zohirjonsharipov
commited on
Upload 16 files
Browse files- README.md +123 -0
- mozilla-foundation_common_voice_8_0_uz_test[_500]_eval_results.txt +2 -0
- mozilla-foundation_common_voice_8_0_uz_test_eval_results.txt +2 -0
- preprocessor_config.json +10 -0
- pytorch_model.bin +3 -0
- requirements.txt +10 -0
- run.sh +38 -0
- run_speech_recognition_ctc.py +760 -0
- special_tokens_map.json +28 -0
- tokenizer_config.json +52 -0
- train_results.json +8 -0
- trainer_state.json +1249 -0
- training_args.bin +3 -0
- uz_cv8_text.txt +0 -0
- vocab.json +33 -0
- with_ngram_LM.ipynb +350 -0
README.md
CHANGED
@@ -1,3 +1,126 @@
|
|
1 |
---
|
|
|
|
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- uz
|
4 |
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- automatic-speech-recognition
|
7 |
+
- generated_from_trainer
|
8 |
+
- hf-asr-leaderboard
|
9 |
+
- mozilla-foundation/common_voice_8_0
|
10 |
+
- robust-speech-event
|
11 |
+
datasets:
|
12 |
+
- mozilla-foundation/common_voice_8_0
|
13 |
+
base_model: facebook/wav2vec2-xls-r-300m
|
14 |
+
model-index:
|
15 |
+
- name: XLS-R-300M Uzbek CV8
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
type: automatic-speech-recognition
|
19 |
+
name: Automatic Speech Recognition
|
20 |
+
dataset:
|
21 |
+
name: Common Voice 8
|
22 |
+
type: mozilla-foundation/common_voice_8_0
|
23 |
+
args: uz
|
24 |
+
metrics:
|
25 |
+
- type: wer
|
26 |
+
value: 15.065
|
27 |
+
name: Test WER (with LM)
|
28 |
+
- type: cer
|
29 |
+
value: 3.077
|
30 |
+
name: Test CER (with LM)
|
31 |
+
- type: wer
|
32 |
+
value: 32.88
|
33 |
+
name: Test WER (no LM)
|
34 |
+
- type: cer
|
35 |
+
value: 6.53
|
36 |
+
name: Test CER (no LM)
|
37 |
---
|
38 |
+
|
39 |
+
# XLS-R-300M Uzbek CV8
|
40 |
+
|
41 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - UZ dataset.
|
42 |
+
It achieves the following results on the validation set:
|
43 |
+
- Loss: 0.3063
|
44 |
+
- Wer: 0.3852
|
45 |
+
- Cer: 0.0777
|
46 |
+
|
47 |
+
## Model description
|
48 |
+
|
49 |
+
For a description of the model architecture, see [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m)
|
50 |
+
|
51 |
+
The model vocabulary consists of the [Modern Latin alphabet for Uzbek](https://en.wikipedia.org/wiki/Uzbek_alphabet), with punctuation removed.
|
52 |
+
Note that the characters <‘> and <’> do not count as punctuation, as <‘> modifies \<o\> and \<g\>, and <’> indicates the glottal stop or a long vowel.
|
53 |
+
|
54 |
+
The decoder uses a kenlm language model built on common_voice text.
|
55 |
+
|
56 |
+
## Intended uses & limitations
|
57 |
+
|
58 |
+
This model is expected to be of some utility for low-fidelity use cases such as:
|
59 |
+
- Draft video captions
|
60 |
+
- Indexing of recorded broadcasts
|
61 |
+
|
62 |
+
The model is not reliable enough to use as a substitute for live captions for accessibility purposes, and it should not be used in a manner that would infringe the privacy of any of the contributors to the Common Voice dataset nor any other speakers.
|
63 |
+
|
64 |
+
## Training and evaluation data
|
65 |
+
|
66 |
+
The 50% of the `train` common voice official split was used as training data. The 50% of the official `dev` split was used as validation data, and the full `test` set was used for final evaluation of the model without LM, while the model with LM was evaluated only on 500 examples from the `test` set.
|
67 |
+
|
68 |
+
The kenlm language model was compiled from the target sentences of the train + other dataset splits.
|
69 |
+
|
70 |
+
### Training hyperparameters
|
71 |
+
|
72 |
+
The following hyperparameters were used during training:
|
73 |
+
- learning_rate: 3e-05
|
74 |
+
- train_batch_size: 32
|
75 |
+
- eval_batch_size: 8
|
76 |
+
- seed: 42
|
77 |
+
- gradient_accumulation_steps: 4
|
78 |
+
- total_train_batch_size: 128
|
79 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
80 |
+
- lr_scheduler_type: linear
|
81 |
+
- lr_scheduler_warmup_steps: 500
|
82 |
+
- num_epochs: 100.0
|
83 |
+
- mixed_precision_training: Native AMP
|
84 |
+
|
85 |
+
### Training results
|
86 |
+
|
87 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
88 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
|
89 |
+
| 3.1401 | 3.25 | 500 | 3.1146 | 1.0 | 1.0 |
|
90 |
+
| 2.7484 | 6.49 | 1000 | 2.2842 | 1.0065 | 0.7069 |
|
91 |
+
| 1.0899 | 9.74 | 1500 | 0.5414 | 0.6125 | 0.1351 |
|
92 |
+
| 0.9465 | 12.99 | 2000 | 0.4566 | 0.5635 | 0.1223 |
|
93 |
+
| 0.8771 | 16.23 | 2500 | 0.4212 | 0.5366 | 0.1161 |
|
94 |
+
| 0.8346 | 19.48 | 3000 | 0.3994 | 0.5144 | 0.1102 |
|
95 |
+
| 0.8127 | 22.73 | 3500 | 0.3819 | 0.4944 | 0.1051 |
|
96 |
+
| 0.7833 | 25.97 | 4000 | 0.3705 | 0.4798 | 0.1011 |
|
97 |
+
| 0.7603 | 29.22 | 4500 | 0.3661 | 0.4704 | 0.0992 |
|
98 |
+
| 0.7424 | 32.47 | 5000 | 0.3529 | 0.4577 | 0.0957 |
|
99 |
+
| 0.7251 | 35.71 | 5500 | 0.3410 | 0.4473 | 0.0928 |
|
100 |
+
| 0.7106 | 38.96 | 6000 | 0.3401 | 0.4428 | 0.0919 |
|
101 |
+
| 0.7027 | 42.21 | 6500 | 0.3355 | 0.4353 | 0.0905 |
|
102 |
+
| 0.6927 | 45.45 | 7000 | 0.3308 | 0.4296 | 0.0885 |
|
103 |
+
| 0.6828 | 48.7 | 7500 | 0.3246 | 0.4204 | 0.0863 |
|
104 |
+
| 0.6706 | 51.95 | 8000 | 0.3250 | 0.4233 | 0.0868 |
|
105 |
+
| 0.6629 | 55.19 | 8500 | 0.3264 | 0.4159 | 0.0849 |
|
106 |
+
| 0.6556 | 58.44 | 9000 | 0.3213 | 0.4100 | 0.0835 |
|
107 |
+
| 0.6484 | 61.69 | 9500 | 0.3182 | 0.4124 | 0.0837 |
|
108 |
+
| 0.6407 | 64.93 | 10000 | 0.3171 | 0.4050 | 0.0825 |
|
109 |
+
| 0.6375 | 68.18 | 10500 | 0.3150 | 0.4039 | 0.0822 |
|
110 |
+
| 0.6363 | 71.43 | 11000 | 0.3129 | 0.3991 | 0.0810 |
|
111 |
+
| 0.6307 | 74.67 | 11500 | 0.3114 | 0.3986 | 0.0807 |
|
112 |
+
| 0.6232 | 77.92 | 12000 | 0.3103 | 0.3895 | 0.0790 |
|
113 |
+
| 0.6216 | 81.17 | 12500 | 0.3086 | 0.3891 | 0.0790 |
|
114 |
+
| 0.6174 | 84.41 | 13000 | 0.3082 | 0.3881 | 0.0785 |
|
115 |
+
| 0.6196 | 87.66 | 13500 | 0.3059 | 0.3875 | 0.0782 |
|
116 |
+
| 0.6174 | 90.91 | 14000 | 0.3084 | 0.3862 | 0.0780 |
|
117 |
+
| 0.6169 | 94.16 | 14500 | 0.3070 | 0.3860 | 0.0779 |
|
118 |
+
| 0.6166 | 97.4 | 15000 | 0.3066 | 0.3855 | 0.0778 |
|
119 |
+
|
120 |
+
|
121 |
+
### Framework versions
|
122 |
+
|
123 |
+
- Transformers 4.16.2
|
124 |
+
- Pytorch 1.10.2+cu102
|
125 |
+
- Datasets 1.18.3
|
126 |
+
- Tokenizers 0.11.0
|
mozilla-foundation_common_voice_8_0_uz_test[_500]_eval_results.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
WER: 0.150650789255054
|
2 |
+
CER: 0.03076592082616179
|
mozilla-foundation_common_voice_8_0_uz_test_eval_results.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
WER: 0.3288115957647439
|
2 |
+
CER: 0.06534626547372732
|
preprocessor_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
4 |
+
"feature_size": 1,
|
5 |
+
"padding_side": "right",
|
6 |
+
"padding_value": 0,
|
7 |
+
"processor_class": "Wav2Vec2ProcessorWithLM",
|
8 |
+
"return_attention_mask": true,
|
9 |
+
"sampling_rate": 16000
|
10 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa3ebb6bf2207974a80f51af9ea129771bc599abed9a0f00f4b93e0bf058b624
|
3 |
+
size 1262058993
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
unidecode
|
2 |
+
tensorboard
|
3 |
+
torch
|
4 |
+
torchaudio
|
5 |
+
jiwer
|
6 |
+
soundfile
|
7 |
+
transformers
|
8 |
+
datasets
|
9 |
+
pyctcdecode
|
10 |
+
https://github.com/kpu/kenlm/archive/master.zip
|
run.sh
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python ~/xls-r-uzbek-cv8/run_speech_recognition_ctc.py \
|
2 |
+
--dataset_name="mozilla-foundation/common_voice_8_0" \
|
3 |
+
--model_name_or_path="facebook/wav2vec2-xls-r-300m" \
|
4 |
+
--dataset_config_name="uz" \
|
5 |
+
--output_dir="~/xls-r-uzbek-cv8" \
|
6 |
+
--train_split_name="train[:50%]" \
|
7 |
+
--eval_split_name="validation[50%:]" \
|
8 |
+
--overwrite_output_dir \
|
9 |
+
--num_train_epochs="100" \
|
10 |
+
--per_device_train_batch_size="32" \
|
11 |
+
--per_device_eval_batch_size="8" \
|
12 |
+
--gradient_accumulation_steps="4" \
|
13 |
+
--learning_rate="3e-5" \
|
14 |
+
--warmup_steps="500" \
|
15 |
+
--length_column_name="input_length" \
|
16 |
+
--evaluation_strategy="steps" \
|
17 |
+
--text_column_name="sentence" \
|
18 |
+
--eval_metrics wer cer \
|
19 |
+
--save_steps="500" \
|
20 |
+
--eval_steps="500" \
|
21 |
+
--logging_steps="100" \
|
22 |
+
--min_duration_in_seconds="0.2" \
|
23 |
+
--layerdrop="0.01" \
|
24 |
+
--activation_dropout="0.1" \
|
25 |
+
--save_total_limit="3" \
|
26 |
+
--freeze_feature_encoder \
|
27 |
+
--feat_proj_dropout="0.05" \
|
28 |
+
--mask_time_prob="0.50" \
|
29 |
+
--mask_time_length="10" \
|
30 |
+
--mask_feature_prob="0.15" \
|
31 |
+
--mask_feature_length="64" \
|
32 |
+
--gradient_checkpointing \
|
33 |
+
--use_auth_token \
|
34 |
+
--fp16 \
|
35 |
+
--group_by_length \
|
36 |
+
--do_train --do_eval \
|
37 |
+
--push_to_hub
|
38 |
+
# --chars_to_ignore \ # default to all punct
|
run_speech_recognition_ctc.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
|
16 |
+
""" Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
|
17 |
+
|
18 |
+
import functools
|
19 |
+
import json
|
20 |
+
import logging
|
21 |
+
import os
|
22 |
+
import re
|
23 |
+
import string
|
24 |
+
import sys
|
25 |
+
import unidecode
|
26 |
+
import warnings
|
27 |
+
from dataclasses import dataclass, field
|
28 |
+
from typing import Dict, List, Optional, Union
|
29 |
+
|
30 |
+
import datasets
|
31 |
+
import numpy as np
|
32 |
+
import torch
|
33 |
+
from datasets import DatasetDict, load_dataset, load_metric
|
34 |
+
|
35 |
+
import transformers
|
36 |
+
from transformers import (
|
37 |
+
AutoConfig,
|
38 |
+
AutoFeatureExtractor,
|
39 |
+
AutoModelForCTC,
|
40 |
+
AutoProcessor,
|
41 |
+
AutoTokenizer,
|
42 |
+
HfArgumentParser,
|
43 |
+
Trainer,
|
44 |
+
TrainingArguments,
|
45 |
+
Wav2Vec2Processor,
|
46 |
+
set_seed,
|
47 |
+
)
|
48 |
+
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
49 |
+
from transformers.utils import check_min_version
|
50 |
+
from transformers.utils.versions import require_version
|
51 |
+
|
52 |
+
|
53 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
54 |
+
check_min_version("4.16.0.dev0")
|
55 |
+
|
56 |
+
require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
|
57 |
+
|
58 |
+
|
59 |
+
logger = logging.getLogger(__name__)
|
60 |
+
|
61 |
+
|
62 |
+
def list_field(default=None, metadata=None):
|
63 |
+
return field(default_factory=lambda: default, metadata=metadata)
|
64 |
+
|
65 |
+
|
66 |
+
@dataclass
|
67 |
+
class ModelArguments:
|
68 |
+
"""
|
69 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
70 |
+
"""
|
71 |
+
|
72 |
+
model_name_or_path: str = field(
|
73 |
+
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
74 |
+
)
|
75 |
+
tokenizer_name_or_path: Optional[str] = field(
|
76 |
+
default=None,
|
77 |
+
metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
|
78 |
+
)
|
79 |
+
cache_dir: Optional[str] = field(
|
80 |
+
default=None,
|
81 |
+
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
82 |
+
)
|
83 |
+
freeze_feature_encoder: bool = field(
|
84 |
+
default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
|
85 |
+
)
|
86 |
+
attention_dropout: float = field(
|
87 |
+
default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
|
88 |
+
)
|
89 |
+
activation_dropout: float = field(
|
90 |
+
default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
|
91 |
+
)
|
92 |
+
feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
|
93 |
+
hidden_dropout: float = field(
|
94 |
+
default=0.0,
|
95 |
+
metadata={
|
96 |
+
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
|
97 |
+
},
|
98 |
+
)
|
99 |
+
final_dropout: float = field(
|
100 |
+
default=0.0,
|
101 |
+
metadata={"help": "The dropout probability for the final projection layer."},
|
102 |
+
)
|
103 |
+
mask_time_prob: float = field(
|
104 |
+
default=0.05,
|
105 |
+
metadata={
|
106 |
+
"help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
|
107 |
+
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
|
108 |
+
"vectors will be masked along the time axis."
