -9.69208
961
+ 审 -9.69218
962
+ 异 -9.69228
963
+ 融 -9.69238
964
+ 虎 -9.69248
965
+ 徐 -9.69258
966
+ 船 -9.69268
967
+ 暴 -9.69278
968
+ 占 -9.69288
969
+ 勇 -9.69298
970
+ 劳 -9.69308
971
+ 吸 -9.69318
972
+ 材 -9.69328
973
+ 哦 -9.69338
974
+ 搜 -9.69348
975
+ 寻 -9.69358
976
+ 默 -9.69368
977
+ 恶 -9.69378
978
+ 姻 -9.69388
979
+ 迷 -9.69398
980
+ 骨 -9.69408
981
+ 益 -9.69418
982
+ 街 -9.69428
983
+ 疗 -9.69438
984
+ 束 -9.69448
985
+ 傻 -9.69458
986
+ 逼 -9.69468
987
+ 杯 -9.69478
988
+ 策 -9.69488
989
+ 县 -9.69498
990
+ 托 -9.69508
991
+ 织 -9.69518
992
+ 施 -9.69528
993
+ 轮 -9.69538
994
+ 沙 -9.69548
995
+ 厉 -9.69558
996
+ 丢 -9.69568
997
+ 绪 -9.69578
998
+ 碰 -9.69588
999
+ 尊 -9.69598
1000
+ 嫌 -9.69608
1001
+ 抢 -9.69618
1002
+ 宋 -9.69628
1003
+ 嘉 -9.69638
1004
+ 绍 -9.69648
1005
+ 宣 -9.69658
1006
+ 贝 -9.69668
1007
+ 盘 -9.69678
1008
+ 谓 -9.69688
1009
+ 笔 -9.69698
1010
+ 趣 -9.69708
1011
+ 折 -9.69718
1012
+ 野 -9.69728
1013
+ 恩 -9.69738
1014
+ 脱 -9.69748
1015
+ 右 -9.69758
1016
+ 惯 -9.69768
1017
+ 雅 -9.69778
1018
+ 执 -9.69788
1019
+ 丝 -9.69798
1020
+ 呼 -9.69808
1021
+ 构 -9.69818
1022
+ 顶 -9.69828
1023
+ 舒 -9.69838
1024
+ 遍 -9.69848
1025
+ 农 -9.69858
1026
+ 积 -9.69868
1027
+ 恐 -9.69878
1028
+ 余 -9.69888
1029
+ 探 -9.69898
1030
+ 媳 -9.69908
1031
+ 吵 -9.69918
1032
+ 词 -9.69928
1033
+ 烧 -9.69938
1034
+ 范 -9.69948
1035
+ 训 -9.69958
1036
+ 庆 -9.69968
1037
+ 漂 -9.69978
1038
+ 浪 -9.69988
1039
+ 亚 -9.69998
1040
+ 彩 -9.70008
1041
+ 辛 -9.70018
1042
+ 乡 -9.70028
1043
+ 宁 -9.70038
1044
+ 码 -9.70048
1045
+ 茶 -9.70058
1046
+ 餐 -9.70068
1047
+ 床 -9.70078
1048
+ 归 -9.70088
1049
+ 忍 -9.70098
1050
+ 释 -9.70108
1051
+ 限 -9.70118
1052
+ 测 -9.70128
1053
+ 波 -9.70138
1054
+ 降 -9.70148
1055
+ 鸡 -9.70158
1056
+ 销 -9.70168
1057
+ 免 -9.70178
1058
+ 胜 -9.70188
1059
+ 缺 -9.70198
1060
+ 翻 -9.70208
1061
+ 采 -9.70218
1062
+ 散 -9.70228
1063
+ 敌 -9.70238
1064
+ 陆 -9.70248
1065
+ 败 -9.70258
1066
+ 疼 -9.70268
1067
+ 馆 -9.70278
1068
+ 批 -9.70288
1069
+ 逃 -9.70298
1070
+ 封 -9.70308
1071
+ 园 -9.70318
1072
+ 困 -9.70328
1073
+ 木 -9.70338
1074
+ 田 -9.70348
1075
+ 屋 -9.70358
1076
+ 秘 -9.70368
1077
+ 印 -9.70378
1078
+ 弹 -9.70388
1079
+ 厂 -9.70398
1080
+ 晓 -9.70408
1081
+ 副 -9.70418
1082
+ 叶 -9.70428
1083
+ 左 -9.70438
1084
+ 舞 -9.70448
1085
+ 斗 -9.70458
1086
+ 树 -9.70468
1087
+ 露 -9.70478
1088
+ 唐 -9.70488
1089
+ 挑 -9.70498
1090
+ 临 -9.70508
1091
+ 旅 -9.70518
1092
+ 素 -9.70528
1093
+ 吴 -9.70538
1094
+ 私 -9.70548
1095
+ 若 -9.70558
1096
+ 午 -9.70568
1097
+ 章 -9.70578
1098
+ 升 -9.70588
1099
+ 充 -9.70598
1100
+ 刀 -9.70608
1101
+ 补 -9.70618
1102
+ 善 -9.70628
1103
+ 录 -9.70638
1104
+ 惊 -9.70648
1105
+ 咋 -9.70658
1106
+ 夏 -9.70668
1107
+ 源 -9.70678
1108
+ 讨 -9.70688
1109
+ 抗 -9.70698
1110
+ 伴 -9.70708
1111
+ 检 -9.70718
1112
+ 层 -9.70728
1113
+ 兰 -9.70738
1114
+ 秀 -9.70748
1115
+ 弃 -9.70758
1116
+ 纪 -9.70768
1117
+ 架 -9.70778
1118
+ 卡 -9.70788
1119
+ 频 -9.70798
1120
+ 预 -9.70808
1121
+ 判 -9.70818
1122
+ 蛋 -9.70828
1123
+ 赵 -9.70838
1124
+ 亿 -9.70848
1125
+ 族 -9.70858
1126
+ 率 -9.70868
1127
+ 姓 -9.70878
1128
+ 帝 -9.70888
1129
+ 短 -9.70898
1130
+ 例 -9.70908
1131
+ 努 -9.70918
1132
+ 供 -9.70928
1133
+ 松 -9.70938
1134
+ 草 -9.70948
1135
+ 掌 -9.70958
1136
+ 良 -9.70968
1137
+ 恋 -9.70978
1138
+ 君 -9.70988
1139
+ 替 -9.70998
1140
+ 监 -9.71008
1141
+ 闻 -9.71018
1142
+ 圈 -9.71028
1143
+ 熟 -9.71038
1144
+ 危 -9.71048
1145
+ 激 -9.71058
1146
+ 鱼 -9.71068
1147
+ 健 -9.71078
1148
+ 昨 -9.71088
1149
+ 景 -9.71098
1150
+ 赛 -9.71108
1151
+ 雪 -9.71118
1152
+ 骗 -9.71128
1153
+ 艺 -9.71138
1154
+ 姨 -9.71148
1155
+ 货 -9.71158
1156
+ 课 -9.71168
1157
+ 称 -9.71178
1158
+ 藏 -9.71188
1159
+ 评 -9.71198
1160
+ 灵 -9.71208
1161
+ 孙 -9.71218
1162
+ 介 -9.71228
1163
+ 省 -9.71238
1164
+ 智 -9.71248
1165
+ 堂 -9.71258
1166
+ 罗 -9.71268
1167
+ 索 -9.71278
1168
+ 宫 -9.71288
1169
+ 富 -9.71298
1170
+ 康 -9.71308
1171
+ 普 -9.71318
1172
+ 维 -9.71328
1173
+ 套 -9.71338
1174
+ 效 -9.71348
1175
+ 般 -9.71358
1176
+ 博 -9.71368
1177
+ 抱 -9.71378
1178
+ 偷 -9.71388
1179
+ 票 -9.71398
1180
+ 否 -9.71408
1181
+ 拜 -9.71418
1182
+ 洗 -9.71428
1183
+ 退 -9.71438
1184
+ 狗 -9.71448
1185
+ 温 -9.71458
1186
+ 银 -9.71468
1187
+ 优 -9.71478
1188
+ 闹 -9.71488
1189
+ 招 -9.71498
1190
+ 哭 -9.71508
1191
+ 牛 -9.71518
1192
+ 铁 -9.71528
1193
+ 借 -9.71538
1194
+ 丽 -9.71548
1195
+ 肉 -9.71558
1196
+ 济 -9.71568
1197
+ 止 -9.71578
1198
+ 皮 -9.71588
1199
+ 休 -9.71598
1200
+ 剧 -9.71608
1201
+ 雨 -9.71618
1202
+ 脚 -9.71628
1203
+ 跳 -9.71638
1204
+ 误 -9.71648
1205
+ 获 -9.71658
1206
+ 玉 -9.71668
1207
+ 累 -9.71678
1208
+ 冷 -9.71688
1209
+ 唱 -9.71698
1210
+ 毒 -9.71708
1211
+ 土 -9.71718
1212
+ 围 -9.71728
1213
+ 搞 -9.71738
1214
+ 概 -9.71748
1215
+ 座 -9.71758
1216
+ 痛 -9.71768
1217
+ 举 -9.71778
1218
+ 群 -9.71788
1219
+ 苏 -9.71798
1220
+ 嘴 -9.71808
1221
+ 牌 -9.71818
1222
+ 型 -9.71828
1223
+ 史 -9.71838
1224
+ 修 -9.71848
1225
+ 卫 -9.71858
1226
+ 毕 -9.71868
1227
+ 括 -9.71878
1228
+ 辈 -9.71888
1229
+ 致 -9.71898
1230
+ 杨 -9.71908
1231
+ 胡 -9.71918
1232
+ 防 -9.71928
1233
+ 项 -9.71938
1234
+ 育 -9.71948
1235
+ 麻 -9.71958
1236
+ 置 -9.71968
1237
+ 冲 -9.71978
1238
+ 企 -9.71988
1239
+ 委 -9.71998
1240
+ 弄 -9.72008
1241
+ 爹 -9.72018
1242
+ 妻 -9.72028
1243
+ 枪 -9.72038
1244
+ 汉 -9.72048
1245
+ 虑 -9.72058
1246
+ 守 -9.72068
1247
+ 河 -9.72078
1248
+ 财 -9.72088
1249
+ 增 -9.72098
1250
+ 款 -9.72108
1251
+ 势 -9.72118
1252
+ 妇 -9.72128
1253
+ 古 -9.72138
1254
+ 春 -9.72148
1255
+ 巴 -9.72158
1256
+ 伙 -9.72168
1257
+ 环 -9.72178
1258
+ 烦 -9.72188
1259
+ 犯 -9.72198
1260
+ 境 -9.72208
1261
+ 尔 -9.72218
1262
+ 划 -9.72228
1263
+ 付 -9.72238
1264
+ 似 -9.72248
1265
+ 室 -9.72258
1266
+ 朝 -9.72268
1267
+ 庭 -9.72278
1268
+ 速 -9.72288
1269
+ 乱 -9.72298
1270
+ 引 -9.72308
1271
+ 州 -9.72318
1272
+ 即 -9.72328
1273
+ 模 -9.72338
1274
+ 顺 -9.72348
1275
+ 练 -9.72358
1276
+ 居 -9.72368
1277
+ 甚 -9.72378
1278
+ 某 -9.72388
1279
+ 坚 -9.72398
1280
+ 府 -9.72408
1281
+ 按 -9.72418
1282
+ 料 -9.72428
1283
+ 依 -9.72438
1284
+ 鬼 -9.72448
1285
+ 哈 -9.72458
1286
+ 永 -9.72468
1287
+ 职 -9.72478
1288
+ 双 -9.72488
1289
+ 图 -9.72498
1290
+ 显 -9.72508
1291
+ 控 -9.72518
1292
+ 坏 -9.72528
1293
+ 乎 -9.72538
1294
+ 派 -9.72548
1295
+ 属 -9.72558
1296
+ 村 -9.72568
1297
+ 贵 -9.72578
1298
+ 压 -9.72588
1299
+ 互 -9.72598
1300
+ 研 -9.72608
1301
+ 菜 -9.72618
1302
+ 楼 -9.72628
1303
+ 器 -9.72638
1304
+ 油 -9.72648
1305
+ 则 -9.72658
1306
+ 味 -9.72668
1307
+ 停 -9.72678
1308
+ 极 -9.72688
1309
+ 钟 -9.72698
1310
+ 米 -9.72708
1311
+ 细 -9.72718
1312
+ 低 -9.72728
1313
+ 仅 -9.72738
1314
+ 语 -9.72748
1315
+ 靠 -9.72758
1316
+ 配 -9.72768
1317
+ 状 -9.72778
1318
+ 香 -9.72788
1319
+ 毛 -9.72798
1320
+ 享 -9.72808
1321
+ 罪 -9.72818
1322
+ 具 -9.72828
1323
+ 醒 -9.72838
1324
+ 血 -9.72848
1325
+ 忘 -9.72858
1326
+ 独 -9.72868
1327
+ 适 -9.72878
1328
+ 婆 -9.72888
1329
+ 怀 -9.72898
1330
+ 追 -9.72908
1331
+ 股 -9.72918
1332
+ 石 -9.72928
1333
+ 角 -9.72938
1334
+ 验 -9.72948
1335
+ 响 -9.72958
1336
+ 梦 -9.72968
1337
+ 拍 -9.72978
1338
+ 初 -9.72988
1339
+ 武 -9.72998
1340
+ 背 -9.73008
1341
+ 静 -9.73018
1342
+ 礼 -9.73028
1343
+ 级 -9.73038
1344
+ 集 -9.73048
1345
+ 食 -9.73058
1346
+ 超 -9.73068
1347
+ 察 -9.73078
1348
+ 营 -9.73088
1349
+ 云 -9.73098
1350
+ 标 -9.73108
1351
+ 际 -9.73118
1352
+ 击 -9.73128
1353
+ 校 -9.73138
1354
+ 承 -9.73148
1355
+ 穿 -9.73158
1356
+ 存 -9.73168
1357
+ 克 -9.73178
1358
+ 密 -9.73188
1359
+ 严 -9.73198
1360
+ 议 -9.73208
1361
+ 疑 -9.73218
1362
+ 约 -9.73228
1363
+ 权 -9.73238
1364
+ 党 -9.73248
1365
+ 斯 -9.73258
1366
+ 脑 -9.73268
1367
+ 店 -9.73278
1368
+ 足 -9.73288
1369
+ 龙 -9.73298
1370
+ 究 -9.73308
1371
+ 择 -9.73318
1372
+ 律 -9.73328
1373
+ 户 -9.73338
1374
+ 竟 -9.73348
1375
+ 争 -9.73358
1376
+ 另 -9.73368
1377
+ 破 -9.73378
1378
+ 抓 -9.73388
1379
+ 幸 -9.73398
1380
+ 迎 -9.73408
1381
+ 念 -9.73418
1382
+ 须 -9.73428
1383
+ 险 -9.73438
1384
+ 阳 -9.73448
1385
+ 陪 -9.73458
1386
+ 奇 -9.73468
1387
+ 画 -9.73478
1388
+ 简 -9.73488
1389
+ 继 -9.73498
1390
+ 广 -9.73508
1391
+ 参 -9.73518
1392
+ 歌 -9.73528
1393
+ 球 -9.73538
1394
+ 助 -9.73548
1395
+ 形 -9.73558
1396
+ 治 -9.73568
1397
+ 黄 -9.73578
1398
+ 质 -9.73588
1399
+ 英 -9.73598
1400
+ 技 -9.73608
1401
+ 令 -9.73618
1402
+ 类 -9.73628
1403
+ 假 -9.73638
1404
+ 推 -9.73648
1405
+ 落 -9.73658
1406
+ 青 -9.73668
1407
+ 布 -9.73678
1408
+ 负 -9.73688
1409
+ 兵 -9.73698
1410
+ 江 -9.73708
1411
+ 亮 -9.73718
1412
+ 陈 -9.73728
1413
+ 夜 -9.73738
1414
+ 叔 -9.73748
1415
+ 懂 -9.73758
1416
+ 怪 -9.73768
1417
+ 戏 -9.73778
1418
+ 顾 -9.73788
1419
+ 遇 -9.73798
1420
+ 黑 -9.73808
1421
+ 刻 -9.73818
1422
+ 脸 -9.73828
1423
+ 示 -9.73838
1424
+ 组 -9.73848
1425
+ 衣 -9.73858
1426
+ 德 -9.73868
1427
+ 换 -9.73878
1428
+ 统 -9.73888
1429
+ 士 -9.73898
1430
+ 值 -9.73908
1431
+ 京 -9.73918
1432
+ 排 -9.73928
1433
+ 责 -9.73938
1434
+ 华 -9.73948
1435
+ 除 -9.73958
1436
+ 突 -9.73968
1437
+ 曾 -9.73978
1438
+ 姑 -9.73988
1439
+ 星 -9.73998
1440
+ 板 -9.74008
1441
+ 支 -9.74018
1442
+ 久 -9.74028
1443
+ 社 -9.74038
1444
+ 尽 -9.74048
1445
+ 断 -9.74058
1446
+ 切 -9.74068
1447
+ 刘 -9.74078
1448
+ 掉 -9.74088
1449
+ 规 -9.74098
1450
+ 忙 -9.74108
1451
+ 历 -9.74118
1452
+ 担 -9.74128
1453
+ 药 -9.74138
1454
+ 福 -9.74148
1455
+ 读 -9.74158
1456
+ 游 -9.74168
1457
+ 设 -9.74178
1458
+ 取 -9.74188
1459
+ 奶 -9.74198
1460
+ 热 -9.74208
1461
+ 装 -9.74218
1462
+ 护 -9.74228
1463
+ 飞 -9.74238
1464
+ 楚 -9.74248
1465
+ 兴 -9.74258
1466
+ 局 -9.74268
1467
+ 急 -9.74278
1468
+ 态 -9.74288
1469
+ 专 -9.74298
1470
+ 皇 -9.74308
1471
+ 元 -9.74318
1472
+ 兄 -9.74328
1473
+ 习 -9.74338
1474
+ 投 -9.74348
1475
+ 志 -9.74358
1476
+ 象 -9.74368
1477
+ 领 -9.74378
1478
+ 创 -9.74388
1479
+ 播 -9.74398
1480
+ 卖 -9.74408
1481
+ 谈 -9.74418
1482
+ 差 -9.74428
1483
+ 妹 -9.74438
1484
+ 站 -9.74448
1485
+ 众 -9.74458
1486
+ 绝 -9.74468
1487
+ 答 -9.74478
1488
+ 展 -9.74488
1489
+ 养 -9.74498
1490
+ 续 -9.74508
1491
+ 造 -9.74518
1492
+ 术 -9.74528
1493
+ 及 -9.74538
1494
+ 精 -9.74548
1495
+ 敢 -9.74558
1496
+ 班 -9.74568
1497
+ 试 -9.74578
1498
+ 救 -9.74588
1499
+ 随 -9.74598
1500
+ 费 -9.74608
1501
+ 待 -9.74618
1502
+ 苦 -9.74628
1503
+ 运 -9.74638
1504
+ 科 -9.74648
1505
+ 使 -9.74658
1506
+ 林 -9.74668
1507
+ 警 -9.74678
1508
+ 义 -9.74688
1509
+ 倒 -9.74698
1510
+ 阿 -9.74708
1511
+ 呃 -9.74718
1512
+ 啦 -9.74728
1513
+ 复 -9.74738
1514
+ 终 -9.74748
1515
+ 转 -9.74758
1516
+ 政 -9.74768
1517
+ 价 -9.74778
1518
+ 色 -9.74788
1519
+ 视 -9.74798
1520
+ 份 -9.74808
1521
+ 观 -9.74818
1522
+ 睡 -9.74828
1523
+ 基 -9.74838
1524
+ 格 -9.74848
1525
+ 未 -9.74858
1526
+ 客 -9.74868
1527
+ 聊 -9.74878
1528
+ 功 -9.74888
1529
+ 音 -9.74898
1530
+ 步 -9.74908
1531
+ 满 -9.74918
1532
+ 啥 -9.74928
1533
+ 改 -9.74938
1534
+ 片 -9.74948
1535
+ 论 -9.74958
1536
+ 深 -9.74968
1537
+ 写 -9.74978
1538
+ 指 -9.74988
1539
+ 慢 -9.74998
1540
+ 团 -9.75008
1541
+ 导 -9.75018
1542
+ 首 -9.75028
1543
+ 拉 -9.75038
1544
+ 线 -9.75048
1545
+ 火 -9.75058
1546
+ 易 -9.75068
1547
+ 轻 -9.75078
1548
+ 官 -9.75088
1549
+ 达 -9.75098
1550
+ 红 -9.75108
1551
+ 岁 -9.75118
1552
+ 区 -9.75128
1553
+ 笑 -9.75138
1554
+ 跑 -9.75148
1555
+ 赶 -9.75158
1556
+ 肯 -9.75168
1557
+ 言 -9.75178
1558
+ 微 -9.75188
1559
+ 联 -9.75198
1560
+ 酒 -9.75208
1561
+ 却 -9.75218
1562
+ 半 -9.75228
1563
+ 空 -9.75238
1564
+ 共 -9.75248
1565
+ 调 -9.75258
1566
+ 许 -9.75268
1567
+ 注 -9.75278
1568
+ 建 -9.75288
1569
+ 坐 -9.75298
1570
+ 故 -9.75308
1571
+ 希 -9.75318
1572
+ 演 -9.75328
1573
+ 根 -9.75338
1574
+ 伤 -9.75348
1575
+ 消 -9.75358
1576
+ 流 -9.75368
1577
+ 传 -9.75378
1578
+ 愿 -9.75388
1579
+ 式 -9.75398
1580
+ 网 -9.75408
1581
+ 识 -9.75418
1582
+ 商 -9.75428
1583
+ 南 -9.75438
1584
+ 杀 -9.75448
1585
+ 据 -9.75458
1586
+ 李 -9.75468
1587
+ 紧 -9.75478
1588
+ 句 -9.75488
1589
+ 由 -9.75498
1590
+ 周 -9.75508
1591
+ 段 -9.75518
1592
+ 挺 -9.75528
1593
+ 便 -9.75538
1594
+ 块 -9.75548
1595
+ 查 -9.75558
1596
+ 玩 -9.75568
1597
+ 台 -9.75578
1598
+ 立 -9.75588
1599
+ 失 -9.75598
1600
+ 字 -9.75608
1601
+ 害 -9.75618
1602
+ 喝 -9.75628
1603
+ 程 -9.75638
1604
+ 制 -9.75648
1605
+ 选 -9.75658
1606
+ 证 -9.75668
1607
+ 持 -9.75678
1608
+ 较 -9.75688
1609
+ 母 -9.75698
1610
+ 况 -9.75708
1611
+ 容 -9.75718
1612
+ 界 -9.75728
1613
+ 案 -9.75738
1614
+ 备 -9.75748
1615
+ 考 -9.75758
1616
+ 近 -9.75768
1617
+ 神 -9.75778
1618
+ 宝 -9.75788
1619
+ 留 -9.75798
1620
+ 饭 -9.75808
1621
+ 至 -9.75818
1622
+ 北 -9.75828
1623
+ 远 -9.75838
1624
+ 息 -9.75848
1625
+ 乐 -9.75858
1626
+ 连 -9.75868
1627
+ 声 -9.75878
1628
+ 决 -9.75888
1629
+ 俩 -9.75898
1630
+ 夫 -9.75908
1631
+ 城 -9.75918
1632
+ 影 -9.75928
1633
+ 务 -9.75938
1634
+ 强 -9.75948
1635
+ 照 -9.75958
1636
+ 计 -9.75968
1637
+ 嗯 -9.75978
1638
+ 弟 -9.75988
1639
+ 病 -9.75998
1640
+ 整 -9.76008
1641
+ 光 -9.76018
1642
+ 准 -9.76028
1643
+ 包 -9.76038
1644
+ 条 -9.76048
1645
+ 必 -9.76058
1646
+ 送 -9.76068
1647
+ 风 -9.76078
1648
+ 单 -9.76088
1649
+ 各 -9.76098
1650
+ 确 -9.76108
1651
+ 往 -9.76118
1652
+ 利 -9.76128
1653
+ 书 -9.76138
1654
+ 院 -9.76148
1655
+ 数 -9.76158
1656
+ 医 -9.76168
1657
+ 娘 -9.76178
1658
+ 教 -9.76188
1659
+ 求 -9.76198
1660
+ 资 -9.76208
1661
+ 需 -9.76218
1662
+ 服 -9.76228
1663
+ 与 -9.76238
1664
+ 并 -9.76248
1665
+ 爷 -9.76258
1666
+ 化 -9.76268
1667
+ 民 -9.76278
1668
+ 品 -9.76288
1669
+ 且 -9.76298
1670
+ 底 -9.76308
1671
+ 怕 -9.76318
1672
+ 千 -9.76328
1673
+ 号 -9.76338
1674
+ 员 -9.76348
1675
+ 或 -9.76358
1676
+ 量 -9.76368
1677
+ 买 -9.76378
1678
+ 战 -9.76388
1679
+ 反 -9.76398
1680
+ 父 -9.76408
1681
+ 节 -9.76418
1682
+ 错 -9.76428
1683
+ 房 -9.76438
1684
+ 花 -9.76448
1685
+ 向 -9.76458
1686
+ 收 -9.76468
1687
+ 越 -9.76478
1688
+ 命 -9.76488
1689
+ 婚 -9.76498
1690
+ 世 -9.76508
1691
+ 望 -9.76518
1692
+ 零 -9.76528
1693
+ 物 -9.76538
1694
+ 海 -9.76548
1695
+ 市 -9.76558
1696
+ 代 -9.76568
1697
+ 山 -9.76578
1698
+ 入 -9.76588
1699
+ 七 -9.76598
1700
+ 队 -9.76608
1701
+ 眼 -9.76618
1702
+ 离 -9.76628
1703
+ 交 -9.76638
1704
+ 早 -9.76648
1705
+ 晚 -9.76658
1706
+ 金 -9.76668
1707
+ 产 -9.76678
1708
+ 内 -9.76688
1709
+ 清 -9.76698
1710
+ 处 -9.76708
1711
+ 诉 -9.76718
1712
+ 此 -9.76728
1713
+ 始 -9.76738
1714
+ 原 -9.76748
1715
+ 司 -9.76758
1716
+ 嘛 -9.76768
1717
+ 保 -9.76778
1718
+ 拿 -9.76788
1719
+ 期 -9.76798
1720
+ 讲 -9.76808
1721
+ 何 -9.76818
1722
+ 提 -9.76828
1723
+ 表 -9.76838
1724
+ 性 -9.76848
1725
+ 够 -9.76858
1726
+ 管 -9.76868
1727
+ 张 -9.76878
1728
+ 六 -9.76888