|
109 |
+
},
|
110 |
+
)
|
111 |
+
mask_time_length: int = field(
|
112 |
+
default=10,
|
113 |
+
metadata={"help": "Length of vector span to mask along the time axis."},
|
114 |
+
)
|
115 |
+
mask_feature_prob: float = field(
|
116 |
+
default=0.0,
|
117 |
+
metadata={
|
118 |
+
"help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
|
119 |
+
"span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
|
120 |
+
},
|
121 |
+
)
|
122 |
+
mask_feature_length: int = field(
|
123 |
+
default=10,
|
124 |
+
metadata={"help": "Length of vector span to mask along the feature axis."},
|
125 |
+
)
|
126 |
+
layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
|
127 |
+
ctc_loss_reduction: Optional[str] = field(
|
128 |
+
default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
|
129 |
+
)
|
130 |
+
|
131 |
+
|
132 |
+
@dataclass
|
133 |
+
class DataTrainingArguments:
|
134 |
+
"""
|
135 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
136 |
+
|
137 |
+
Using `HfArgumentParser` we can turn this class
|
138 |
+
into argparse arguments to be able to specify them on
|
139 |
+
the command line.
|
140 |
+
"""
|
141 |
+
|
142 |
+
dataset_name: str = field(
|
143 |
+
metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
144 |
+
)
|
145 |
+
dataset_config_name: str = field(
|
146 |
+
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
147 |
+
)
|
148 |
+
train_split_name: str = field(
|
149 |
+
default="train",
|
150 |
+
metadata={
|
151 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
152 |
+
},
|
153 |
+
)
|
154 |
+
eval_split_name: str = field(
|
155 |
+
default="validation",
|
156 |
+
metadata={
|
157 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'validation'"
|
158 |
+
},
|
159 |
+
)
|
160 |
+
audio_column_name: str = field(
|
161 |
+
default="audio",
|
162 |
+
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
|
163 |
+
)
|
164 |
+
text_column_name: str = field(
|
165 |
+
default="text",
|
166 |
+
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
|
167 |
+
)
|
168 |
+
overwrite_cache: bool = field(
|
169 |
+
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
|
170 |
+
)
|
171 |
+
preprocessing_num_workers: Optional[int] = field(
|
172 |
+
default=None,
|
173 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
174 |
+
)
|
175 |
+
max_train_samples: Optional[int] = field(
|
176 |
+
default=None,
|
177 |
+
metadata={
|
178 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
179 |
+
"value if set."
|
180 |
+
},
|
181 |
+
)
|
182 |
+
max_eval_samples: Optional[int] = field(
|
183 |
+
default=None,
|
184 |
+
metadata={
|
185 |
+
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
|
186 |
+
"value if set."
|
187 |
+
},
|
188 |
+
)
|
189 |
+
chars_to_ignore: Optional[List[str]] = list_field(
|
190 |
+
default=None,
|
191 |
+
metadata={"help": "A list of characters to remove from the transcripts."},
|
192 |
+
)
|
193 |
+
eval_metrics: List[str] = list_field(
|
194 |
+
default=["wer"],
|
195 |
+
metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
|
196 |
+
)
|
197 |
+
max_duration_in_seconds: float = field(
|
198 |
+
default=20.0,
|
199 |
+
metadata={
|
200 |
+
"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
|
201 |
+
},
|
202 |
+
)
|
203 |
+
min_duration_in_seconds: float = field(
|
204 |
+
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
|
205 |
+
)
|
206 |
+
preprocessing_only: bool = field(
|
207 |
+
default=False,
|
208 |
+
metadata={
|
209 |
+
"help": "Whether to only do data preprocessing and skip training. "
|
210 |
+
"This is especially useful when data preprocessing errors out in distributed training due to timeout. "
|
211 |
+
"In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
|
212 |
+
"so that the cached datasets can consequently be loaded in distributed training"
|
213 |
+
},
|
214 |
+
)
|
215 |
+
use_auth_token: bool = field(
|
216 |
+
default=False,
|
217 |
+
metadata={
|
218 |
+
"help": "If :obj:`True`, will use the token generated when running"
|
219 |
+
":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
|
220 |
+
},
|
221 |
+
)
|
222 |
+
unk_token: str = field(
|
223 |
+
default="[UNK]",
|
224 |
+
metadata={"help": "The unk token for the tokenizer"},
|
225 |
+
)
|
226 |
+
pad_token: str = field(
|
227 |
+
default="[PAD]",
|
228 |
+
metadata={"help": "The padding token for the tokenizer"},
|
229 |
+
)
|
230 |
+
word_delimiter_token: str = field(
|
231 |
+
default="|",
|
232 |
+
metadata={"help": "The word delimiter token for the tokenizer"},
|
233 |
+
)
|
234 |
+
phoneme_language: Optional[str] = field(
|
235 |
+
default=None,
|
236 |
+
metadata={
|
237 |
+
"help": "The target language that should be used be"
|
238 |
+
" passed to the tokenizer for tokenization. Note that"
|
239 |
+
" this is only relevant if the model classifies the"
|
240 |
+
" input audio to a sequence of phoneme sequences."
|
241 |
+
},
|
242 |
+
)
|
243 |
+
|
244 |
+
|
245 |
+
@dataclass
|
246 |
+
class DataCollatorCTCWithPadding:
|
247 |
+
"""
|
248 |
+
Data collator that will dynamically pad the inputs received.
|
249 |
+
Args:
|
250 |
+
processor (:class:`~transformers.AutoProcessor`)
|
251 |
+
The processor used for proccessing the data.
|
252 |
+
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
253 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
254 |
+
among:
|
255 |
+
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
256 |
+
sequence if provided).
|
257 |
+
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
258 |
+
maximum acceptable input length for the model if that argument is not provided.
|
259 |
+
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
260 |
+
different lengths).
|
261 |
+
max_length (:obj:`int`, `optional`):
|
262 |
+
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
|
263 |
+
max_length_labels (:obj:`int`, `optional`):
|
264 |
+
Maximum length of the ``labels`` returned list and optionally padding length (see above).
|
265 |
+
pad_to_multiple_of (:obj:`int`, `optional`):
|
266 |
+
If set will pad the sequence to a multiple of the provided value.
|
267 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
268 |
+
7.5 (Volta).
|
269 |
+
"""
|
270 |
+
|
271 |
+
processor: AutoProcessor
|
272 |
+
padding: Union[bool, str] = "longest"
|
273 |
+
pad_to_multiple_of: Optional[int] = None
|
274 |
+
pad_to_multiple_of_labels: Optional[int] = None
|
275 |
+
|
276 |
+
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
277 |
+
# split inputs and labels since they have to be of different lenghts and need
|
278 |
+
# different padding methods
|
279 |
+
input_features = [{"input_values": feature["input_values"]} for feature in features]
|
280 |
+
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
281 |
+
|
282 |
+
batch = self.processor.pad(
|
283 |
+
input_features,
|
284 |
+
padding=self.padding,
|
285 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
286 |
+
return_tensors="pt",
|
287 |
+
)
|
288 |
+
|
289 |
+
with self.processor.as_target_processor():
|
290 |
+
labels_batch = self.processor.pad(
|
291 |
+
label_features,
|
292 |
+
padding=self.padding,
|
293 |
+
pad_to_multiple_of=self.pad_to_multiple_of_labels,
|
294 |
+
return_tensors="pt",
|
295 |
+
)
|
296 |
+
|
297 |
+
# replace padding with -100 to ignore loss correctly
|
298 |
+
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
|
299 |
+
|
300 |
+
batch["labels"] = labels
|
301 |
+
|
302 |
+
return batch
|
303 |
+
|
304 |
+
|
305 |
+
def create_vocabulary_from_data(
|
306 |
+
datasets: DatasetDict,
|
307 |
+
word_delimiter_token: Optional[str] = None,
|
308 |
+
unk_token: Optional[str] = None,
|
309 |
+
pad_token: Optional[str] = None,
|
310 |
+
):
|
311 |
+
# Given training and test labels create vocabulary
|
312 |
+
def extract_all_chars(batch):
|
313 |
+
all_text = " ".join(batch["target_text"])
|
314 |
+
vocab = list(set(all_text))
|
315 |
+
return {"vocab": [vocab], "all_text": [all_text]}
|
316 |
+
|
317 |
+
vocabs = datasets.map(
|
318 |
+
extract_all_chars,
|
319 |
+
batched=True,
|
320 |
+
batch_size=-1,
|
321 |
+
keep_in_memory=True,
|
322 |
+
remove_columns=datasets["train"].column_names,
|
323 |
+
)
|
324 |
+
|
325 |
+
# take union of all unique characters in each dataset
|
326 |
+
vocab_set = functools.reduce(
|
327 |
+
lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
|
328 |
+
)
|
329 |
+
|
330 |
+
vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
|
331 |
+
|
332 |
+
# replace white space with delimiter token
|
333 |
+
if word_delimiter_token is not None:
|
334 |
+
vocab_dict[word_delimiter_token] = vocab_dict[" "]
|
335 |
+
del vocab_dict[" "]
|
336 |
+
|
337 |
+
# add unk and pad token
|
338 |
+
if unk_token is not None:
|
339 |
+
vocab_dict[unk_token] = len(vocab_dict)
|
340 |
+
|
341 |
+
if pad_token is not None:
|
342 |
+
vocab_dict[pad_token] = len(vocab_dict)
|
343 |
+
|
344 |
+
return vocab_dict
|
345 |
+
|
346 |
+
|
347 |
+
def main():
|
348 |
+
# See all possible arguments in src/transformers/training_args.py
|
349 |
+
# or by passing the --help flag to this script.
|
350 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
351 |
+
|
352 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
353 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
354 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
355 |
+
# let's parse it to get our arguments.
|
356 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
357 |
+
else:
|
358 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
359 |
+
|
360 |
+
# Detecting last checkpoint.
|
361 |
+
last_checkpoint = None
|
362 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
363 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
364 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
365 |
+
raise ValueError(
|
366 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
367 |
+
"Use --overwrite_output_dir to overcome."
|
368 |
+
)
|
369 |
+
elif last_checkpoint is not None:
|
370 |
+
logger.info(
|
371 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
372 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
373 |
+
)
|
374 |
+
|
375 |
+
# Setup logging
|
376 |
+
logging.basicConfig(
|
377 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
378 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
379 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
380 |
+
)
|
381 |
+
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
|
382 |
+
|
383 |
+
# Log on each process the small summary:
|
384 |
+
logger.warning(
|
385 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
386 |
+
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
387 |
+
)
|
388 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
389 |
+
if is_main_process(training_args.local_rank):
|
390 |
+
transformers.utils.logging.set_verbosity_info()
|
391 |
+
logger.info("Training/evaluation parameters %s", training_args)