1729
+ 报 -9.76898
1730
+ 度 -9.76908
1731
+ 男 -9.76918
1732
+ 口 -9.76928
1733
+ 将 -9.76938
1734
+ 算 -9.76948
1735
+ 九 -9.76958
1736
+ 水 -9.76968
1737
+ 记 -9.76978
1738
+ 变 -9.76988
1739
+ 路 -9.76998
1740
+ 帮 -9.77008
1741
+ 文 -9.77018
1742
+ 系 -9.77028
1743
+ 平 -9.77038
1744
+ 名 -9.77048
1745
+ 门 -9.77058
1746
+ 思 -9.77068
1747
+ 王 -9.77078
1748
+ 住 -9.77088
1749
+ 请 -9.77098
1750
+ 任 -9.77108
1751
+ 受 -9.77118
1752
+ 件 -9.77128
1753
+ 马 -9.77138
1754
+ 办 -9.77148
1755
+ 通 -9.77158
1756
+ 加 -9.77168
1757
+ 总 -9.77178
1758
+ 认 -9.77188
1759
+ 朋 -9.77198
1760
+ 亲 -9.77208
1761
+ 目 -9.77218
1762
+ 每 -9.77228
1763
+ 八 -9.77238
1764
+ 难 -9.77248
1765
+ 合 -9.77258
1766
+ 结 -9.77268
1767
+ 万 -9.77278
1768
+ 军 -9.77288
1769
+ 姐 -9.77298
1770
+ 场 -9.77308
1771
+ 部 -9.77318
1772
+ 喜 -9.77328
1773
+ 体 -9.77338
1774
+ 谁 -9.77348
1775
+ 欢 -9.77358
1776
+ 带 -9.77368
1777
+ 月 -9.77378
1778
+ 叫 -9.77388
1779
+ 解 -9.77398
1780
+ 美 -9.77408
1781
+ 告 -9.77418
1782
+ 白 -9.77428
1783
+ 爸 -9.77438
1784
+ 安 -9.77448
1785
+ 气 -9.77458
1786
+ 电 -9.77468
1787
+ 刚 -9.77478
1788
+ 完 -9.77488
1789
+ 死 -9.77498
1790
+ 哥 -9.77508
1791
+ 少 -9.77518
1792
+ 接 -9.77528
1793
+ 题 -9.77538
1794
+ 四 -9.77548
1795
+ 非 -9.77558
1796
+ 第 -9.77568
1797
+ 几 -9.77578
1798
+ 直 -9.77588
1799
+ 更 -9.77598
1800
+ 位 -9.77608
1801
+ 外 -9.77618
1802
+ 新 -9.77628
1803
+ 友 -9.77638
1804
+ 爱 -9.77648
1805
+ 边 -9.77658
1806
+ 师 -9.77668
1807
+ 活 -9.77678
1808
+ 业 -9.77688
1809
+ 特 -9.77698
1810
+ 百 -9.77708
1811
+ 机 -9.77718
1812
+ 信 -9.77728
1813
+ 相 -9.77738
1814
+ 干 -9.77748
1815
+ 该 -9.77758
1816
+ 西 -9.77768
1817
+ 像 -9.77778
1818
+ 者 -9.77788
1819
+ 五 -9.77798
1820
+ 哪 -9.77808
1821
+ 咱 -9.77818
1822
+ 工 -9.77828
1823
+ 无 -9.77838
1824
+ 放 -9.77848
1825
+ 东 -9.77858
1826
+ 日 -9.77868
1827
+ 谢 -9.77878
1828
+ 车 -9.77888
1829
+ 重 -9.77898
1830
+ 头 -9.77908
1831
+ 等 -9.77918
1832
+ 快 -9.77928
1833
+ 钱 -9.77938
1834
+ 被 -9.77948
1835
+ 高 -9.77958
1836
+ 应 -9.77968
1837
+ ��� -9.77978
1838
+ 正 -9.77988
1839
+ 力 -9.77998
1840
+ 又 -9.78008
1841
+ 理 -9.78018
1842
+ 全 -9.78028
1843
+ 身 -9.78038
1844
+ 找 -9.78048
1845
+ 先 -9.78058
1846
+ 进 -9.78068
1847
+ 它 -9.78078
1848
+ 次 -9.78088
1849
+ 常 -9.78098
1850
+ 吃 -9.78108
1851
+ 感 -9.78118
1852
+ 孩 -9.78128
1853
+ 才 -9.78138
1854
+ 见 -9.78148
1855
+ 已 -9.78158
1856
+ 动 -9.78168
1857
+ 法 -9.78178
1858
+ 同 -9.78188
1859
+ 妈 -9.78198
1860
+ 关 -9.78208
1861
+ 从 -9.78218
1862
+ 今 -9.78228
1863
+ 太 -9.78238
1864
+ 女 -9.78248
1865
+ 作 -9.78258
1866
+ 比 -9.78268
1867
+ 听 -9.78278
1868
+ 公 -9.78288
1869
+ 手 -9.78298
1870
+ 明 -9.78308
1871
+ 于 -9.78318
1872
+ 本 -9.78328
1873
+ 您 -9.78338
1874
+ 间 -9.78348
1875
+ 学 -9.78358
1876
+ 打 -9.78368
1877
+ 两 -9.78378
1878
+ 分 -9.78388
1879
+ 而 -9.78398
1880
+ 果 -9.78408
1881
+ 再 -9.78418
1882
+ 问 -9.78428
1883
+ 其 -9.78438
1884
+ 走 -9.78448
1885
+ 只 -9.78458
1886
+ 种 -9.78468
1887
+ 呀 -9.78478
1888
+ 用 -9.78488
1889
+ 因 -9.78498
1890
+ 前 -9.78508
1891
+ 三 -9.78518
1892
+ 方 -9.78528
1893
+ 最 -9.78538
1894
+ 长 -9.78548
1895
+ 二 -9.78558
1896
+ 意 -9.78568
1897
+ 定 -9.78578
1898
+ 成 -9.78588
1899
+ 但 -9.78598
1900
+ 觉 -9.78608
1901
+ 她 -9.78618
1902
+ 发 -9.78628
1903
+ 让 -9.78638
1904
+ 些 -9.78648
1905
+ 候 -9.78658
1906
+ 起 -9.78668
1907
+ 真 -9.78678
1908
+ 如 -9.78688
1909
+ 经 -9.78698
1910
+ 己 -9.78708
1911
+ 做 -9.78718
1912
+ 国 -9.78728
1913
+ 行 -9.78738
1914
+ 回 -9.78748
1915
+ 面 -9.78758
1916
+ 开 -9.78768
1917
+ 实 -9.78778
1918
+ 情 -9.78788
1919
+ 之 -9.78798
1920
+ 所 -9.78808
1921
+ 别 -9.78818
1922
+ 话 -9.78828
1923
+ 把 -9.78838
1924
+ 当 -9.78848
1925
+ 老 -9.78858
1926
+ 十 -9.78868
1927
+ 知 -9.78878
1928
+ 怎 -9.78888
1929
+ 地 -9.78898
1930
+ 和 -9.78908
1931
+ 年 -9.78918
1932
+ 点 -9.78928
1933
+ 很 -9.78938
1934
+ 中 -9.78948
1935
+ 跟 -9.78958
1936
+ 心 -9.78968
1937
+ 吗 -9.78978
1938
+ 道 -9.78988
1939
+ 样 -9.78998
1940
+ 吧 -9.79008
1941
+ 然 -9.79018
1942
+ 着 -9.79028
1943
+ 现 -9.79038
1944
+ 里 -9.79048
1945
+ 给 -9.79058
1946
+ 生 -9.79068
1947
+ 儿 -9.79078
1948
+ 自 -9.79088
1949
+ 出 -9.79098
1950
+ 小 -9.79108
1951
+ 多 -9.79118
1952
+ 想 -9.79128
1953
+ 过 -9.79138
1954
+ 下 -9.79148
1955
+ 天 -9.79158
1956
+ 事 -9.79168
1957
+ 对 -9.79178
1958
+ 呢 -9.79188
1959
+ 看 -9.79198
1960
+ 后 -9.79208
1961
+ 家 -9.79218
1962
+ 什 -9.79228
1963
+ 以 -9.79238
1964
+ 可 -9.79248
1965
+ 还 -9.79258
1966
+ 时 -9.79268
1967
+ 得 -9.79278
1968
+ 为 -9.79288
1969
+ 会 -9.79298
1970
+ 子 -9.79308
1971
+ 能 -9.79318
1972
+ 去 -9.79328
1973
+ 都 -9.79338
1974
+ 没 -9.79348
1975
+ 也 -9.79358
1976
+ 上 -9.79368
1977
+ 到 -9.79378
1978
+ 大 -9.79388
1979
+ 啊 -9.79398
1980
+ 好 -9.79408
1981
+ 要 -9.79418
1982
+ 那 -9.79428
1983
+ 说 -9.79438
1984
+ 来 -9.79448
1985
+ 么 -9.79458
1986
+ 人 -9.79468
1987
+ 他 -9.79478
1988
+ 在 -9.79488
1989
+ 们 -9.79498
1990
+ 就 -9.79508
1991
+ 有 -9.79518
1992
+ 个 -9.79528
1993
+ 这 -9.79538
1994
+ 不 -9.79548
1995
+ 一 -9.79558
1996
+ 了 -9.79568
1997
+ 你 -9.79578
1998
+ 是 -9.79588
1999
+ 我 -9.79598
2000
+ 的 -9.79608
data/lm/G_3_gram.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c905a9ad51cd8785eabaea58563097dc87bdb4580f83d4ffe04690feacbc54c0
3
+ size 1359231207
decoding_results/ctc-decoding/errs-aidatatang_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/errs-aidatatang_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/errs-aishell-2_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/errs-aishell-2_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/errs-aishell-4-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/errs-aishell_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/errs-aishell_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/errs-alimeeting_eval-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/errs-alimeeting_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/errs-kespeech-asr_dev_phase1-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/errs-kespeech-asr_dev_phase2-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/errs-kespeech-asr_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/errs-magicdata_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/errs-magicdata_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/errs-wenetspeech-meeting_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/errs-wenetspeech-net_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/errs-wenetspeech_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/log-decode-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model-2023-11-01-14-46-39 ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ 2023-11-01 14:46:39,902 INFO [ctc_decode.py:562] Decoding started
2
+ 2023-11-01 14:46:39,902 INFO [ctc_decode.py:568] Device: cuda:0
3
+ 2023-11-01 14:46:39,903 INFO [ctc_decode.py:569] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.24.3', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '821ebc378e7fb99b8adc81950227963332821e01', 'k2-git-date': 'Wed Jul 19 15:38:25 2023', 'lhotse-version': '1.16.0.dev+git.1db4d97a.clean', 'torch-version': '1.11.0+cu102', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.9', 'icefall-git-branch': 'dev_zipformer_cn', 'icefall-git-sha1': '5b9014f7-dirty', 'icefall-git-date': 'Tue Oct 24 16:08:39 2023', 'icefall-path': '/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/icefall-1.0-py3.9.egg', 'k2-path': '/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/k2-1.24.3.dev20230721+cuda10.2.torch1.11.0-py3.9-linux-x86_64.egg/k2/__init__.py', 'lhotse-path': '/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/lhotse-1.16.0.dev0+git.1db4d97a.clean-py3.9.egg/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb', 'IP address': '10.177.13.150'}, 'frame_shift_ms': 10, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'epoch': 20, 'iter': 0, 'avg': 1, 'use_averaged_model': True, 'exp_dir': PosixPath('zipformer/exp-w-ctc-streaming'), 'bpe_model': 'data/lang_bpe_2000/bpe.model', 'lang_dir': PosixPath('data/lang_bpe_2000'), 'context_size': 2, 'decoding_method': 'ctc-decoding', 'num_paths': 100, 'nbest_scale': 1.0, 'num_encoder_layers': '2,2,3,4,3,2', 'downsampling_factor': '1,2,4,8,4,2', 'feedforward_dim': '512,768,1024,1536,1024,768', 'num_heads': '4,4,4,8,4,4', 'encoder_dim': '192,256,384,512,384,256', 'query_head_dim': '32', 'value_head_dim': '12', 'pos_head_dim': '4', 'pos_dim': 48, 'encoder_unmasked_dim': '192,192,256,256,256,192', 'cnn_module_kernel': '31,31,15,15,15,31', 'decoder_dim': 512, 'joiner_dim': 512, 'causal': True, 'chunk_size': '32', 'left_context_frames': '256', 'use_transducer': True, 'use_ctc': False, 'manifest_dir': PosixPath('data/fbank'), 'max_duration': 300.0, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures', 'res_dir': PosixPath('zipformer/exp-w-ctc-streaming/ctc-decoding'), 'suffix': 'epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model'}
4
+ 2023-11-01 14:46:43,604 INFO [lexicon.py:168] Loading pre-compiled data/lang_bpe_2000/Linv.pt
5
+ 2023-11-01 14:46:57,141 INFO [ctc_decode.py:589] About to create model
6
+ 2023-11-01 14:46:58,149 INFO [ctc_decode.py:656] Calculating the averaged model over epoch range from 19 (excluded) to 20
decoding_results/ctc-decoding/log-decode-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model-2023-11-01-14-47-28 ADDED
@@ -0,0 +1,273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-11-01 14:47:28,310 INFO [ctc_decode.py:562] Decoding started
2
+ 2023-11-01 14:47:28,310 INFO [ctc_decode.py:568] Device: cuda:0
3
+ 2023-11-01 14:47:28,311 INFO [ctc_decode.py:569] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.24.3', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '821ebc378e7fb99b8adc81950227963332821e01', 'k2-git-date': 'Wed Jul 19 15:38:25 2023', 'lhotse-version': '1.16.0.dev+git.1db4d97a.clean', 'torch-version': '1.11.0+cu102', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.9', 'icefall-git-branch': 'dev_zipformer_cn', 'icefall-git-sha1': '5b9014f7-dirty', 'icefall-git-date': 'Tue Oct 24 16:08:39 2023', 'icefall-path': '/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/icefall-1.0-py3.9.egg', 'k2-path': '/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/k2-1.24.3.dev20230721+cuda10.2.torch1.11.0-py3.9-linux-x86_64.egg/k2/__init__.py', 'lhotse-path': '/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/lhotse-1.16.0.dev0+git.1db4d97a.clean-py3.9.egg/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb', 'IP address': '10.177.13.150'}, 'frame_shift_ms': 10, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'epoch': 20, 'iter': 0, 'avg': 1, 'use_averaged_model': True, 'exp_dir': PosixPath('zipformer/exp-w-ctc-streaming'), 'bpe_model': 'data/lang_bpe_2000/bpe.model', 'lang_dir': PosixPath('data/lang_bpe_2000'), 'context_size': 2, 'decoding_method': 'ctc-decoding', 'num_paths': 100, 'nbest_scale': 1.0, 'num_encoder_layers': '2,2,3,4,3,2', 'downsampling_factor': '1,2,4,8,4,2', 'feedforward_dim': '512,768,1024,1536,1024,768', 'num_heads': '4,4,4,8,4,4', 'encoder_dim': '192,256,384,512,384,256', 'query_head_dim': '32', 'value_head_dim': '12', 'pos_head_dim': '4', 'pos_dim': 48, 'encoder_unmasked_dim': '192,192,256,256,256,192', 'cnn_module_kernel': '31,31,15,15,15,31', 'decoder_dim': 512, 'joiner_dim': 512, 'causal': True, 'chunk_size': '32', 'left_context_frames': '256', 'use_transducer': True, 'use_ctc': True, 'manifest_dir': PosixPath('data/fbank'), 'max_duration': 300.0, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures', 'res_dir': PosixPath('zipformer/exp-w-ctc-streaming/ctc-decoding'), 'suffix': 'epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model'}
4
+ 2023-11-01 14:47:31,318 INFO [lexicon.py:168] Loading pre-compiled data/lang_bpe_2000/Linv.pt
5
+ 2023-11-01 14:47:38,873 INFO [ctc_decode.py:589] About to create model
6
+ 2023-11-01 14:47:39,840 INFO [ctc_decode.py:656] Calculating the averaged model over epoch range from 19 (excluded) to 20
7
+ 2023-11-01 14:47:46,736 INFO [ctc_decode.py:673] Number of model parameters: 70213431
8
+ 2023-11-01 14:47:46,739 INFO [multi_dataset.py:221] About to get multidataset test cuts
9
+ 2023-11-01 14:47:46,739 INFO [multi_dataset.py:224] Loading Aidatatang_200zh set in lazy mode
10
+ 2023-11-01 14:47:46,859 INFO [multi_dataset.py:233] Loading Aishell set in lazy mode
11
+ 2023-11-01 14:47:46,929 INFO [multi_dataset.py:242] Loading Aishell-2 set in lazy mode
12
+ 2023-11-01 14:47:46,985 INFO [multi_dataset.py:251] Loading Aishell-4 TEST set in lazy mode
13
+ 2023-11-01 14:47:47,014 INFO [multi_dataset.py:257] Loading Ali-Meeting set in lazy mode
14
+ 2023-11-01 14:47:47,068 INFO [multi_dataset.py:266] Loading MagicData set in lazy mode
15
+ 2023-11-01 14:47:47,147 INFO [multi_dataset.py:275] Loading KeSpeech set in lazy mode
16
+ 2023-11-01 14:47:47,222 INFO [multi_dataset.py:287] Loading WeNetSpeech set in lazy mode
17
+ 2023-11-01 14:48:01,939 WARNING [ctc_decode.py:685] Excluding cut with ID: TEST_NET_Y0000000004_0ub4ZzdHzBc_S00023 from decoding, num_frames: 8
18
+ 2023-11-01 14:48:03,851 INFO [ctc_decode.py:697] Start decoding test set: aidatatang_test
19
+ 2023-11-01 14:48:06,620 INFO [ctc_decode.py:487] batch 0/?, cuts processed until now is 80
20
+ 2023-11-01 14:48:41,924 INFO [ctc_decode.py:487] batch 100/?, cuts processed until now is 9084
21
+ 2023-11-01 14:49:02,474 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([3.1871, 2.0377, 3.0515, 3.3628], device='cuda:0')
22
+ 2023-11-01 14:49:11,593 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([2.1252, 1.9225, 2.0306, 2.5157], device='cuda:0')
23
+ 2023-11-01 14:49:15,233 INFO [ctc_decode.py:487] batch 200/?, cuts processed until now is 18516
24
+ 2023-11-01 14:49:42,290 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([1.0425, 3.2445, 3.2294, 1.5114], device='cuda:0')
25
+ 2023-11-01 14:49:50,217 INFO [ctc_decode.py:487] batch 300/?, cuts processed until now is 28179
26