|
392 |
+
|
393 |
+
# Set seed before initializing model.
|
394 |
+
set_seed(training_args.seed)
|
395 |
+
|
396 |
+
# 1. First, let's load the dataset
|
397 |
+
raw_datasets = DatasetDict()
|
398 |
+
|
399 |
+
if training_args.do_train:
|
400 |
+
raw_datasets["train"] = load_dataset(
|
401 |
+
data_args.dataset_name,
|
402 |
+
data_args.dataset_config_name,
|
403 |
+
split=data_args.train_split_name,
|
404 |
+
use_auth_token=data_args.use_auth_token,
|
405 |
+
)
|
406 |
+
|
407 |
+
if data_args.audio_column_name not in raw_datasets["train"].column_names:
|
408 |
+
raise ValueError(
|
409 |
+
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
|
410 |
+
"Make sure to set `--audio_column_name` to the correct audio column - one of "
|
411 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
412 |
+
)
|
413 |
+
|
414 |
+
if data_args.text_column_name not in raw_datasets["train"].column_names:
|
415 |
+
raise ValueError(
|
416 |
+
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
|
417 |
+
"Make sure to set `--text_column_name` to the correct text column - one of "
|
418 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
419 |
+
)
|
420 |
+
|
421 |
+
if data_args.max_train_samples is not None:
|
422 |
+
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
|
423 |
+
|
424 |
+
if training_args.do_eval:
|
425 |
+
raw_datasets["eval"] = load_dataset(
|
426 |
+
data_args.dataset_name,
|
427 |
+
data_args.dataset_config_name,
|
428 |
+
split=data_args.eval_split_name,
|
429 |
+
use_auth_token=data_args.use_auth_token,
|
430 |
+
)
|
431 |
+
|
432 |
+
if data_args.max_eval_samples is not None:
|
433 |
+
raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
|
434 |
+
|
435 |
+
# 2. We remove some special characters from the datasets
|
436 |
+
# that make training complicated and do not help in transcribing the speech
|
437 |
+
# E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
|
438 |
+
# that could be easily picked up by the model
|
439 |
+
if data_args.chars_to_ignore is None:
|
440 |
+
chars_to_ignore_regex = f'[{re.escape(string.punctuation)}]'
|
441 |
+
else:
|
442 |
+
chars_to_ignore_regex = f'[{"".join(data_args.chars_to_ignore)}]'
|
443 |
+
print("chars_to_ignore", chars_to_ignore_regex)
|
444 |
+
text_column_name = data_args.text_column_name
|
445 |
+
|
446 |
+
def remove_special_characters(batch):
|
447 |
+
if chars_to_ignore_regex is not None:
|
448 |
+
batch["target_text"] = re.sub(
|
449 |
+
chars_to_ignore_regex,
|
450 |
+
"",
|
451 |
+
re.sub("['`´]", "’", # elsewhere probably meant as glottal stop
|
452 |
+
re.sub("([og])['`´]", "\g<1>‘", # after o/g indicate modified char
|
453 |
+
unidecode.unidecode(batch[text_column_name]).lower()
|
454 |
+
)
|
455 |
+
)
|
456 |
+
) + " "
|
457 |
+
else:
|
458 |
+
batch["target_text"] = batch[text_column_name].lower() + " "
|
459 |
+
return batch
|
460 |
+
|
461 |
+
with training_args.main_process_first(desc="dataset map special characters removal"):
|
462 |
+
raw_datasets = raw_datasets.map(
|
463 |
+
remove_special_characters,
|
464 |
+
remove_columns=[text_column_name],
|
465 |
+
desc="remove special characters from datasets",
|
466 |
+
)
|
467 |
+
|
468 |
+
num_workers = data_args.preprocessing_num_workers
|
469 |
+
|
470 |
+
def is_transcript_in_length_range(text):
|
471 |
+
return 3 < len(text) < 200
|
472 |
+
|
473 |
+
raw_datasets = raw_datasets.filter(
|
474 |
+
is_transcript_in_length_range,
|
475 |
+
num_proc=num_workers,
|
476 |
+
input_columns=["target_text"],
|
477 |
+
)
|
478 |
+
|
479 |
+
# save special tokens for tokenizer
|
480 |
+
word_delimiter_token = data_args.word_delimiter_token
|
481 |
+
unk_token = data_args.unk_token
|
482 |
+
pad_token = data_args.pad_token
|
483 |
+
|
484 |
+
# 3. Next, let's load the config as we might need it to create
|
485 |
+
# the tokenizer
|
486 |
+
# load config
|
487 |
+
config = AutoConfig.from_pretrained(
|
488 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
489 |
+
)
|
490 |
+
|
491 |
+
# 4. Next, if no tokenizer file is defined,
|
492 |
+
# we create the vocabulary of the model by extracting all unique characters from
|
493 |
+
# the training and evaluation datasets
|
494 |
+
# We need to make sure that only first rank saves vocabulary
|
495 |
+
# make sure all processes wait until vocab is created
|
496 |
+
tokenizer_name_or_path = model_args.tokenizer_name_or_path
|
497 |
+
tokenizer_kwargs = {}
|
498 |
+
if tokenizer_name_or_path is None:
|
499 |
+
# save vocab in training output dir
|
500 |
+
tokenizer_name_or_path = training_args.output_dir
|
501 |
+
|
502 |
+
vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
|
503 |
+
|
504 |
+
with training_args.main_process_first():
|
505 |
+
if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
|
506 |
+
os.remove(vocab_file)
|
507 |
+
|
508 |
+
with training_args.main_process_first(desc="dataset map vocabulary creation"):
|
509 |
+
if not os.path.isfile(vocab_file):
|
510 |
+
os.makedirs(tokenizer_name_or_path, exist_ok=True)
|
511 |
+
vocab_dict = create_vocabulary_from_data(
|
512 |
+
raw_datasets,
|
513 |
+
word_delimiter_token=word_delimiter_token,
|
514 |
+
unk_token=unk_token,
|
515 |
+
pad_token=pad_token,
|
516 |
+
)
|
517 |
+
|
518 |
+
# save vocab dict to be loaded into tokenizer
|
519 |
+
with open(vocab_file, "w") as file:
|
520 |
+
json.dump(vocab_dict, file)
|
521 |
+
|
522 |
+
# if tokenizer has just been created
|
523 |
+
# it is defined by `tokenizer_class` if present in config else by `model_type`
|
524 |
+
tokenizer_kwargs = {
|
525 |
+
"config": config if config.tokenizer_class is not None else None,
|
526 |
+
"tokenizer_type": config.model_type if config.tokenizer_class is None else None,
|
527 |
+
"unk_token": unk_token,
|
528 |
+
"pad_token": pad_token,
|
529 |
+
"word_delimiter_token": word_delimiter_token,
|
530 |
+
}
|
531 |
+
|
532 |
+
# 5. Now we can instantiate the feature extractor, tokenizer and model
|
533 |
+
# Note for distributed training, the .from_pretrained methods guarantee that only
|
534 |
+
# one local process can concurrently download model & vocab.
|
535 |
+
|
536 |
+
# load feature_extractor and tokenizer
|
537 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
538 |
+
tokenizer_name_or_path,
|
539 |
+
use_auth_token=data_args.use_auth_token,
|
540 |
+
**tokenizer_kwargs,
|
541 |
+
)
|
542 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
543 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
544 |
+
)
|
545 |
+
|
546 |
+
# adapt config
|
547 |
+
config.update(
|
548 |
+
{
|
549 |
+
"feat_proj_dropout": model_args.feat_proj_dropout,
|
550 |
+
"attention_dropout": model_args.attention_dropout,
|
551 |
+
"hidden_dropout": model_args.hidden_dropout,
|
552 |
+
"final_dropout": model_args.final_dropout,
|
553 |
+
"mask_time_prob": model_args.mask_time_prob,
|
554 |
+
"mask_time_length": model_args.mask_time_length,
|
555 |
+
"mask_feature_prob": model_args.mask_feature_prob,
|
556 |
+
"mask_feature_length": model_args.mask_feature_length,
|
557 |
+
"gradient_checkpointing": training_args.gradient_checkpointing,
|
558 |
+
"layerdrop": model_args.layerdrop,
|
559 |
+
"ctc_loss_reduction": model_args.ctc_loss_reduction,
|
560 |
+
"ctc_zero_infinity": True,
|
561 |
+
"pad_token_id": tokenizer.pad_token_id,
|
562 |
+
"vocab_size": len(tokenizer),
|
563 |
+
"activation_dropout": model_args.activation_dropout,
|
564 |
+
}
|
565 |
+
)
|
566 |
+
|
567 |
+
# create model
|
568 |
+
model = AutoModelForCTC.from_pretrained(
|
569 |
+
model_args.model_name_or_path,
|
570 |
+
cache_dir=model_args.cache_dir,
|
571 |
+
config=config,
|
572 |
+
use_auth_token=data_args.use_auth_token,
|
573 |
+
)
|
574 |
+
|
575 |
+
# freeze encoder
|
576 |
+
if model_args.freeze_feature_encoder:
|
577 |
+
model.freeze_feature_encoder()
|
578 |
+
|
579 |
+
# 6. Now we preprocess the datasets including loading the audio, resampling and normalization
|
580 |
+
# Thankfully, `datasets` takes care of automatically loading and resampling the audio,
|
581 |
+
# so that we just need to set the correct target sampling rate and normalize the input
|
582 |
+
# via the `feature_extractor`
|
583 |
+
|
584 |
+
# make sure that dataset decodes audio with correct sampling rate
|
585 |
+
dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
|
586 |
+
if dataset_sampling_rate != feature_extractor.sampling_rate:
|
587 |
+
raw_datasets = raw_datasets.cast_column(
|
588 |
+
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
|
589 |
+
)
|
590 |
+
|
591 |
+
# derive max & min input length for sample rate & max duration
|
592 |
+
max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
|
593 |
+
min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
|
594 |
+
audio_column_name = data_args.audio_column_name
|
595 |
+
|
596 |
+
# `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
|
597 |
+
phoneme_language = data_args.phoneme_language
|
598 |
+
|
599 |
+
# Preprocessing the datasets.
|
600 |
+
# We need to read the audio files as arrays and tokenize the targets.
|
601 |
+
def prepare_dataset(batch):
|
602 |
+
# load audio
|
603 |
+
sample = batch[audio_column_name]
|
604 |
+
|
605 |
+
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
|
606 |
+
batch["input_values"] = inputs.input_values[0]
|
607 |
+
batch["input_length"] = len(batch["input_values"])
|
608 |
+
|
609 |
+
# encode targets
|
610 |
+
additional_kwargs = {}
|
611 |
+
if phoneme_language is not None:
|
612 |
+
additional_kwargs["phonemizer_lang"] = phoneme_language
|
613 |
+
|
614 |
+
batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
|
615 |
+
return batch
|
616 |
+
|
617 |
+
with training_args.main_process_first(desc="dataset map preprocessing"):
|
618 |
+
vectorized_datasets = raw_datasets.map(
|
619 |
+
prepare_dataset,
|
620 |
+
remove_columns=next(iter(raw_datasets.values())).column_names,
|
621 |
+
num_proc=num_workers,
|
622 |
+
desc="preprocess datasets",
|
623 |
+
)
|
624 |
+
|
625 |
+
def is_audio_in_length_range(length):
|
626 |
+
return length > min_input_length and length < max_input_length
|
627 |
+
|
628 |
+
# filter data that is shorter than min_input_length
|
629 |
+
vectorized_datasets = vectorized_datasets.filter(
|
630 |
+
is_audio_in_length_range,
|
631 |
+
num_proc=num_workers,
|
632 |
+
input_columns=["input_length"],
|
633 |
+
)