+ 2023-11-01 14:50:03,993 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([4.1128, 3.6159, 2.0588, 3.7947], device='cuda:0')
27
+ 2023-11-01 14:50:18,380 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([1.6853, 2.1348, 1.8477, 2.7538], device='cuda:0')
28
+ 2023-11-01 14:50:25,991 INFO [ctc_decode.py:487] batch 400/?, cuts processed until now is 37667
29
+ 2023-11-01 14:50:59,583 INFO [ctc_decode.py:487] batch 500/?, cuts processed until now is 46172
30
+ 2023-11-01 14:51:12,661 INFO [ctc_decode.py:501] The transcripts are stored in zipformer/exp-w-ctc-streaming/ctc-decoding/recogs-aidatatang_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
31
+ 2023-11-01 14:51:14,382 INFO [utils.py:565] [aidatatang_test-ctc-decoding] %WER 6.75% [31652 / 468933, 4164 ins, 9320 del, 18168 sub ]
32
+ 2023-11-01 14:51:18,348 INFO [ctc_decode.py:510] Wrote detailed error stats to zipformer/exp-w-ctc-streaming/ctc-decoding/errs-aidatatang_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
33
+ 2023-11-01 14:51:18,354 INFO [ctc_decode.py:524]
34
+ For aidatatang_test, WER of different settings are:
35
+ ctc-decoding 6.75 best for aidatatang_test
36
+
37
+ 2023-11-01 14:51:18,355 INFO [ctc_decode.py:697] Start decoding test set: aidatatang_dev
38
+ 2023-11-01 14:51:21,787 INFO [ctc_decode.py:487] batch 0/?, cuts processed until now is 81
39
+ 2023-11-01 14:51:38,906 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([1.7173, 2.0871, 1.5568, 2.2526], device='cuda:0')
40
+ 2023-11-01 14:51:45,093 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([1.3668, 1.5783, 1.5058, 1.2721, 1.7073, 1.4607, 1.7798, 1.6686],
41
+ device='cuda:0')
42
+ 2023-11-01 14:51:57,029 INFO [ctc_decode.py:487] batch 100/?, cuts processed until now is 9077
43
+ 2023-11-01 14:52:10,409 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([2.1061, 1.0307, 1.6031, 1.4386, 1.6898, 1.3798, 1.5740, 1.3794],
44
+ device='cuda:0')
45
+ 2023-11-01 14:52:32,461 INFO [ctc_decode.py:487] batch 200/?, cuts processed until now is 18432
46
+ 2023-11-01 14:52:55,144 INFO [ctc_decode.py:501] The transcripts are stored in zipformer/exp-w-ctc-streaming/ctc-decoding/recogs-aidatatang_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
47
+ 2023-11-01 14:52:55,904 INFO [utils.py:565] [aidatatang_dev-ctc-decoding] %WER 6.17% [14472 / 234524, 1839 ins, 4827 del, 7806 sub ]
48
+ 2023-11-01 14:52:57,557 INFO [ctc_decode.py:510] Wrote detailed error stats to zipformer/exp-w-ctc-streaming/ctc-decoding/errs-aidatatang_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
49
+ 2023-11-01 14:52:57,561 INFO [ctc_decode.py:524]
50
+ For aidatatang_dev, WER of different settings are:
51
+ ctc-decoding 6.17 best for aidatatang_dev
52
+
53
+ 2023-11-01 14:52:57,564 INFO [ctc_decode.py:697] Start decoding test set: alimeeting_test
54
+ 2023-11-01 14:53:01,508 INFO [ctc_decode.py:487] batch 0/?, cuts processed until now is 44
55
+ 2023-11-01 14:53:17,820 WARNING [ctc_decode.py:685] Excluding cut with ID: R8008_M8016-8062-123 from decoding, num_frames: 6
56
+ 2023-11-01 14:53:43,012 INFO [ctc_decode.py:487] batch 100/?, cuts processed until now is 7625
57
+ 2023-11-01 14:53:48,593 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([1.5120, 1.2116, 1.5460, 2.4960], device='cuda:0')
58
+ 2023-11-01 14:53:56,382 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([0.7824, 1.2077, 1.1181, 1.2473, 0.6089, 1.2157, 1.0652, 1.0424],
59
+ device='cuda:0')
60
+ 2023-11-01 14:54:17,387 INFO [ctc_decode.py:501] The transcripts are stored in zipformer/exp-w-ctc-streaming/ctc-decoding/recogs-alimeeting_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
61
+ 2023-11-01 14:54:18,088 INFO [utils.py:565] [alimeeting_test-ctc-decoding] %WER 31.44% [65973 / 209845, 4708 ins, 33281 del, 27984 sub ]
62
+ 2023-11-01 14:54:20,196 INFO [ctc_decode.py:510] Wrote detailed error stats to zipformer/exp-w-ctc-streaming/ctc-decoding/errs-alimeeting_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
63
+ 2023-11-01 14:54:20,201 INFO [ctc_decode.py:524]
64
+ For alimeeting_test, WER of different settings are:
65
+ ctc-decoding 31.44 best for alimeeting_test
66
+
67
+ 2023-11-01 14:54:20,201 INFO [ctc_decode.py:697] Start decoding test set: alimeeting_eval
68
+ 2023-11-01 14:54:22,472 INFO [ctc_decode.py:487] batch 0/?, cuts processed until now is 35
69
+ 2023-11-01 14:54:44,130 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([1.8781, 1.6845, 1.9433, 1.6850, 1.6151, 1.8336, 1.5154, 1.8333],
70
+ device='cuda:0')
71
+ 2023-11-01 14:54:51,905 INFO [ctc_decode.py:501] The transcripts are stored in zipformer/exp-w-ctc-streaming/ctc-decoding/recogs-alimeeting_eval-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
72
+ 2023-11-01 14:54:52,179 INFO [utils.py:565] [alimeeting_eval-ctc-decoding] %WER 30.00% [24332 / 81111, 1757 ins, 11903 del, 10672 sub ]
73
+ 2023-11-01 14:54:53,066 INFO [ctc_decode.py:510] Wrote detailed error stats to zipformer/exp-w-ctc-streaming/ctc-decoding/errs-alimeeting_eval-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
74
+ 2023-11-01 14:54:53,070 INFO [ctc_decode.py:524]
75
+ For alimeeting_eval, WER of different settings are:
76
+ ctc-decoding 30.0 best for alimeeting_eval
77
+
78
+ 2023-11-01 14:54:53,071 INFO [ctc_decode.py:697] Start decoding test set: aishell_test
79
+ 2023-11-01 14:54:55,116 INFO [ctc_decode.py:487] batch 0/?, cuts processed until now is 47
80
+ 2023-11-01 14:54:55,210 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([3.4958, 1.9935, 2.6885, 3.1444], device='cuda:0')
81
+ 2023-11-01 14:55:06,238 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([1.1795, 0.8899, 1.6425, 1.6988, 1.6322, 1.6657, 1.9442, 1.4633],
82
+ device='cuda:0')
83
+ 2023-11-01 14:55:13,489 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([1.4651, 2.1835, 1.9732, 1.4512, 2.1847, 1.6537, 2.2801, 2.1737],
84
+ device='cuda:0')
85
+ 2023-11-01 14:55:24,961 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([4.2220, 3.3997, 2.1962, 2.3623], device='cuda:0')
86
+ 2023-11-01 14:55:25,776 INFO [ctc_decode.py:487] batch 100/?, cuts processed until now is 5468
87
+ 2023-11-01 14:55:37,012 INFO [ctc_decode.py:501] The transcripts are stored in zipformer/exp-w-ctc-streaming/ctc-decoding/recogs-aishell_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
88
+ 2023-11-01 14:55:37,738 INFO [utils.py:565] [aishell_test-ctc-decoding] %WER 4.48% [4692 / 104765, 876 ins, 464 del, 3352 sub ]
89
+ 2023-11-01 14:55:38,965 INFO [ctc_decode.py:510] Wrote detailed error stats to zipformer/exp-w-ctc-streaming/ctc-decoding/errs-aishell_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
90
+ 2023-11-01 14:55:38,969 INFO [ctc_decode.py:524]
91
+ For aishell_test, WER of different settings are:
92
+ ctc-decoding 4.48 best for aishell_test
93
+
94
+ 2023-11-01 14:55:38,970 INFO [ctc_decode.py:697] Start decoding test set: aishell_dev
95
+ 2023-11-01 14:55:41,751 INFO [ctc_decode.py:487] batch 0/?, cuts processed until now is 53
96
+ 2023-11-01 14:55:44,795 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([1.9071, 2.1266, 2.2245, 1.9673, 2.1795, 2.0215, 1.7538, 2.0710],
97
+ device='cuda:0')
98
+ 2023-11-01 14:55:49,530 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([3.3511, 2.1230, 3.3090, 3.6794], device='cuda:0')
99
+ 2023-11-01 14:56:13,400 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([1.3865, 1.9884, 1.8194, 1.3484, 2.0037, 1.5806, 2.0238, 1.9923],
100
+ device='cuda:0')
101
+ 2023-11-01 14:56:16,022 INFO [ctc_decode.py:487] batch 100/?, cuts processed until now is 6034
102
+ 2023-11-01 14:56:49,224 INFO [ctc_decode.py:487] batch 200/?, cuts processed until now is 12198
103
+ 2023-11-01 14:57:02,734 INFO [ctc_decode.py:501] The transcripts are stored in zipformer/exp-w-ctc-streaming/ctc-decoding/recogs-aishell_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
104
+ 2023-11-01 14:57:03,428 INFO [utils.py:565] [aishell_dev-ctc-decoding] %WER 3.80% [7798 / 205341, 1443 ins, 675 del, 5680 sub ]
105
+ 2023-11-01 14:57:05,310 INFO [ctc_decode.py:510] Wrote detailed error stats to zipformer/exp-w-ctc-streaming/ctc-decoding/errs-aishell_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
106
+ 2023-11-01 14:57:05,314 INFO [ctc_decode.py:524]
107
+ For aishell_dev, WER of different settings are:
108
+ ctc-decoding 3.8 best for aishell_dev
109
+
110
+ 2023-11-01 14:57:05,315 INFO [ctc_decode.py:697] Start decoding test set: aishell-2_test
111
+ 2023-11-01 14:57:07,480 INFO [ctc_decode.py:487] batch 0/?, cuts processed until now is 83
112
+ 2023-11-01 14:57:19,559 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([1.6574, 1.7279, 1.8256, 2.2562], device='cuda:0')
113
+ 2023-11-01 14:57:27,882 INFO [ctc_decode.py:501] The transcripts are stored in zipformer/exp-w-ctc-streaming/ctc-decoding/recogs-aishell-2_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
114
+ 2023-11-01 14:57:28,053 INFO [utils.py:565] [aishell-2_test-ctc-decoding] %WER 5.18% [2564 / 49532, 299 ins, 164 del, 2101 sub ]
115
+ 2023-11-01 14:57:28,391 INFO [ctc_decode.py:510] Wrote detailed error stats to zipformer/exp-w-ctc-streaming/ctc-decoding/errs-aishell-2_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
116
+ 2023-11-01 14:57:28,395 INFO [ctc_decode.py:524]
117
+ For aishell-2_test, WER of different settings are:
118
+ ctc-decoding 5.18 best for aishell-2_test
119
+
120
+ 2023-11-01 14:57:28,395 INFO [ctc_decode.py:697] Start decoding test set: aishell-2_dev
121
+ 2023-11-01 14:57:30,517 INFO [ctc_decode.py:487] batch 0/?, cuts processed until now is 81
122
+ 2023-11-01 14:57:40,882 INFO [ctc_decode.py:501] The transcripts are stored in zipformer/exp-w-ctc-streaming/ctc-decoding/recogs-aishell-2_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
123
+ 2023-11-01 14:57:40,996 INFO [utils.py:565] [aishell-2_dev-ctc-decoding] %WER 4.69% [1162 / 24802, 117 ins, 64 del, 981 sub ]
124
+ 2023-11-01 14:57:41,180 INFO [ctc_decode.py:510] Wrote detailed error stats to zipformer/exp-w-ctc-streaming/ctc-decoding/errs-aishell-2_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
125
+ 2023-11-01 14:57:41,183 INFO [ctc_decode.py:524]
126
+ For aishell-2_dev, WER of different settings are:
127
+ ctc-decoding 4.69 best for aishell-2_dev
128
+
129
+ 2023-11-01 14:57:41,184 INFO [ctc_decode.py:697] Start decoding test set: aishell-4
130
+ 2023-11-01 14:57:45,192 INFO [ctc_decode.py:487] batch 0/?, cuts processed until now is 33
131
+ 2023-11-01 14:58:16,573 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([3.4371, 1.9602, 2.5218, 3.4740], device='cuda:0')
132
+ 2023-11-01 14:58:23,848 INFO [ctc_decode.py:487] batch 100/?, cuts processed until now is 5000
133
+ 2023-11-01 14:58:27,338 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([2.0054, 1.8766, 2.1849, 2.5415], device='cuda:0')
134
+ 2023-11-01 14:58:48,415 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([1.7196, 1.4419, 1.6940, 2.3319], device='cuda:0')
135
+ 2023-11-01 14:58:53,724 INFO [ctc_decode.py:501] The transcripts are stored in zipformer/exp-w-ctc-streaming/ctc-decoding/recogs-aishell-4-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
136
+ 2023-11-01 14:58:54,660 INFO [utils.py:565] [aishell-4-ctc-decoding] %WER 19.59% [35385 / 180665, 5239 ins, 10885 del, 19261 sub ]
137
+ 2023-11-01 14:58:56,297 INFO [ctc_decode.py:510] Wrote detailed error stats to zipformer/exp-w-ctc-streaming/ctc-decoding/errs-aishell-4-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
138
+ 2023-11-01 14:58:56,300 INFO [ctc_decode.py:524]
139
+ For aishell-4, WER of different settings are:
140
+ ctc-decoding 19.59 best for aishell-4
141
+
142
+ 2023-11-01 14:58:56,301 INFO [ctc_decode.py:697] Start decoding test set: magicdata_test
143
+ 2023-11-01 14:58:59,144 INFO [ctc_decode.py:487] batch 0/?, cuts processed until now is 57
144
+ 2023-11-01 14:59:03,781 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([1.4844, 2.5461, 2.2005, 1.8129], device='cuda:0')
145
+ 2023-11-01 14:59:34,926 INFO [ctc_decode.py:487] batch 100/?, cuts processed until now is 6425
146
+ 2023-11-01 14:59:41,444 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([4.3595, 3.8809, 3.9809, 4.5196], device='cuda:0')
147
+ 2023-11-01 15:00:10,369 INFO [ctc_decode.py:487] batch 200/?, cuts processed until now is 13211
148
+ 2023-11-01 15:00:18,571 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([1.9834, 1.8399, 1.9684, 2.3691], device='cuda:0')
149
+ 2023-11-01 15:00:34,434 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([1.7582, 2.9792, 2.5871, 2.1582], device='cuda:0')
150
+ 2023-11-01 15:00:41,569 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([4.7768, 4.4343, 3.7572, 3.8698], device='cuda:0')
151
+ 2023-11-01 15:00:43,333 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([1.9072, 1.5017, 1.8388, 2.6391], device='cuda:0')
152
+ 2023-11-01 15:00:44,628 INFO [ctc_decode.py:487] batch 300/?, cuts processed until now is 20136
153
+ 2023-11-01 15:01:18,367 INFO [ctc_decode.py:501] The transcripts are stored in zipformer/exp-w-ctc-streaming/ctc-decoding/recogs-magicdata_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
154
+ 2023-11-01 15:01:19,198 INFO [utils.py:565] [magicdata_test-ctc-decoding] %WER 9.83% [23510 / 239091, 1804 ins, 13912 del, 7794 sub ]
155
+ 2023-11-01 15:01:21,185 INFO [ctc_decode.py:510] Wrote detailed error stats to zipformer/exp-w-ctc-streaming/ctc-decoding/errs-magicdata_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
156
+ 2023-11-01 15:01:21,190 INFO [ctc_decode.py:524]
157
+ For magicdata_test, WER of different settings are:
158
+ ctc-decoding 9.83 best for magicdata_test
159
+
160
+ 2023-11-01 15:01:21,190 INFO [ctc_decode.py:697] Start decoding test set: magicdata_dev
161
+ 2023-11-01 15:01:24,288 INFO [ctc_decode.py:487] batch 0/?, cuts processed until now is 52