|
634 |
+
|
635 |
+
# 7. Next, we can prepare the training.
|
636 |
+
# Let's use word error rate (WER) as our evaluation metric,
|
637 |
+
# instantiate a data collator and the trainer
|
638 |
+
|
639 |
+
# Define evaluation metrics during training, *i.e.* word error rate, character error rate
|
640 |
+
eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
|
641 |
+
|
642 |
+
# for large datasets it is advised to run the preprocessing on a
|
643 |
+
# single machine first with ``args.preprocessing_only`` since there will mostly likely
|
644 |
+
# be a timeout when running the script in distributed mode.
|
645 |
+
# In a second step ``args.preprocessing_only`` can then be set to `False` to load the
|
646 |
+
# cached dataset
|
647 |
+
if data_args.preprocessing_only:
|
648 |
+
logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
|
649 |
+
return
|
650 |
+
|
651 |
+
def compute_metrics(pred):
|
652 |
+
pred_logits = pred.predictions
|
653 |
+
pred_ids = np.argmax(pred_logits, axis=-1)
|
654 |
+
|
655 |
+
pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
|
656 |
+
|
657 |
+
pred_str = tokenizer.batch_decode(pred_ids)
|
658 |
+
# we do not want to group tokens when computing the metrics
|
659 |
+
label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
|
660 |
+
|
661 |
+
metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
|
662 |
+
|
663 |
+
return metrics
|
664 |
+
|
665 |
+
# Now save everything to be able to create a single processor later
|
666 |
+
if is_main_process(training_args.local_rank):
|
667 |
+
# save feature extractor, tokenizer and config
|
668 |
+
feature_extractor.save_pretrained(training_args.output_dir)
|
669 |
+
tokenizer.save_pretrained(training_args.output_dir)
|
670 |
+
config.save_pretrained(training_args.output_dir)
|
671 |
+
|
672 |
+
try:
|
673 |
+
processor = AutoProcessor.from_pretrained(training_args.output_dir)
|
674 |
+
except (OSError, KeyError):
|
675 |
+
warnings.warn(
|
676 |
+
"Loading a processor from a feature extractor config that does not"
|
677 |
+
" include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
|
678 |
+
" attribute to your `preprocessor_config.json` file to suppress this warning: "
|
679 |
+
" `'processor_class': 'Wav2Vec2Processor'`",
|
680 |
+
FutureWarning,
|
681 |
+
)
|
682 |
+
processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
|
683 |
+
|
684 |
+
# Instantiate custom data collator
|
685 |
+
data_collator = DataCollatorCTCWithPadding(processor=processor)
|
686 |
+
|
687 |
+
# Initialize Trainer
|
688 |
+
trainer = Trainer(
|
689 |
+
model=model,
|
690 |
+
data_collator=data_collator,
|
691 |
+
args=training_args,
|
692 |
+
compute_metrics=compute_metrics,
|
693 |
+
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
|
694 |
+
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
|
695 |
+
tokenizer=feature_extractor,
|
696 |
+
)
|
697 |
+
|
698 |
+
# 8. Finally, we can start training
|
699 |
+
|
700 |
+
# Training
|
701 |
+
if training_args.do_train:
|
702 |
+
|
703 |
+
# use last checkpoint if exist
|
704 |
+
if last_checkpoint is not None:
|
705 |
+
checkpoint = last_checkpoint
|
706 |
+
elif os.path.isdir(model_args.model_name_or_path):
|
707 |
+
checkpoint = model_args.model_name_or_path
|
708 |
+
else:
|
709 |
+
checkpoint = None
|
710 |
+
|
711 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
712 |
+
trainer.save_model()
|
713 |
+
|
714 |
+
metrics = train_result.metrics
|
715 |
+
max_train_samples = (
|
716 |
+
data_args.max_train_samples
|
717 |
+
if data_args.max_train_samples is not None
|
718 |
+
else len(vectorized_datasets["train"])
|
719 |
+
)
|
720 |
+
metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
|
721 |
+
|
722 |
+
trainer.log_metrics("train", metrics)
|
723 |
+
trainer.save_metrics("train", metrics)
|
724 |
+
trainer.save_state()
|
725 |
+
|
726 |
+
# Evaluation
|
727 |
+
results = {}
|
728 |
+
if training_args.do_eval:
|
729 |
+
logger.info("*** Evaluate ***")
|
730 |
+
metrics = trainer.evaluate()
|
731 |
+
max_eval_samples = (
|
732 |
+
data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
|
733 |
+
)
|
734 |
+
metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
|
735 |
+
|
736 |
+
trainer.log_metrics("eval", metrics)
|
737 |
+
trainer.save_metrics("eval", metrics)
|
738 |
+
|
739 |
+
# Write model card and (optionally) push to hub
|
740 |
+
config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
|
741 |
+
kwargs = {
|
742 |
+
"finetuned_from": model_args.model_name_or_path,
|
743 |
+
"tasks": "speech-recognition",
|
744 |
+
"tags": ["automatic-speech-recognition", data_args.dataset_name],
|
745 |
+
"dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
|
746 |
+
"dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
|
747 |
+
}
|
748 |
+
if "common_voice" in data_args.dataset_name:
|
749 |
+
kwargs["language"] = config_name
|
750 |
+
|
751 |
+
if training_args.push_to_hub:
|
752 |
+
trainer.push_to_hub(**kwargs)
|
753 |
+
else:
|
754 |
+
trainer.create_model_card(**kwargs)
|
755 |
+
|
756 |
+
return results
|
757 |
+
|
758 |
+
|
759 |
+
if __name__ == "__main__":
|
760 |
+
main()
|
special_tokens_map.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
{
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": true,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"content": "</s>",
|
12 |
+
"lstrip": false,
|
13 |
+
"normalized": true,
|
14 |
+
"rstrip": false,
|
15 |
+
"single_word": false
|
16 |
+
}
|
17 |
+
],
|
18 |
+
"bos_token": "<s>",
|
19 |
+
"eos_token": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false
|
25 |
+
},
|
26 |
+
"pad_token": "[PAD]",
|
27 |
+
"unk_token": "[UNK]"
|
28 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"29": {
|
4 |
+
"content": "[UNK]",
|
5 |
+
"lstrip": true,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": true,
|
8 |
+
"single_word": false,
|
9 |
+
"special": false
|
10 |
+
},
|
11 |
+
"30": {
|
12 |
+
"content": "[PAD]",
|
13 |
+
"lstrip": true,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": true,
|
16 |
+
"single_word": false,
|
17 |
+
"special": false
|
18 |
+
},
|
19 |
+
"31": {
|
20 |
+
"content": "<s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"32": {
|
28 |
+
"content": "</s>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
}
|
35 |
+
},
|
36 |
+
"additional_special_tokens": [
|
37 |
+
"<s>",
|
38 |
+
"</s>"
|
39 |
+
],
|
40 |
+
"bos_token": "<s>",
|
41 |
+
"clean_up_tokenization_spaces": true,
|
42 |
+
"do_lower_case": false,
|
43 |
+
"eos_token": "</s>",
|
44 |
+
"model_max_length": 1000000000000000019884624838656,
|
45 |
+
"pad_token": "[PAD]",
|
46 |
+
"processor_class": "Wav2Vec2ProcessorWithLM",
|
47 |
+
"replace_word_delimiter_char": " ",
|
48 |
+
"target_lang": null,
|
49 |
+
"tokenizer_class": "Wav2Vec2CTCTokenizer",
|
50 |
+
"unk_token": "[UNK]",
|
51 |
+
"word_delimiter_token": "|"
|
52 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 100.0,
|
3 |
+
"train_loss": 0.9527478711016767,
|
4 |
+
"train_runtime": 101833.8069,
|
5 |
+
"train_samples": 19726,
|
6 |
+
"train_samples_per_second": 19.371,
|
7 |
+
"train_steps_per_second": 0.151
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,1249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 99.99837925445705,
|
5 |
+
"global_step": 15400,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.65,
|
12 |
+
"learning_rate": 5.940000000000001e-06,
|
13 |
+
"loss": 11.9235,
|
14 |
+
"step": 100
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 1.3,
|
18 |
+
"learning_rate": 1.1940000000000001e-05,
|
19 |
+
"loss": 5.1849,
|
20 |
+
"step": 200
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 1.95,
|
24 |
+
"learning_rate": 1.794e-05,
|
25 |
+
"loss": 3.7405,
|
26 |
+
"step": 300
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 2.6,
|
30 |
+
"learning_rate": 2.394e-05,
|
31 |
+
"loss": 3.3052,
|
32 |
+
"step": 400
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 3.25,
|
36 |
+
"learning_rate": 2.994e-05,
|
37 |
+
"loss": 3.1401,
|
38 |
+
"step": 500
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 3.25,
|
42 |
+
"eval_cer": 1.0,
|
43 |
+
"eval_loss": 3.114637851715088,
|
44 |
+
"eval_runtime": 219.3333,
|
45 |
+
"eval_samples_per_second": 24.734,
|
46 |
+
"eval_steps_per_second": 3.096,
|
47 |
+
"eval_wer": 1.0,
|
48 |
+
"step": 500
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"epoch": 3.89,
|
52 |
+
"learning_rate": 2.98006711409396e-05,
|
53 |
+
"loss": 3.0799,
|
54 |
+
"step": 600
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 4.54,
|
58 |
+
"learning_rate": 2.9599328859060405e-05,
|
59 |
+
"loss": 3.0534,
|
60 |
+
"step": 700
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"epoch": 5.19,
|
64 |
+
"learning_rate": 2.9397986577181207e-05,
|
65 |
+
"loss": 2.994,
|
66 |
+
"step": 800
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 5.84,
|
70 |
+
"learning_rate": 2.9196644295302013e-05,
|
71 |
+
"loss": 2.9428,
|
72 |
+
"step": 900
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 6.49,
|
76 |
+
"learning_rate": 2.8995302013422818e-05,
|
77 |
+
"loss": 2.7484,
|
78 |
+
"step": 1000
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"epoch": 6.49,
|
82 |
+
"eval_cer": 0.706927100586246,
|
83 |
+
"eval_loss": 2.284235954284668,
|
84 |
+
"eval_runtime": 222.6226,
|
85 |
+
"eval_samples_per_second": 24.369,
|
86 |
+
"eval_steps_per_second": 3.05,
|
87 |
+
"eval_wer": 1.0065119583234667,
|
88 |
+
"step": 1000
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"epoch": 7.14,
|
92 |
+
"learning_rate": 2.8793959731543624e-05,
|
93 |
+
"loss": 2.0772,
|
94 |
+
"step": 1100
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 7.79,
|
98 |
+
"learning_rate": 2.859261744966443e-05,
|
99 |
+
"loss": 1.4967,
|
100 |
+
"step": 1200
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 8.44,
|
104 |
+
"learning_rate": 2.8391275167785235e-05,
|
105 |
+
"loss": 1.2731,
|
106 |
+
"step": 1300
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 9.09,
|
110 |
+
"learning_rate": 2.818993288590604e-05,
|
111 |
+
"loss": 1.1742,
|
112 |
+
"step": 1400
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"epoch": 9.74,
|
116 |
+
"learning_rate": 2.7988590604026846e-05,
|
117 |
+
"loss": 1.0899,
|
118 |
+
"step": 1500
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"epoch": 9.74,
|
122 |
+
"eval_cer": 0.13506382454221202,
|
123 |
+
"eval_loss": 0.5414122343063354,
|
124 |
+
"eval_runtime": 217.7702,
|
125 |
+
"eval_samples_per_second": 24.912,
|
126 |
+
"eval_steps_per_second": 3.118,
|
127 |
+
"eval_wer": 0.6124792801326071,
|
128 |
+
"step": 1500
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 10.39,
|
132 |
+
"learning_rate": 2.778724832214765e-05,
|
133 |
+
"loss": 1.0544,
|
134 |
+
"step": 1600
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 11.04,
|
138 |
+
"learning_rate": 2.7585906040268457e-05,
|
139 |
+
"loss": 1.0284,
|
140 |
+
"step": 1700
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 11.69,
|
144 |
+
"learning_rate": 2.7384563758389263e-05,
|
145 |
+
"loss": 0.9865,
|
146 |
+
"step": 1800
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 12.34,
|
150 |
+
"learning_rate": 2.7183221476510065e-05,
|
151 |
+
"loss": 0.9705,
|
152 |
+
"step": 1900
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 12.99,
|
156 |
+
"learning_rate": 2.698187919463087e-05,
|
157 |
+
"loss": 0.9465,
|
158 |
+
"step": 2000
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 12.99,
|
162 |
+
"eval_cer": 0.12229891609980818,
|
163 |
+
"eval_loss": 0.4565887749195099,
|
164 |
+
"eval_runtime": 219.4838,
|
165 |
+
"eval_samples_per_second": 24.717,
|
166 |
+
"eval_steps_per_second": 3.094,
|
167 |
+
"eval_wer": 0.5634619938432394,
|
168 |
+
"step": 2000
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"epoch": 13.64,
|
172 |
+
"learning_rate": 2.6780536912751676e-05,
|
173 |
+
"loss": 0.9395,
|
174 |
+
"step": 2100
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 14.29,
|
178 |
+
"learning_rate": 2.6579194630872482e-05,
|
179 |
+
"loss": 0.9216,
|
180 |
+
"step": 2200
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"epoch": 14.93,
|
184 |
+
"learning_rate": 2.6377852348993287e-05,
|
185 |
+
"loss": 0.9011,
|
186 |
+
"step": 2300
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"epoch": 15.58,
|
190 |
+
"learning_rate": 2.6176510067114093e-05,
|
191 |
+
"loss": 0.9011,
|
192 |
+
"step": 2400
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 16.23,
|
196 |
+
"learning_rate": 2.59751677852349e-05,
|
197 |
+
"loss": 0.8771,
|
198 |
+
"step": 2500
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 16.23,
|
202 |
+
"eval_cer": 0.11608208983968754,
|
203 |
+
"eval_loss": 0.42124298214912415,
|
204 |
+
"eval_runtime": 218.6532,
|
205 |
+
"eval_samples_per_second": 24.811,
|
206 |
+
"eval_steps_per_second": 3.105,
|
207 |
+
"eval_wer": 0.5365557660430973,
|
208 |
+
"step": 2500
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"epoch": 16.88,
|
212 |
+
"learning_rate": 2.5773825503355704e-05,
|
213 |
+
"loss": 0.8719,
|
214 |
+
"step": 2600
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"epoch": 17.53,
|
218 |
+
"learning_rate": 2.557248322147651e-05,
|
219 |
+
"loss": 0.8616,
|
220 |
+
"step": 2700
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 18.18,
|
224 |
+
"learning_rate": 2.5371140939597315e-05,
|
225 |
+
"loss": 0.8573,
|
226 |
+
"step": 2800
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 18.83,
|
230 |
+
"learning_rate": 2.5169798657718124e-05,
|
231 |
+
"loss": 0.8467,
|
232 |
+
"step": 2900
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"epoch": 19.48,
|
236 |
+
"learning_rate": 2.496845637583893e-05,
|
237 |
+
"loss": 0.8346,
|
238 |
+
"step": 3000
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"epoch": 19.48,
|
242 |
+
"eval_cer": 0.11022733400611667,
|
243 |
+
"eval_loss": 0.3994467258453369,
|
244 |
+
"eval_runtime": 213.3023,
|
245 |
+
"eval_samples_per_second": 25.433,
|
246 |
+
"eval_steps_per_second": 3.183,
|
247 |
+
"eval_wer": 0.5143855079327492,
|
248 |
+
"step": 3000
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 20.13,
|
252 |
+
"learning_rate": 2.4767114093959732e-05,
|
253 |
+
"loss": 0.8386,
|
254 |
+
"step": 3100
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 20.78,
|
258 |
+
"learning_rate": 2.4565771812080538e-05,
|
259 |
+
"loss": 0.8283,
|
260 |
+
"step": 3200
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 21.43,
|
264 |
+
"learning_rate": 2.4364429530201343e-05,
|
265 |
+
"loss": 0.8198,
|
266 |
+
"step": 3300
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 22.08,
|
270 |
+
"learning_rate": 2.416308724832215e-05,
|
271 |
+
"loss": 0.8164,
|
272 |
+
"step": 3400
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 22.73,
|
276 |
+
"learning_rate": 2.3961744966442955e-05,
|
277 |
+
"loss": 0.8127,
|
278 |
+
"step": 3500
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 22.73,
|
282 |
+
"eval_cer": 0.10510827446479058,
|
283 |
+
"eval_loss": 0.3818908929824829,
|
284 |
+
"eval_runtime": 218.4137,
|
285 |
+
"eval_samples_per_second": 24.838,
|
286 |
+
"eval_steps_per_second": 3.109,
|
287 |
+
"eval_wer": 0.49437603599336966,
|
288 |
+
"step": 3500
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"epoch": 23.38,
|
292 |
+
"learning_rate": 2.376040268456376e-05,
|
293 |
+
"loss": 0.8081,
|
294 |
+
"step": 3600
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 24.03,
|
298 |
+
"learning_rate": 2.3559060402684566e-05,
|
299 |
+
"loss": 0.7988,
|
300 |
+
"step": 3700
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"epoch": 24.67,
|
304 |
+
"learning_rate": 2.335771812080537e-05,
|
305 |
+
"loss": 0.7903,
|
306 |
+
"step": 3800
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"epoch": 25.32,
|
310 |
+
"learning_rate": 2.3156375838926177e-05,
|
311 |
+
"loss": 0.788,
|
312 |
+
"step": 3900
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 25.97,
|
316 |
+
"learning_rate": 2.2955033557046982e-05,
|
317 |
+
"loss": 0.7833,
|
318 |
+
"step": 4000
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 25.97,
|
322 |
+
"eval_cer": 0.10109853708140422,
|
323 |
+
"eval_loss": 0.3704679310321808,
|
324 |
+
"eval_runtime": 216.2288,
|
325 |
+
"eval_samples_per_second": 25.089,
|
326 |
+
"eval_steps_per_second": 3.14,
|
327 |
+
"eval_wer": 0.4797537295761307,
|
328 |
+
"step": 4000
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"epoch": 26.62,
|
332 |
+
"learning_rate": 2.2753691275167788e-05,
|
333 |
+
"loss": 0.7724,
|
334 |
+
"step": 4100
|
335 |
+
},
|
336 |
+
{
|
337 |
+
"epoch": 27.27,
|
338 |
+
"learning_rate": 2.255234899328859e-05,
|
339 |
+
"loss": 0.7695,
|
340 |
+
"step": 4200
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"epoch": 27.92,
|
344 |
+
"learning_rate": 2.2351006711409396e-05,
|
345 |
+
"loss": 0.7653,
|
346 |
+
"step": 4300
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 28.57,
|
350 |
+
"learning_rate": 2.2151677852348994e-05,
|
351 |
+
"loss": 0.7728,
|
352 |
+
"step": 4400
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 29.22,
|
356 |
+
"learning_rate": 2.19503355704698e-05,
|
357 |
+
"loss": 0.7603,
|
358 |
+
"step": 4500
|
359 |
+
},
|
360 |
+
{
|
361 |
+
"epoch": 29.22,
|
362 |
+
"eval_cer": 0.0992381113790261,
|
363 |
+
"eval_loss": 0.36611661314964294,
|
364 |
+
"eval_runtime": 217.7866,
|
365 |
+
"eval_samples_per_second": 24.91,
|
366 |
+
"eval_steps_per_second": 3.118,
|
367 |
+
"eval_wer": 0.4704001894387876,
|
368 |
+
"step": 4500
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 29.87,
|
372 |
+
"learning_rate": 2.1748993288590605e-05,
|
373 |
+
"loss": 0.7563,
|
374 |
+
"step": 4600
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 30.52,
|
378 |
+
"learning_rate": 2.154765100671141e-05,
|
379 |
+
"loss": 0.7618,
|
380 |
+
"step": 4700
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 31.17,
|
384 |
+
"learning_rate": 2.1346308724832217e-05,
|
385 |
+
"loss": 0.7467,
|
386 |
+
"step": 4800
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 31.82,
|
390 |
+
"learning_rate": 2.114697986577181e-05,
|
391 |
+
"loss": 0.7514,
|
392 |
+
"step": 4900
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 32.47,
|
396 |
+
"learning_rate": 2.0945637583892617e-05,
|
397 |
+
"loss": 0.7424,
|
398 |
+
"step": 5000
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 32.47,
|
402 |
+
"eval_cer": 0.09569444337449638,
|
403 |
+
"eval_loss": 0.3528956174850464,
|
404 |
+
"eval_runtime": 218.9072,
|
405 |
+
"eval_samples_per_second": 24.782,
|
406 |
+
"eval_steps_per_second": 3.102,
|
407 |
+
"eval_wer": 0.4577314705185887,
|
408 |
+
"step": 5000
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 33.12,
|
412 |
+
"learning_rate": 2.0744295302013423e-05,
|
413 |
+
"loss": 0.748,
|
414 |
+
"step": 5100
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 33.76,
|
418 |
+
"learning_rate": 2.054295302013423e-05,
|
419 |
+
"loss": 0.7357,
|
420 |
+
"step": 5200
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"epoch": 34.41,
|
424 |
+
"learning_rate": 2.0341610738255034e-05,
|
425 |
+
"loss": 0.7357,
|
426 |
+
"step": 5300
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"epoch": 35.06,
|
430 |
+
"learning_rate": 2.014026845637584e-05,
|
431 |
+
"loss": 0.735,
|
432 |
+
"step": 5400
|
433 |
+
},
|
434 |
+
{
|
435 |
+
"epoch": 35.71,
|
436 |
+
"learning_rate": 1.9938926174496645e-05,
|
437 |
+
"loss": 0.7251,
|
438 |
+
"step": 5500
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"epoch": 35.71,
|
442 |
+
"eval_cer": 0.09283254627953377,
|
443 |
+
"eval_loss": 0.34103500843048096,
|
444 |
+
"eval_runtime": 218.8353,
|
445 |
+
"eval_samples_per_second": 24.79,
|
446 |
+
"eval_steps_per_second": 3.103,
|
447 |
+
"eval_wer": 0.4472827373904807,
|
448 |
+
"step": 5500
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"epoch": 36.36,
|
452 |
+
"learning_rate": 1.973758389261745e-05,
|
453 |
+
"loss": 0.7306,
|
454 |
+
"step": 5600
|
455 |
+
},
|
456 |
+
{
|
457 |
+
"epoch": 37.01,
|
458 |
+
"learning_rate": 1.9536241610738256e-05,
|
459 |
+
"loss": 0.7185,
|
460 |
+
"step": 5700
|
461 |
+
},
|
462 |
+
{
|
463 |
+
"epoch": 37.66,
|
464 |
+
"learning_rate": 1.9334899328859062e-05,
|
465 |
+
"loss": 0.7135,
|
466 |
+
"step": 5800
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 38.31,
|
470 |
+
"learning_rate": 1.9133557046979864e-05,
|
471 |
+
"loss": 0.726,
|
472 |
+
"step": 5900
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 38.96,
|
476 |
+
"learning_rate": 1.893221476510067e-05,
|
477 |
+
"loss": 0.7106,
|
478 |
+
"step": 6000
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 38.96,
|
482 |
+
"eval_cer": 0.09190425933486893,
|
483 |
+
"eval_loss": 0.3401394486427307,
|
484 |
+
"eval_runtime": 218.6772,
|
485 |
+
"eval_samples_per_second": 24.808,
|
486 |
+
"eval_steps_per_second": 3.105,
|
487 |
+
"eval_wer": 0.4427539663746152,
|
488 |
+
"step": 6000
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 39.61,
|
492 |
+
"learning_rate": 1.8730872483221475e-05,
|
493 |
+
"loss": 0.7157,
|
494 |
+
"step": 6100
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 40.26,
|
498 |
+
"learning_rate": 1.852953020134228e-05,
|
499 |
+
"loss": 0.7055,
|
500 |
+
"step": 6200
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 40.91,
|
504 |
+
"learning_rate": 1.8328187919463086e-05,
|
505 |
+
"loss": 0.7108,
|
506 |
+
"step": 6300
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 41.56,
|
510 |
+
"learning_rate": 1.8126845637583892e-05,
|
511 |
+
"loss": 0.705,
|
512 |
+
"step": 6400
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 42.21,
|
516 |
+
"learning_rate": 1.7925503355704698e-05,
|
517 |
+
"loss": 0.7027,
|
518 |
+
"step": 6500
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 42.21,
|
522 |
+
"eval_cer": 0.09045597762866982,
|
523 |
+
"eval_loss": 0.3354834318161011,
|
524 |
+
"eval_runtime": 219.2927,
|
525 |
+
"eval_samples_per_second": 24.739,
|
526 |
+
"eval_steps_per_second": 3.096,
|
527 |
+
"eval_wer": 0.4352652143026285,
|
528 |
+
"step": 6500
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 42.86,
|
532 |
+
"learning_rate": 1.7724161073825503e-05,
|
533 |
+
"loss": 0.7103,
|
534 |
+
"step": 6600
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 43.51,
|
538 |
+
"learning_rate": 1.752281879194631e-05,
|
539 |
+
"loss": 0.7011,
|
540 |
+
"step": 6700
|
541 |
+
},
|
542 |
+
{
|
543 |
+
"epoch": 44.16,
|
544 |
+
"learning_rate": 1.7321476510067114e-05,
|
545 |
+
"loss": 0.7004,
|
546 |
+
"step": 6800
|
547 |
+
},
|
548 |
+
{
|
549 |
+
"epoch": 44.8,
|
550 |
+
"learning_rate": 1.712013422818792e-05,
|
551 |
+
"loss": 0.702,
|
552 |
+
"step": 6900
|
553 |
+
},
|
554 |
+
{
|
555 |
+
"epoch": 45.45,
|
556 |
+
"learning_rate": 1.6918791946308722e-05,
|
557 |
+
"loss": 0.6927,
|
558 |
+
"step": 7000
|
559 |
+
},
|
560 |
+
{
|
561 |
+
"epoch": 45.45,
|
562 |
+
"eval_cer": 0.08853392291751727,
|
563 |
+
"eval_loss": 0.33077025413513184,
|
564 |
+
"eval_runtime": 215.9851,
|
565 |
+
"eval_samples_per_second": 25.117,
|
566 |
+
"eval_steps_per_second": 3.144,
|
567 |
+
"eval_wer": 0.4296412502959981,
|
568 |
+
"step": 7000
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"epoch": 46.1,
|
572 |
+
"learning_rate": 1.6717449664429528e-05,
|
573 |
+
"loss": 0.691,
|
574 |
+
"step": 7100
|
575 |
+
},
|
576 |
+
{
|
577 |
+
"epoch": 46.75,
|
578 |
+
"learning_rate": 1.6516107382550333e-05,
|
579 |
+
"loss": 0.6833,
|
580 |
+
"step": 7200
|
581 |
+
},
|
582 |
+
{
|
583 |
+
"epoch": 47.4,
|
584 |
+
"learning_rate": 1.631476510067114e-05,
|
585 |
+
"loss": 0.692,
|
586 |
+
"step": 7300
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 48.05,
|
590 |
+
"learning_rate": 1.6113422818791948e-05,
|
591 |
+
"loss": 0.6871,
|
592 |
+
"step": 7400
|
593 |
+
},
|
594 |
+
{
|
595 |
+
"epoch": 48.7,
|
596 |
+
"learning_rate": 1.5914093959731546e-05,
|
597 |
+
"loss": 0.6828,
|
598 |
+
"step": 7500
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"epoch": 48.7,
|
602 |
+
"eval_cer": 0.08625364959286336,
|
603 |
+