162
+ 2023-11-01 15:01:37,866 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([4.7325, 4.3410, 2.7236, 4.5414], device='cuda:0')
163
+ 2023-11-01 15:01:48,856 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([2.2312, 1.7215, 2.1283, 3.1109], device='cuda:0')
164
+ 2023-11-01 15:01:56,976 INFO [ctc_decode.py:487] batch 100/?, cuts processed until now is 5919
165
+ 2023-11-01 15:02:25,871 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([3.2261, 1.7625, 2.5821, 3.0766], device='cuda:0')
166
+ 2023-11-01 15:02:30,480 INFO [ctc_decode.py:487] batch 200/?, cuts processed until now is 11646
167
+ 2023-11-01 15:02:33,221 INFO [ctc_decode.py:501] The transcripts are stored in zipformer/exp-w-ctc-streaming/ctc-decoding/recogs-magicdata_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
168
+ 2023-11-01 15:02:33,600 INFO [utils.py:565] [magicdata_dev-ctc-decoding] %WER 10.85% [12676 / 116800, 903 ins, 7031 del, 4742 sub ]
169
+ 2023-11-01 15:02:34,423 INFO [ctc_decode.py:510] Wrote detailed error stats to zipformer/exp-w-ctc-streaming/ctc-decoding/errs-magicdata_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
170
+ 2023-11-01 15:02:34,427 INFO [ctc_decode.py:524]
171
+ For magicdata_dev, WER of different settings are:
172
+ ctc-decoding 10.85 best for magicdata_dev
173
+
174
+ 2023-11-01 15:02:34,428 INFO [ctc_decode.py:697] Start decoding test set: kespeech-asr_test
175
+ 2023-11-01 15:02:37,432 INFO [ctc_decode.py:487] batch 0/?, cuts processed until now is 45
176
+ 2023-11-01 15:02:46,001 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([3.2753, 2.0451, 3.1021, 3.3815], device='cuda:0')
177
+ 2023-11-01 15:02:53,138 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([4.1011, 3.3499, 2.1994, 2.2218], device='cuda:0')
178
+ 2023-11-01 15:03:14,972 INFO [ctc_decode.py:487] batch 100/?, cuts processed until now is 4867
179
+ 2023-11-01 15:03:50,988 INFO [ctc_decode.py:487] batch 200/?, cuts processed until now is 9965
180
+ 2023-11-01 15:03:56,531 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([3.3316, 2.5555, 2.7021, 3.2418], device='cuda:0')
181
+ 2023-11-01 15:04:11,631 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([1.5980, 2.3235, 2.1412, 1.9799, 2.0662, 2.0400, 2.2173, 1.5323],
182
+ device='cuda:0')
183
+ 2023-11-01 15:04:25,088 INFO [ctc_decode.py:487] batch 300/?, cuts processed until now is 15124
184
+ 2023-11-01 15:05:01,096 INFO [ctc_decode.py:487] batch 400/?, cuts processed until now is 19643
185
+ 2023-11-01 15:05:02,644 INFO [ctc_decode.py:501] The transcripts are stored in zipformer/exp-w-ctc-streaming/ctc-decoding/recogs-kespeech-asr_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
186
+ 2023-11-01 15:05:03,573 INFO [utils.py:565] [kespeech-asr_test-ctc-decoding] %WER 16.48% [46778 / 283772, 3325 ins, 13461 del, 29992 sub ]
187
+ 2023-11-01 15:05:05,728 INFO [ctc_decode.py:510] Wrote detailed error stats to zipformer/exp-w-ctc-streaming/ctc-decoding/errs-kespeech-asr_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
188
+ 2023-11-01 15:05:05,733 INFO [ctc_decode.py:524]
189
+ For kespeech-asr_test, WER of different settings are:
190
+ ctc-decoding 16.48 best for kespeech-asr_test
191
+
192
+ 2023-11-01 15:05:05,733 INFO [ctc_decode.py:697] Start decoding test set: kespeech-asr_dev_phase1
193
+ 2023-11-01 15:05:07,532 INFO [ctc_decode.py:487] batch 0/?, cuts processed until now is 44
194
+ 2023-11-01 15:05:24,275 INFO [ctc_decode.py:501] The transcripts are stored in zipformer/exp-w-ctc-streaming/ctc-decoding/recogs-kespeech-asr_dev_phase1-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
195
+ 2023-11-01 15:05:24,392 INFO [utils.py:565] [kespeech-asr_dev_phase1-ctc-decoding] %WER 14.45% [4572 / 31634, 359 ins, 1475 del, 2738 sub ]
196
+ 2023-11-01 15:05:24,638 INFO [ctc_decode.py:510] Wrote detailed error stats to zipformer/exp-w-ctc-streaming/ctc-decoding/errs-kespeech-asr_dev_phase1-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
197
+ 2023-11-01 15:05:24,643 INFO [ctc_decode.py:524]
198
+ For kespeech-asr_dev_phase1, WER of different settings are:
199
+ ctc-decoding 14.45 best for kespeech-asr_dev_phase1
200
+
201
+ 2023-11-01 15:05:24,645 INFO [ctc_decode.py:697] Start decoding test set: kespeech-asr_dev_phase2
202
+ 2023-11-01 15:05:26,528 INFO [ctc_decode.py:487] batch 0/?, cuts processed until now is 47
203
+ 2023-11-01 15:05:26,936 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([1.2724, 2.7972, 2.2002, 1.7790], device='cuda:0')
204
+ 2023-11-01 15:05:39,597 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([4.4564, 3.7457, 3.9398, 4.5298], device='cuda:0')
205
+ 2023-11-01 15:05:43,397 INFO [ctc_decode.py:501] The transcripts are stored in zipformer/exp-w-ctc-streaming/ctc-decoding/recogs-kespeech-asr_dev_phase2-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
206
+ 2023-11-01 15:05:43,594 INFO [utils.py:565] [kespeech-asr_dev_phase2-ctc-decoding] %WER 8.53% [2723 / 31928, 230 ins, 1390 del, 1103 sub ]
207
+ 2023-11-01 15:05:43,957 INFO [ctc_decode.py:510] Wrote detailed error stats to zipformer/exp-w-ctc-streaming/ctc-decoding/errs-kespeech-asr_dev_phase2-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
208
+ 2023-11-01 15:05:43,961 INFO [ctc_decode.py:524]
209
+ For kespeech-asr_dev_phase2, WER of different settings are:
210
+ ctc-decoding 8.53 best for kespeech-asr_dev_phase2
211
+
212
+ 2023-11-01 15:05:43,961 INFO [ctc_decode.py:697] Start decoding test set: wenetspeech-meeting_test
213
+ 2023-11-01 15:05:46,509 INFO [ctc_decode.py:487] batch 0/?, cuts processed until now is 28
214
+ 2023-11-01 15:06:08,526 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([2.4926, 2.2071, 2.6642, 2.4292, 2.3721, 2.5718, 2.1505, 2.4094],
215
+ device='cuda:0')
216
+ 2023-11-01 15:06:27,984 INFO [ctc_decode.py:487] batch 100/?, cuts processed until now is 3776
217
+ 2023-11-01 15:06:41,581 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([2.1046, 1.8950, 2.1569, 1.9787, 1.9776, 2.0899, 1.8083, 1.9956],
218
+ device='cuda:0')
219
+ 2023-11-01 15:06:59,966 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([1.9375, 1.5815, 1.8459, 2.8367], device='cuda:0')
220
+ 2023-11-01 15:07:06,228 INFO [ctc_decode.py:487] batch 200/?, cuts processed until now is 8092
221
+ 2023-11-01 15:07:10,351 INFO [ctc_decode.py:501] The transcripts are stored in zipformer/exp-w-ctc-streaming/ctc-decoding/recogs-wenetspeech-meeting_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
222
+ 2023-11-01 15:07:11,026 INFO [utils.py:565] [wenetspeech-meeting_test-ctc-decoding] %WER 9.73% [21453 / 220385, 2225 ins, 5243 del, 13985 sub ]
223
+ 2023-11-01 15:07:12,598 INFO [ctc_decode.py:510] Wrote detailed error stats to zipformer/exp-w-ctc-streaming/ctc-decoding/errs-wenetspeech-meeting_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
224
+ 2023-11-01 15:07:12,602 INFO [ctc_decode.py:524]
225
+ For wenetspeech-meeting_test, WER of different settings are:
226
+ ctc-decoding 9.73 best for wenetspeech-meeting_test
227
+
228
+ 2023-11-01 15:07:12,602 INFO [ctc_decode.py:697] Start decoding test set: wenetspeech-net_test
229
+ 2023-11-01 15:07:13,069 WARNING [ctc_decode.py:685] Excluding cut with ID: TEST_NET_Y0000000004_0ub4ZzdHzBc_S00023 from decoding, num_frames: 8
230
+ 2023-11-01 15:07:15,284 INFO [ctc_decode.py:487] batch 0/?, cuts processed until now is 43
231
+ 2023-11-01 15:07:19,716 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([2.6678, 1.3518, 1.8001, 2.7190], device='cuda:0')
232
+ 2023-11-01 15:07:24,947 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([4.8001, 4.3394, 2.1421, 4.5083], device='cuda:0')
233
+ 2023-11-01 15:07:25,339 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([1.8812, 2.1852, 2.2367, 1.8576, 2.0715, 2.4661, 2.0930, 1.6511],
234
+ device='cuda:0')
235
+ 2023-11-01 15:07:25,392 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([1.9651, 2.0863, 1.8320, 2.9962], device='cuda:0')
236
+ 2023-11-01 15:07:26,290 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([1.7713, 2.6142, 1.8248, 2.6063], device='cuda:0')
237
+ 2023-11-01 15:07:30,476 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([2.1002, 2.0256, 2.4191, 1.9466, 2.1978, 2.2908, 1.7404, 2.3669],
238
+ device='cuda:0')
239
+ 2023-11-01 15:07:54,856 INFO [ctc_decode.py:487] batch 100/?, cuts processed until now is 7009
240
+ 2023-11-01 15:07:58,817 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([0.9261, 3.7728, 3.7106, 1.4652], device='cuda:0')
241
+ 2023-11-01 15:08:08,226 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([2.4854, 1.3401, 1.6919, 2.5682], device='cuda:0')
242
+ 2023-11-01 15:08:32,168 INFO [ctc_decode.py:487] batch 200/?, cuts processed until now is 14995
243
+ 2023-11-01 15:08:37,643 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([1.3924, 1.8270, 1.6473, 1.1533, 2.0223, 1.3789, 1.8598, 1.9455],
244
+ device='cuda:0')
245
+ 2023-11-01 15:08:41,772 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([2.0806, 2.0476, 2.4033, 2.0766, 2.1347, 2.1956, 1.8576, 2.2775],
246
+ device='cuda:0')
247
+ 2023-11-01 15:08:48,253 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([1.8197, 2.5915, 1.8798, 2.7089], device='cuda:0')
248
+ 2023-11-01 15:09:07,856 INFO [ctc_decode.py:487] batch 300/?, cuts processed until now is 22693
249
+ 2023-11-01 15:09:18,835 INFO [ctc_decode.py:501] The transcripts are stored in zipformer/exp-w-ctc-streaming/ctc-decoding/recogs-wenetspeech-net_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
250
+ 2023-11-01 15:09:21,819 INFO [utils.py:565] [wenetspeech-net_test-ctc-decoding] %WER 12.03% [49994 / 415746, 3354 ins, 20928 del, 25712 sub ]
251
+ 2023-11-01 15:09:25,204 INFO [ctc_decode.py:510] Wrote detailed error stats to zipformer/exp-w-ctc-streaming/ctc-decoding/errs-wenetspeech-net_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
252
+ 2023-11-01 15:09:25,213 INFO [ctc_decode.py:524]
253
+ For wenetspeech-net_test, WER of different settings are:
254
+ ctc-decoding 12.03 best for wenetspeech-net_test
255
+
256
+ 2023-11-01 15:09:25,215 INFO [ctc_decode.py:697] Start decoding test set: wenetspeech_dev
257
+ 2023-11-01 15:09:28,056 INFO [ctc_decode.py:487] batch 0/?, cuts processed until now is 39
258
+ 2023-11-01 15:10:02,475 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([3.8177, 2.9916, 1.8380, 1.7392], device='cuda:0')
259
+ 2023-11-01 15:10:05,218 INFO [ctc_decode.py:487] batch 100/?, cuts processed until now is 4983
260
+ 2023-11-01 15:10:06,864 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([0.8310, 3.8471, 3.8342, 1.5184], device='cuda:0')
261
+ 2023-11-01 15:10:14,365 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([1.9438, 2.0733, 2.3426, 2.7923], device='cuda:0')
262
+ 2023-11-01 15:10:16,598 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([3.6166, 2.8729, 1.9620, 2.0345], device='cuda:0')
263
+ 2023-11-01 15:10:41,636 INFO [ctc_decode.py:487] batch 200/?, cuts processed until now is 10268
264
+ 2023-11-01 15:10:47,303 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([3.5680, 1.8801, 2.7909, 3.2492], device='cuda:0')
265
+ 2023-11-01 15:10:52,045 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([4.2542, 3.5412, 1.9220, 1.7750], device='cuda:0')
266
+ 2023-11-01 15:11:04,812 INFO [ctc_decode.py:501] The transcripts are stored in zipformer/exp-w-ctc-streaming/ctc-decoding/recogs-wenetspeech_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
267
+ 2023-11-01 15:11:05,947 INFO [utils.py:565] [wenetspeech_dev-ctc-decoding] %WER 10.24% [33842 / 330498, 1990 ins, 18068 del, 13784 sub ]
268
+ 2023-11-01 15:11:08,184 INFO [ctc_decode.py:510] Wrote detailed error stats to zipformer/exp-w-ctc-streaming/ctc-decoding/errs-wenetspeech_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt
269
+ 2023-11-01 15:11:08,189 INFO [ctc_decode.py:524]
270
+ For wenetspeech_dev, WER of different settings are:
271
+ ctc-decoding 10.24 best for wenetspeech_dev
272
+
273
+ 2023-11-01 15:11:08,190 INFO [ctc_decode.py:716] Done!
decoding_results/ctc-decoding/recogs-aidatatang_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/recogs-aidatatang_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/recogs-aishell-2_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/recogs-aishell-2_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/recogs-aishell-4-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/recogs-aishell_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/recogs-aishell_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/recogs-alimeeting_eval-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/recogs-alimeeting_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/recogs-kespeech-asr_dev_phase1-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/recogs-kespeech-asr_dev_phase2-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/recogs-kespeech-asr_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/recogs-magicdata_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/recogs-magicdata_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/recogs-wenetspeech-meeting_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/recogs-wenetspeech-net_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/recogs-wenetspeech_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-decoding/wer-summary-aidatatang_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ settings WER
2
+ ctc-decoding 6.17
decoding_results/ctc-decoding/wer-summary-aidatatang_test-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ settings WER
2
+ ctc-decoding 6.75
decoding_results/ctc-decoding/wer-summary-aishell-2_dev-epoch-20-avg-1-chunk-32-left-context-256-use-averaged-model.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ settings WER
2
+ ctc-decoding 4.69