"eval_loss": 0.324627548456192,
|
604 |
+
"eval_runtime": 221.033,
|
605 |
+
"eval_samples_per_second": 24.544,
|
606 |
+
"eval_steps_per_second": 3.072,
|
607 |
+
"eval_wer": 0.42043570921146106,
|
608 |
+
"step": 7500
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 49.35,
|
612 |
+
"learning_rate": 1.5712751677852352e-05,
|
613 |
+
"loss": 0.6789,
|
614 |
+
"step": 7600
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 50.0,
|
618 |
+
"learning_rate": 1.5511409395973158e-05,
|
619 |
+
"loss": 0.6811,
|
620 |
+
"step": 7700
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 50.65,
|
624 |
+
"learning_rate": 1.531006711409396e-05,
|
625 |
+
"loss": 0.683,
|
626 |
+
"step": 7800
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 51.3,
|
630 |
+
"learning_rate": 1.5108724832214764e-05,
|
631 |
+
"loss": 0.6765,
|
632 |
+
"step": 7900
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 51.95,
|
636 |
+
"learning_rate": 1.4907382550335571e-05,
|
637 |
+
"loss": 0.6706,
|
638 |
+
"step": 8000
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 51.95,
|
642 |
+
"eval_cer": 0.08681216248488163,
|
643 |
+
"eval_loss": 0.32503771781921387,
|
644 |
+
"eval_runtime": 215.1259,
|
645 |
+
"eval_samples_per_second": 25.218,
|
646 |
+
"eval_steps_per_second": 3.156,
|
647 |
+
"eval_wer": 0.42327729102533745,
|
648 |
+
"step": 8000
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"epoch": 52.6,
|
652 |
+
"learning_rate": 1.4706040268456375e-05,
|
653 |
+
"loss": 0.6777,
|
654 |
+
"step": 8100
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 53.25,
|
658 |
+
"learning_rate": 1.450469798657718e-05,
|
659 |
+
"loss": 0.6754,
|
660 |
+
"step": 8200
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 53.89,
|
664 |
+
"learning_rate": 1.4303355704697986e-05,
|
665 |
+
"loss": 0.6675,
|
666 |
+
"step": 8300
|
667 |
+
},
|
668 |
+
{
|
669 |
+
"epoch": 54.54,
|
670 |
+
"learning_rate": 1.4102013422818792e-05,
|
671 |
+
"loss": 0.6627,
|
672 |
+
"step": 8400
|
673 |
+
},
|
674 |
+
{
|
675 |
+
"epoch": 55.19,
|
676 |
+
"learning_rate": 1.3900671140939599e-05,
|
677 |
+
"loss": 0.6629,
|
678 |
+
"step": 8500
|
679 |
+
},
|
680 |
+
{
|
681 |
+
"epoch": 55.19,
|
682 |
+
"eval_cer": 0.0849055150259227,
|
683 |
+
"eval_loss": 0.3263927102088928,
|
684 |
+
"eval_runtime": 213.0987,
|
685 |
+
"eval_samples_per_second": 25.458,
|
686 |
+
"eval_steps_per_second": 3.186,
|
687 |
+
"eval_wer": 0.4158773383850343,
|
688 |
+
"step": 8500
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 55.84,
|
692 |
+
"learning_rate": 1.3699328859060405e-05,
|
693 |
+
"loss": 0.6632,
|
694 |
+
"step": 8600
|
695 |
+
},
|
696 |
+
{
|
697 |
+
"epoch": 56.49,
|
698 |
+
"learning_rate": 1.3497986577181208e-05,
|
699 |
+
"loss": 0.6558,
|
700 |
+
"step": 8700
|
701 |
+
},
|
702 |
+
{
|
703 |
+
"epoch": 57.14,
|
704 |
+
"learning_rate": 1.3296644295302014e-05,
|
705 |
+
"loss": 0.6691,
|
706 |
+
"step": 8800
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 57.79,
|
710 |
+
"learning_rate": 1.309530201342282e-05,
|
711 |
+
"loss": 0.6633,
|
712 |
+
"step": 8900
|
713 |
+
},
|
714 |
+
{
|
715 |
+
"epoch": 58.44,
|
716 |
+
"learning_rate": 1.2893959731543625e-05,
|
717 |
+
"loss": 0.6556,
|
718 |
+
"step": 9000
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"epoch": 58.44,
|
722 |
+
"eval_cer": 0.08353812139374003,
|
723 |
+
"eval_loss": 0.3212815821170807,
|
724 |
+
"eval_runtime": 220.228,
|
725 |
+
"eval_samples_per_second": 24.634,
|
726 |
+
"eval_steps_per_second": 3.083,
|
727 |
+
"eval_wer": 0.40995737627279183,
|
728 |
+
"step": 9000
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 59.09,
|
732 |
+
"learning_rate": 1.269261744966443e-05,
|
733 |
+
"loss": 0.6584,
|
734 |
+
"step": 9100
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 59.74,
|
738 |
+
"learning_rate": 1.2491275167785236e-05,
|
739 |
+
"loss": 0.6537,
|
740 |
+
"step": 9200
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 60.39,
|
744 |
+
"learning_rate": 1.228993288590604e-05,
|
745 |
+
"loss": 0.6633,
|
746 |
+
"step": 9300
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 61.04,
|
750 |
+
"learning_rate": 1.2088590604026846e-05,
|
751 |
+
"loss": 0.6474,
|
752 |
+
"step": 9400
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 61.69,
|
756 |
+
"learning_rate": 1.1887248322147651e-05,
|
757 |
+
"loss": 0.6484,
|
758 |
+
"step": 9500
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 61.69,
|
762 |
+
"eval_cer": 0.0836613794112889,
|
763 |
+
"eval_loss": 0.31816166639328003,
|
764 |
+
"eval_runtime": 216.5133,
|
765 |
+
"eval_samples_per_second": 25.056,
|
766 |
+
"eval_steps_per_second": 3.136,
|
767 |
+
"eval_wer": 0.41241416054937247,
|
768 |
+
"step": 9500
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"epoch": 62.34,
|
772 |
+
"learning_rate": 1.1687919463087248e-05,
|
773 |
+
"loss": 0.6547,
|
774 |
+
"step": 9600
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 62.99,
|
778 |
+
"learning_rate": 1.1486577181208054e-05,
|
779 |
+
"loss": 0.6481,
|
780 |
+
"step": 9700
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"epoch": 63.64,
|
784 |
+
"learning_rate": 1.128523489932886e-05,
|
785 |
+
"loss": 0.648,
|
786 |
+
"step": 9800
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 64.29,
|
790 |
+
"learning_rate": 1.1083892617449665e-05,
|
791 |
+
"loss": 0.6471,
|
792 |
+
"step": 9900
|
793 |
+
},
|
794 |
+
{
|
795 |
+
"epoch": 64.93,
|
796 |
+
"learning_rate": 1.088255033557047e-05,
|
797 |
+
"loss": 0.6407,
|
798 |
+
"step": 10000
|
799 |
+
},
|
800 |
+
{
|
801 |
+
"epoch": 64.93,
|
802 |
+
"eval_cer": 0.08248272461847792,
|
803 |
+
"eval_loss": 0.3171332776546478,
|
804 |
+
"eval_runtime": 217.1179,
|
805 |
+
"eval_samples_per_second": 24.986,
|
806 |
+
"eval_steps_per_second": 3.127,
|
807 |
+
"eval_wer": 0.4050142079090694,
|
808 |
+
"step": 10000
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"epoch": 65.58,
|
812 |
+
"learning_rate": 1.0681208053691274e-05,
|
813 |
+
"loss": 0.6446,
|
814 |
+
"step": 10100
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 66.23,
|
818 |
+
"learning_rate": 1.047986577181208e-05,
|
819 |
+
"loss": 0.6383,
|
820 |
+
"step": 10200
|
821 |
+
},
|
822 |
+
{
|
823 |
+
"epoch": 66.88,
|
824 |
+
"learning_rate": 1.0278523489932886e-05,
|
825 |
+
"loss": 0.6413,
|
826 |
+
"step": 10300
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 67.53,
|
830 |
+
"learning_rate": 1.0077181208053691e-05,
|
831 |
+
"loss": 0.6494,
|
832 |
+
"step": 10400
|
833 |
+
},
|
834 |
+
{
|
835 |
+
"epoch": 68.18,
|
836 |
+
"learning_rate": 9.875838926174497e-06,
|
837 |
+
"loss": 0.6375,
|
838 |
+
"step": 10500
|
839 |
+
},
|
840 |
+
{
|
841 |
+
"epoch": 68.18,
|
842 |
+
"eval_cer": 0.0822362085833802,
|
843 |
+
"eval_loss": 0.31498104333877563,
|
844 |
+
"eval_runtime": 218.6829,
|
845 |
+
"eval_samples_per_second": 24.808,
|
846 |
+
"eval_steps_per_second": 3.105,
|
847 |
+
"eval_wer": 0.4038598152971821,
|
848 |
+
"step": 10500
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"epoch": 68.83,
|
852 |
+
"learning_rate": 9.6744966442953e-06,
|
853 |
+
"loss": 0.6359,
|
854 |
+
"step": 10600
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"epoch": 69.48,
|
858 |
+
"learning_rate": 9.473154362416108e-06,
|
859 |
+
"loss": 0.638,
|
860 |
+
"step": 10700
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"epoch": 70.13,
|
864 |
+
"learning_rate": 9.271812080536914e-06,
|
865 |
+
"loss": 0.6405,
|
866 |
+
"step": 10800
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 70.78,
|
870 |
+
"learning_rate": 9.070469798657719e-06,
|
871 |
+
"loss": 0.6388,
|
872 |
+
"step": 10900
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 71.43,
|
876 |
+
"learning_rate": 8.869127516778525e-06,
|
877 |
+
"loss": 0.6363,
|
878 |
+
"step": 11000
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 71.43,
|
882 |
+
"eval_cer": 0.08095355483826237,
|
883 |
+
"eval_loss": 0.3129253089427948,
|
884 |
+
"eval_runtime": 218.9143,
|
885 |
+
"eval_samples_per_second": 24.781,
|
886 |
+
"eval_steps_per_second": 3.102,
|
887 |
+
"eval_wer": 0.3991238456073881,
|
888 |
+
"step": 11000
|
889 |
+
},
|
890 |
+
{
|
891 |
+
"epoch": 72.08,
|
892 |
+
"learning_rate": 8.66778523489933e-06,
|
893 |
+
"loss": 0.6369,
|
894 |
+
"step": 11100
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 72.73,
|
898 |
+
"learning_rate": 8.466442953020134e-06,
|
899 |
+
"loss": 0.635,
|
900 |
+
"step": 11200
|
901 |
+
},
|
902 |
+
{
|
903 |
+
"epoch": 73.38,
|
904 |
+
"learning_rate": 8.26510067114094e-06,
|
905 |
+
"loss": 0.6337,
|
906 |
+
"step": 11300
|
907 |
+
},
|
908 |
+
{
|
909 |
+
"epoch": 74.03,
|
910 |
+
"learning_rate": 8.063758389261745e-06,
|
911 |
+
"loss": 0.6308,
|
912 |
+
"step": 11400
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 74.67,
|
916 |
+
"learning_rate": 7.862416107382551e-06,
|
917 |
+
"loss": 0.6307,
|
918 |
+
"step": 11500
|
919 |
+
},
|
920 |
+
{
|
921 |
+
"epoch": 74.67,
|
922 |
+
"eval_cer": 0.08074170512060026,
|
923 |
+
"eval_loss": 0.3114279508590698,
|
924 |
+
"eval_runtime": 219.6542,
|
925 |
+
"eval_samples_per_second": 24.698,
|
926 |
+
"eval_steps_per_second": 3.091,
|
927 |
+
"eval_wer": 0.3986206488278475,
|
928 |
+
"step": 11500
|
929 |
+
},
|
930 |
+
{
|
931 |
+
"epoch": 75.32,
|
932 |
+
"learning_rate": 7.661073825503357e-06,
|
933 |
+
"loss": 0.6335,
|
934 |
+
"step": 11600
|
935 |
+
},
|
936 |
+
{
|
937 |
+
"epoch": 75.97,
|
938 |
+
"learning_rate": 7.459731543624161e-06,
|
939 |
+
"loss": 0.628,
|
940 |
+
"step": 11700
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 76.62,
|
944 |
+
"learning_rate": 7.260402684563759e-06,
|
945 |
+
"loss": 0.6324,
|
946 |
+
"step": 11800
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"epoch": 77.27,
|
950 |
+
"learning_rate": 7.059060402684564e-06,
|
951 |
+
"loss": 0.6317,
|
952 |
+
"step": 11900
|
953 |
+
},
|
954 |
+
{
|
955 |
+
"epoch": 77.92,
|
956 |
+
"learning_rate": 6.857718120805369e-06,
|
957 |
+
"loss": 0.6232,
|
958 |
+
"step": 12000
|
959 |
+
},
|
960 |
+
{
|
961 |
+
"epoch": 77.92,
|
962 |
+
"eval_cer": 0.07899683380967422,
|
963 |
+
"eval_loss": 0.31030353903770447,
|
964 |
+
"eval_runtime": 220.4971,
|
965 |
+
"eval_samples_per_second": 24.603,
|
966 |
+
"eval_steps_per_second": 3.079,
|
967 |
+
"eval_wer": 0.3895335069855553,
|
968 |
+
"step": 12000
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 78.57,
|
972 |
+
"learning_rate": 6.656375838926175e-06,
|
973 |
+
"loss": 0.6295,
|
974 |
+
"step": 12100
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 79.22,
|
978 |
+
"learning_rate": 6.4550335570469795e-06,
|
979 |
+
"loss": 0.6234,
|
980 |
+
"step": 12200
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"epoch": 79.87,
|
984 |
+
"learning_rate": 6.255704697986578e-06,
|
985 |
+
"loss": 0.6172,
|
986 |
+
"step": 12300
|
987 |
+
},
|
988 |
+
{
|
989 |
+
"epoch": 80.52,
|
990 |
+
"learning_rate": 6.054362416107383e-06,
|
991 |
+
"loss": 0.6203,
|
992 |
+
"step": 12400
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"epoch": 81.17,
|
996 |
+
"learning_rate": 5.853020134228188e-06,
|
997 |
+
"loss": 0.6216,
|
998 |
+
"step": 12500
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 81.17,
|
1002 |
+
"eval_cer": 0.0789506120530934,
|
1003 |
+
"eval_loss": 0.30863967537879944,
|
1004 |
+
"eval_runtime": 218.4142,
|
1005 |
+
"eval_samples_per_second": 24.838,
|
1006 |
+
"eval_steps_per_second": 3.109,
|
1007 |
+
"eval_wer": 0.3891191096376983,
|
1008 |
+
"step": 12500
|
1009 |
+
},
|
1010 |
+
{
|
1011 |
+
"epoch": 81.82,
|
1012 |
+
"learning_rate": 5.651677852348994e-06,
|
1013 |
+
"loss": 0.6203,
|
1014 |
+
"step": 12600
|
1015 |
+
},
|
1016 |
+
{
|
1017 |
+
"epoch": 82.47,
|
1018 |
+
"learning_rate": 5.4503355704697986e-06,
|
1019 |
+
"loss": 0.6209,
|
1020 |
+
"step": 12700
|
1021 |
+
},
|
1022 |
+
{
|
1023 |
+
"epoch": 83.12,
|
1024 |
+
"learning_rate": 5.248993288590604e-06,
|
1025 |
+
"loss": 0.6257,
|
1026 |
+
"step": 12800
|
1027 |
+
},
|
1028 |
+
{
|
1029 |
+
"epoch": 83.76,
|
1030 |
+
"learning_rate": 5.04765100671141e-06,
|
1031 |
+
"loss": 0.6245,
|
1032 |
+
"step": 12900
|
1033 |
+
},
|
1034 |
+
{
|
1035 |
+
"epoch": 84.41,
|
1036 |
+
"learning_rate": 4.8463087248322145e-06,
|
1037 |
+
"loss": 0.6174,
|
1038 |
+
"step": 13000
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 84.41,
|
1042 |
+
"eval_cer": 0.07851150536557558,
|
1043 |
+
"eval_loss": 0.3082079291343689,
|
1044 |
+
"eval_runtime": 215.0269,
|
1045 |
+
"eval_samples_per_second": 25.229,
|
1046 |
+
"eval_steps_per_second": 3.158,
|
1047 |
+
"eval_wer": 0.3880535164574947,
|
1048 |
+
"step": 13000
|
1049 |
+
},
|
1050 |
+
{
|
1051 |
+
"epoch": 85.06,
|
1052 |
+
"learning_rate": 4.64496644295302e-06,
|
1053 |
+
"loss": 0.6222,
|
1054 |
+
"step": 13100
|
1055 |
+
},
|
1056 |
+
{
|
1057 |
+
"epoch": 85.71,
|
1058 |
+
"learning_rate": 4.443624161073826e-06,
|
1059 |
+
"loss": 0.6113,
|
1060 |
+
"step": 13200
|
1061 |
+
},
|
1062 |
+
{
|
1063 |
+
"epoch": 86.36,
|
1064 |
+
"learning_rate": 4.2422818791946304e-06,
|
1065 |
+
"loss": 0.6238,
|
1066 |
+
"step": 13300
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 87.01,
|
1070 |
+
"learning_rate": 4.040939597315437e-06,
|
1071 |
+
"loss": 0.618,
|
1072 |
+
"step": 13400
|
1073 |
+
},
|
1074 |
+
{
|
1075 |
+
"epoch": 87.66,
|
1076 |
+
"learning_rate": 3.8395973154362425e-06,
|
1077 |
+
"loss": 0.6196,
|
1078 |
+
"step": 13500
|
1079 |
+
},
|
1080 |
+
{
|
1081 |
+
"epoch": 87.66,
|
1082 |
+
"eval_cer": 0.07821876757389704,
|
1083 |
+
"eval_loss": 0.30590009689331055,
|
1084 |
+
"eval_runtime": 213.2382,
|
1085 |
+
"eval_samples_per_second": 25.441,
|
1086 |
+
"eval_steps_per_second": 3.184,
|
1087 |
+
"eval_wer": 0.3874911200568316,
|
1088 |
+
"step": 13500
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 88.31,
|
1092 |
+
"learning_rate": 3.6382550335570468e-06,
|
1093 |
+
"loss": 0.6174,
|
1094 |
+
"step": 13600
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 88.96,
|
1098 |
+
"learning_rate": 3.4369127516778524e-06,
|
1099 |
+
"loss": 0.6128,
|
1100 |
+
"step": 13700
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 89.61,
|
1104 |
+
"learning_rate": 3.235570469798658e-06,
|
1105 |
+
"loss": 0.6246,
|
1106 |
+
"step": 13800
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 90.26,
|
1110 |
+
"learning_rate": 3.034228187919463e-06,
|
1111 |
+
"loss": 0.6097,
|
1112 |
+
"step": 13900
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 90.91,
|
1116 |
+
"learning_rate": 2.8328859060402687e-06,
|
1117 |
+
"loss": 0.6174,
|
1118 |
+
"step": 14000
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 90.91,
|
1122 |
+
"eval_cer": 0.07799151060404132,
|
1123 |
+
"eval_loss": 0.30842480063438416,
|
1124 |
+
"eval_runtime": 212.6251,
|
1125 |
+
"eval_samples_per_second": 25.514,
|
1126 |
+
"eval_steps_per_second": 3.193,
|
1127 |
+
"eval_wer": 0.3862479280132607,
|
1128 |
+
"step": 14000
|
1129 |
+
},
|
1130 |
+
{
|
1131 |
+
"epoch": 91.56,
|
1132 |
+
"learning_rate": 2.631543624161074e-06,
|
1133 |
+
"loss": 0.6194,
|
1134 |
+
"step": 14100
|
1135 |
+
},
|
1136 |
+
{
|
1137 |
+
"epoch": 92.21,
|
1138 |
+
"learning_rate": 2.430201342281879e-06,
|
1139 |
+
"loss": 0.6167,
|
1140 |
+
"step": 14200
|
1141 |
+
},
|
1142 |
+
{
|
1143 |
+
"epoch": 92.86,
|
1144 |
+
"learning_rate": 2.2288590604026842e-06,
|
1145 |
+
"loss": 0.614,
|
1146 |
+
"step": 14300
|
1147 |
+
},
|
1148 |
+
{
|
1149 |
+
"epoch": 93.51,
|
1150 |
+
"learning_rate": 2.0275167785234902e-06,
|
1151 |
+
"loss": 0.615,
|
1152 |
+
"step": 14400
|
1153 |
+
},
|
1154 |
+
{
|
1155 |
+
"epoch": 94.16,
|
1156 |
+
"learning_rate": 1.8261744966442954e-06,
|
1157 |
+
"loss": 0.6169,
|
1158 |
+
"step": 14500
|
1159 |
+
},
|
1160 |
+
{
|
1161 |
+
"epoch": 94.16,
|
1162 |
+
"eval_cer": 0.07787595621258926,
|
1163 |
+
"eval_loss": 0.30701127648353577,
|
1164 |
+
"eval_runtime": 215.1709,
|
1165 |
+
"eval_samples_per_second": 25.213,
|
1166 |
+
"eval_steps_per_second": 3.156,
|
1167 |
+
"eval_wer": 0.3859519299076486,
|
1168 |
+
"step": 14500
|
1169 |
+
},
|
1170 |
+
{
|
1171 |
+
"epoch": 94.8,
|
1172 |
+
"learning_rate": 1.6248322147651008e-06,
|
1173 |
+
"loss": 0.6123,
|
1174 |
+
"step": 14600
|
1175 |
+
},
|
1176 |
+
{
|
1177 |
+
"epoch": 95.45,
|
1178 |
+
"learning_rate": 1.423489932885906e-06,
|
1179 |
+
"loss": 0.6133,
|
1180 |
+
"step": 14700
|
1181 |
+
},
|
1182 |
+
{
|
1183 |
+
"epoch": 96.1,
|
1184 |
+
"learning_rate": 1.2221476510067115e-06,
|
1185 |
+
"loss": 0.6068,
|
1186 |
+
"step": 14800
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"epoch": 96.75,
|
1190 |
+
"learning_rate": 1.020805369127517e-06,
|
1191 |
+
"loss": 0.6135,
|
1192 |
+
"step": 14900
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 97.4,
|
1196 |
+
"learning_rate": 8.194630872483221e-07,
|
1197 |
+
"loss": 0.6166,
|
1198 |
+
"step": 15000
|
1199 |
+
},
|
1200 |
+
{
|
1201 |
+
"epoch": 97.4,
|
1202 |
+
"eval_cer": 0.07776810544723402,
|
1203 |
+
"eval_loss": 0.30662447214126587,
|
1204 |
+
"eval_runtime": 214.9469,
|
1205 |
+
"eval_samples_per_second": 25.239,
|
1206 |
+
"eval_steps_per_second": 3.159,
|
1207 |
+
"eval_wer": 0.3855079327492304,
|
1208 |
+
"step": 15000
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"epoch": 98.05,
|
1212 |
+
"learning_rate": 6.181208053691276e-07,
|
1213 |
+
"loss": 0.6189,
|
1214 |
+
"step": 15100
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 98.7,
|
1218 |
+
"learning_rate": 4.167785234899329e-07,
|
1219 |
+
"loss": 0.6085,
|
1220 |
+
"step": 15200
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 99.35,
|
1224 |
+
"learning_rate": 2.1543624161073826e-07,
|
1225 |
+
"loss": 0.6135,
|
1226 |
+
"step": 15300
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"epoch": 100.0,
|
1230 |
+
"learning_rate": 1.4093959731543625e-08,
|
1231 |
+
"loss": 0.6047,
|
1232 |
+
"step": 15400
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"epoch": 100.0,
|
1236 |
+
"step": 15400,
|
1237 |
+
"total_flos": 2.652008062738907e+20,
|
1238 |
+
"train_loss": 0.9527478711016767,
|
1239 |
+
"train_runtime": 101833.8069,
|
1240 |
+
"train_samples_per_second": 19.371,
|
1241 |
+
"train_steps_per_second": 0.151
|
1242 |
+
}
|
1243 |
+
],
|
1244 |
+
"max_steps": 15400,
|
1245 |
+
"num_train_epochs": 100,
|
1246 |
+
"total_flos": 2.652008062738907e+20,
|
1247 |
+
"trial_name": null,
|
1248 |
+
"trial_params": null
|
1249 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e07ae4abc8c48013db20dc56c875f2a1b7115ee1ed5e58dc64886f0b18aec42a
|
3 |
+
size 3055
|
uz_cv8_text.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
vocab.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[PAD]": 30,
|
3 |
+
"[UNK]": 29,
|
4 |
+
"a": 1,
|
5 |
+
"b": 2,
|
6 |
+
"c": 3,
|
7 |
+
"d": 4,
|
8 |
+
"e": 5,
|
9 |
+
"f": 6,
|
10 |
+
"g": 7,
|
11 |
+
"h": 8,
|
12 |
+
"i": 9,
|
13 |
+
"j": 10,
|
14 |
+
"k": 11,
|
15 |
+
"l": 12,
|
16 |
+
"m": 13,
|
17 |
+
"n": 14,
|
18 |
+
"o": 15,
|
19 |
+
"p": 16,
|
20 |
+
"q": 17,
|
21 |
+
"r": 18,
|
22 |
+
"s": 19,
|
23 |
+
"t": 20,
|
24 |
+
"u": 21,
|
25 |
+
"v": 22,
|
26 |
+
"w": 23,
|
27 |
+
"x": 24,
|
28 |
+
"y": 25,
|
29 |
+
"z": 26,
|
30 |
+
"|": 0,
|
31 |
+
"‘": 27,
|
32 |
+
"’": 28
|
33 |
+
}
|
with_ngram_LM.ipynb
ADDED
@@ -0,0 +1,350 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 8,
|
6 |
+
"id": "072d16f1",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"/workspace/xls-r-uzbek-cv8\n"
|
14 |
+
]
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"source": [
|
18 |
+
"%cd ~/xls-r-uzbek-cv8"
|
19 |
+
]
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"cell_type": "code",
|
23 |
+
"execution_count": 10,
|
24 |
+
"id": "12382315",
|
25 |
+
"metadata": {},
|
26 |
+
"outputs": [
|
27 |
+
{
|
28 |
+
"name": "stdout",
|
29 |
+
"output_type": "stream",
|
30 |
+
"text": [
|
31 |
+
"\u001b[33mWARNING: Ignoring invalid distribution -ransformers (/opt/conda/lib/python3.8/site-packages)\u001b[0m\u001b[33m\n",
|
32 |
+
"\u001b[0m\u001b[33mWARNING: Ignoring invalid distribution -ip (/opt/conda/lib/python3.8/site-packages)\u001b[0m\u001b[33m\n",
|
33 |
+
"\u001b[0m\u001b[33mWARNING: Ignoring invalid distribution - (/opt/conda/lib/python3.8/site-packages)\u001b[0m\u001b[33m\n",
|
34 |
+
"\u001b[0m\u001b[33mWARNING: Ignoring invalid distribution -ransformers (/opt/conda/lib/python3.8/site-packages)\u001b[0m\u001b[33m\n",
|
35 |
+
"\u001b[0m\u001b[33mWARNING: Ignoring invalid distribution -ip (/opt/conda/lib/python3.8/site-packages)\u001b[0m\u001b[33m\n",
|
36 |
+
"\u001b[0m\u001b[33mWARNING: Ignoring invalid distribution - (/opt/conda/lib/python3.8/site-packages)\u001b[0m\u001b[33m\n",
|
37 |
+
"\u001b[0mCollecting https://github.com/kpu/kenlm/archive/master.zip (from -r requirements.txt (line 10))\n",
|
38 |
+
" Using cached https://github.com/kpu/kenlm/archive/master.zip (541 kB)\n",
|
39 |
+
" Preparing metadata (setup.py) ... \u001b[?25ldone\n",
|
40 |
+
"\u001b[?25hRequirement already satisfied: unidecode in /opt/conda/lib/python3.8/site-packages (from -r requirements.txt (line 1)) (1.3.2)\n",
|
41 |
+
"Collecting tensorboard\n",
|
42 |
+
" Using cached tensorboard-2.8.0-py3-none-any.whl (5.8 MB)\n",
|
43 |
+
"Requirement already satisfied: torch in /opt/conda/lib/python3.8/site-packages (from -r requirements.txt (line 3)) (1.10.2)\n",
|
44 |
+
"Requirement already satisfied: torchaudio in /opt/conda/lib/python3.8/site-packages (from -r requirements.txt (line 4)) (0.10.2)\n",
|
45 |
+
"Requirement already satisfied: jiwer~=2.3.0 in /opt/conda/lib/python3.8/site-packages (from -r requirements.txt (line 5)) (2.3.0)\n",
|
46 |
+
"Requirement already satisfied: soundfile~=0.10.3 in /opt/conda/lib/python3.8/site-packages (from -r requirements.txt (line 6)) (0.10.3.post1)\n",
|
47 |
+
"Collecting transformers~=4.16.2\n",
|
48 |
+
" Using cached transformers-4.16.2-py3-none-any.whl (3.5 MB)\n",
|
49 |
+
"Collecting datasets~=1.18.3\n",
|
50 |
+
" Using cached datasets-1.18.3-py3-none-any.whl (311 kB)\n",
|
51 |
+
"Requirement already satisfied: pyctcdecode in /opt/conda/lib/python3.8/site-packages (from -r requirements.txt (line 9)) (0.3.0)\n",
|
52 |
+
"Requirement already satisfied: protobuf>=3.6.0 in /opt/conda/lib/python3.8/site-packages (from tensorboard->-r requirements.txt (line 2)) (3.19.4)\n",
|
53 |
+
"Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /opt/conda/lib/python3.8/site-packages (from tensorboard->-r requirements.txt (line 2)) (1.8.1)\n",
|
54 |
+
"Collecting google-auth-oauthlib<0.5,>=0.4.1\n",
|
55 |
+
" Using cached google_auth_oauthlib-0.4.6-py2.py3-none-any.whl (18 kB)\n",
|
56 |
+
"Requirement already satisfied: google-auth<3,>=1.6.3 in /opt/conda/lib/python3.8/site-packages (from tensorboard->-r requirements.txt (line 2)) (2.6.0)\n",
|
57 |
+
"Requirement already satisfied: numpy>=1.12.0 in /opt/conda/lib/python3.8/site-packages (from tensorboard->-r requirements.txt (line 2)) (1.19.2)\n",
|
58 |
+
"Requirement already satisfied: setuptools>=41.0.0 in /opt/conda/lib/python3.8/site-packages (from tensorboard->-r requirements.txt (line 2)) (50.3.1.post20201107)\n",
|
59 |
+
"Requirement already satisfied: requests<3,>=2.21.0 in /opt/conda/lib/python3.8/site-packages (from tensorboard->-r requirements.txt (line 2)) (2.24.0)\n",
|
60 |
+
"Requirement already satisfied: markdown>=2.6.8 in /opt/conda/lib/python3.8/site-packages (from tensorboard->-r requirements.txt (line 2)) (3.3.6)\n",
|
61 |
+
"Requirement already satisfied: grpcio>=1.24.3 in /opt/conda/lib/python3.8/site-packages (from tensorboard->-r requirements.txt (line 2)) (1.43.0)\n",
|
62 |
+
"Requirement already satisfied: wheel>=0.26 in /opt/conda/lib/python3.8/site-packages (from tensorboard->-r requirements.txt (line 2)) (0.35.1)\n",
|
63 |
+
"Requirement already satisfied: absl-py>=0.4 in /opt/conda/lib/python3.8/site-packages (from tensorboard->-r requirements.txt (line 2)) (1.0.0)\n",
|
64 |
+
"Requirement already satisfied: werkzeug>=0.11.15 in /opt/conda/lib/python3.8/site-packages (from tensorboard->-r requirements.txt (line 2)) (2.0.2)\n",
|
65 |
+
"Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /opt/conda/lib/python3.8/site-packages (from tensorboard->-r requirements.txt (line 2)) (0.6.1)\n",
|
66 |
+
"Requirement already satisfied: typing-extensions in /opt/conda/lib/python3.8/site-packages (from torch->-r requirements.txt (line 3)) (4.0.1)\n",
|
67 |
+
"Requirement already satisfied: python-Levenshtein==0.12.2 in /opt/conda/lib/python3.8/site-packages (from jiwer~=2.3.0->-r requirements.txt (line 5)) (0.12.2)\n",
|
68 |
+
"Requirement already satisfied: cffi>=1.0 in /opt/conda/lib/python3.8/site-packages (from soundfile~=0.10.3->-r requirements.txt (line 6)) (1.14.3)\n",
|
69 |
+
"Requirement already satisfied: filelock in /opt/conda/lib/python3.8/site-packages (from transformers~=4.16.2->-r requirements.txt (line 7)) (3.0.12)\n",
|
70 |
+
"Requirement already satisfied: regex!=2019.12.17 in /opt/conda/lib/python3.8/site-packages (from transformers~=4.16.2->-r requirements.txt (line 7)) (2022.1.18)\n",
|
71 |
+
"Requirement already satisfied: sacremoses in /opt/conda/lib/python3.8/site-packages (from transformers~=4.16.2->-r requirements.txt (line 7)) (0.0.47)\n",
|
72 |
+
"Requirement already satisfied: packaging>=20.0 in /opt/conda/lib/python3.8/site-packages (from transformers~=4.16.2->-r requirements.txt (line 7)) (21.3)\n",
|
73 |
+
"Requirement already satisfied: tokenizers!=0.11.3,>=0.10.1 in /opt/conda/lib/python3.8/site-packages (from transformers~=4.16.2->-r requirements.txt (line 7)) (0.11.4)\n",
|
74 |
+
"Requirement already satisfied: huggingface-hub<1.0,>=0.1.0 in /opt/conda/lib/python3.8/site-packages (from transformers~=4.16.2->-r requirements.txt (line 7)) (0.4.0)\n",
|
75 |
+
"Requirement already satisfied: pyyaml>=5.1 in /opt/conda/lib/python3.8/site-packages (from transformers~=4.16.2->-r requirements.txt (line 7)) (5.4.1)\n",
|
76 |
+
"Requirement already satisfied: tqdm>=4.27 in /opt/conda/lib/python3.8/site-packages (from transformers~=4.16.2->-r requirements.txt (line 7)) (4.62.3)\n",
|
77 |
+
"Requirement already satisfied: multiprocess in /opt/conda/lib/python3.8/site-packages (from datasets~=1.18.3->-r requirements.txt (line 8)) (0.70.12.2)\n",
|
78 |
+
"Requirement already satisfied: dill in /opt/conda/lib/python3.8/site-packages (from datasets~=1.18.3->-r requirements.txt (line 8)) (0.3.4)\n",
|
79 |
+
"Requirement already satisfied: pandas in /opt/conda/lib/python3.8/site-packages (from datasets~=1.18.3->-r requirements.txt (line 8)) (1.4.0)\n",
|
80 |
+
"Requirement already satisfied: aiohttp in /opt/conda/lib/python3.8/site-packages (from datasets~=1.18.3->-r requirements.txt (line 8)) (3.8.1)\n",
|
81 |
+
"Requirement already satisfied: xxhash in /opt/conda/lib/python3.8/site-packages (from datasets~=1.18.3->-r requirements.txt (line 8)) (2.0.2)\n",
|
82 |
+
"Requirement already satisfied: pyarrow!=4.0.0,>=3.0.0 in /opt/conda/lib/python3.8/site-packages (from datasets~=1.18.3->-r requirements.txt (line 8)) (6.0.1)\n",
|
83 |
+
"Requirement already satisfied: fsspec[http]>=2021.05.0 in /opt/conda/lib/python3.8/site-packages (from datasets~=1.18.3->-r requirements.txt (line 8)) (2022.1.0)\n",
|
84 |
+
"Requirement already satisfied: pygtrie<3.0,>=2.1 in /opt/conda/lib/python3.8/site-packages (from pyctcdecode->-r requirements.txt (line 9)) (2.4.2)\n",
|
85 |
+
"Requirement already satisfied: hypothesis<7,>=6.14 in /opt/conda/lib/python3.8/site-packages (from pyctcdecode->-r requirements.txt (line 9)) (6.36.1)\n",
|
86 |
+
"Requirement already satisfied: six in /opt/conda/lib/python3.8/site-packages (from absl-py>=0.4->tensorboard->-r requirements.txt (line 2)) (1.15.0)\n",
|
87 |
+
"Requirement already satisfied: pycparser in /opt/conda/lib/python3.8/site-packages (from cffi>=1.0->soundfile~=0.10.3->-r requirements.txt (line 6)) (2.20)\n",
|
88 |
+
"Requirement already satisfied: rsa<5,>=3.1.4 in /opt/conda/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->-r requirements.txt (line 2)) (4.8)\n",
|
89 |
+
"Requirement already satisfied: cachetools<6.0,>=2.0.0 in /opt/conda/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->-r requirements.txt (line 2)) (5.0.0)\n",
|
90 |
+
"Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/conda/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->-r requirements.txt (line 2)) (0.2.8)\n",
|
91 |
+
"Requirement already satisfied: requests-oauthlib>=0.7.0 in /opt/conda/lib/python3.8/site-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard->-r requirements.txt (line 2)) (1.3.1)\n",
|
92 |
+
"Requirement already satisfied: sortedcontainers<3.0.0,>=2.1.0 in /opt/conda/lib/python3.8/site-packages (from hypothesis<7,>=6.14->pyctcdecode->-r requirements.txt (line 9)) (2.4.0)\n",
|
93 |
+
"Requirement already satisfied: attrs>=19.2.0 in /opt/conda/lib/python3.8/site-packages (from hypothesis<7,>=6.14->pyctcdecode->-r requirements.txt (line 9)) (21.4.0)\n",
|
94 |
+
"Requirement already satisfied: importlib-metadata>=4.4 in /opt/conda/lib/python3.8/site-packages (from markdown>=2.6.8->tensorboard->-r requirements.txt (line 2)) (4.10.1)\n",
|
95 |
+
"Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /opt/conda/lib/python3.8/site-packages (from packaging>=20.0->transformers~=4.16.2->-r requirements.txt (line 7)) (3.0.7)\n",
|
96 |
+
"Requirement already satisfied: chardet<4,>=3.0.2 in /opt/conda/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->-r requirements.txt (line 2)) (3.0.4)\n",
|
97 |
+
"Requirement already satisfied: idna<3,>=2.5 in /opt/conda/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->-r requirements.txt (line 2)) (2.10)\n",
|
98 |
+
"Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /opt/conda/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->-r requirements.txt (line 2)) (1.25.11)\n",
|
99 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->-r requirements.txt (line 2)) (2020.12.5)\n",
|
100 |
+
"Requirement already satisfied: yarl<2.0,>=1.0 in /opt/conda/lib/python3.8/site-packages (from aiohttp->datasets~=1.18.3->-r requirements.txt (line 8)) (1.7.2)\n",
|
101 |
+
"Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /opt/conda/lib/python3.8/site-packages (from aiohttp->datasets~=1.18.3->-r requirements.txt (line 8)) (4.0.2)\n",
|
102 |
+
"Requirement already satisfied: aiosignal>=1.1.2 in /opt/conda/lib/python3.8/site-packages (from aiohttp->datasets~=1.18.3->-r requirements.txt (line 8)) (1.2.0)\n",
|
103 |
+
"Requirement already satisfied: multidict<7.0,>=4.5 in /opt/conda/lib/python3.8/site-packages (from aiohttp->datasets~=1.18.3->-r requirements.txt (line 8)) (6.0.2)\n",
|
104 |
+
"Requirement already satisfied: frozenlist>=1.1.1 in /opt/conda/lib/python3.8/site-packages (from aiohttp->datasets~=1.18.3->-r requirements.txt (line 8)) (1.3.0)\n",
|
105 |
+
"Requirement already satisfied: charset-normalizer<3.0,>=2.0 in /opt/conda/lib/python3.8/site-packages (from aiohttp->datasets~=1.18.3->-r requirements.txt (line 8)) (2.0.10)\n",
|
106 |
+
"Requirement already satisfied: python-dateutil>=2.8.1 in /opt/conda/lib/python3.8/site-packages (from pandas->datasets~=1.18.3->-r requirements.txt (line 8)) (2.8.2)\n",
|
107 |
+
"Requirement already satisfied: pytz>=2020.1 in /opt/conda/lib/python3.8/site-packages (from pandas->datasets~=1.18.3->-r requirements.txt (line 8)) (2021.1)\n",
|
108 |
+
"Requirement already satisfied: joblib in /opt/conda/lib/python3.8/site-packages (from sacremoses->transformers~=4.16.2->-r requirements.txt (line 7)) (1.1.0)\n",
|
109 |
+
"Requirement already satisfied: click in /opt/conda/lib/python3.8/site-packages (from sacremoses->transformers~=4.16.2->-r requirements.txt (line 7)) (8.0.3)\n",
|
110 |
+
"Requirement already satisfied: zipp>=0.5 in /opt/conda/lib/python3.8/site-packages (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard->-r requirements.txt (line 2)) (3.7.0)\n",
|
111 |
+
"Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /opt/conda/lib/python3.8/site-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard->-r requirements.txt (line 2)) (0.4.8)\n",
|
112 |
+
"Requirement already satisfied: oauthlib>=3.0.0 in /opt/conda/lib/python3.8/site-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard->-r requirements.txt (line 2)) (3.2.0)\n",
|
113 |
+
"Building wheels for collected packages: kenlm\n",
|
114 |
+
" Building wheel for kenlm (setup.py) ... \u001b[?25ldone\n",
|
115 |
+
"\u001b[?25h Created wheel for kenlm: filename=kenlm-0.0.0-cp38-cp38-linux_x86_64.whl size=2348591 sha256=d5c8e5430d89f59ddde39bc78aec471c1e66ef43b6cde792711b2e97d7b8b9dc\n",
|
116 |
+
" Stored in directory: /tmp/pip-ephem-wheel-cache-hhcfnszu/wheels/ff/08/4e/a3ddc0e786e0f3c1fcd2e7a82c4324c02fc3ae2638471406d2\n",
|
117 |
+
"Successfully built kenlm\n",
|
118 |
+
"\u001b[33mWARNING: Ignoring invalid distribution -ransformers (/opt/conda/lib/python3.8/site-packages)\u001b[0m\u001b[33m\n",
|
119 |
+
"\u001b[0m\u001b[33mWARNING: Ignoring invalid distribution -ip (/opt/conda/lib/python3.8/site-packages)\u001b[0m\u001b[33m\n",
|
120 |
+
"\u001b[0m\u001b[33mWARNING: Ignoring invalid distribution - (/opt/conda/lib/python3.8/site-packages)\u001b[0m\u001b[33m\n",
|
121 |
+
"\u001b[0mInstalling collected packages: kenlm, transformers, google-auth-oauthlib, tensorboard, datasets\n",
|
122 |
+
"\u001b[33m WARNING: The script transformers-cli is installed in '/workspace/.local/bin' which is not on PATH.\n",
|
123 |
+
" Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.\u001b[0m\u001b[33m\n",
|
124 |
+
"\u001b[0m\u001b[33m WARNING: The script google-oauthlib-tool is installed in '/workspace/.local/bin' which is not on PATH.\n",
|
125 |
+
" Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.\u001b[0m\u001b[33m\n",
|
126 |
+
"\u001b[0m\u001b[33m WARNING: The script tensorboard is installed in '/workspace/.local/bin' which is not on PATH.\n",
|
127 |
+
" Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.\u001b[0m\u001b[33m\n",
|
128 |
+
"\u001b[0m\u001b[33m WARNING: The script datasets-cli is installed in '/workspace/.local/bin' which is not on PATH.\n",
|
129 |
+
" Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.\u001b[0m\u001b[33m\n",
|
130 |
+
"\u001b[0mSuccessfully installed datasets-1.18.3 google-auth-oauthlib-0.4.6 kenlm-0.0.0 tensorboard-2.8.0 transformers-4.16.2\n",
|
131 |
+
"\u001b[33mWARNING: Ignoring invalid distribution -ransformers (/opt/conda/lib/python3.8/site-packages)\u001b[0m\u001b[33m\n",
|
132 |
+
"\u001b[0m\u001b[33mWARNING: Ignoring invalid distribution -ip (/opt/conda/lib/python3.8/site-packages)\u001b[0m\u001b[33m\n",
|
133 |
+
"\u001b[0m\u001b[33mWARNING: Ignoring invalid distribution - (/opt/conda/lib/python3.8/site-packages)\u001b[0m\u001b[33m\n",
|
134 |
+
"\u001b[0m"
|
135 |
+
]
|
136 |
+
}
|
137 |
+
],
|
138 |
+
"source": [
|
139 |
+
"!python -m pip install -r requirements.txt --user"
|
140 |
+
]
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"cell_type": "code",
|
144 |
+
"execution_count": 14,
|
145 |
+
"id": "3969d63a",
|
146 |
+
"metadata": {},
|
147 |
+
"outputs": [],
|
148 |
+
"source": [
|
149 |
+
"from transformers import AutoFeatureExtractor, AutoTokenizer, pipeline\n",
|
150 |
+
"from datasets import Audio, Dataset, DatasetDict, load_dataset, load_metric\n",
|
151 |
+
"\n",
|
152 |
+
"import re\n",
|
153 |
+
"import string\n",
|
154 |
+
"import unidecode"
|
155 |
+
]
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"cell_type": "code",
|
159 |
+
"execution_count": 12,
|
160 |
+
"id": "daff17fd",
|
161 |
+
"metadata": {},
|
162 |
+
"outputs": [
|
163 |
+
{
|
164 |
+
"name": "stderr",
|
165 |
+
"output_type": "stream",
|
166 |
+
"text": [
|
167 |
+
"Reusing dataset common_voice (/workspace/.cache/huggingface/datasets/mozilla-foundation___common_voice/uz/8.0.0/b8bc4d453193c06a43269b46cd87f075c70f152ac963b7f28f7a2760c45ec3e8)\n"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"data": {
|
172 |
+
"application/vnd.jupyter.widget-view+json": {
|
173 |
+
"model_id": "a8aad37a859241ff81ac932edc204bf8",
|
174 |
+
"version_major": 2,
|
175 |
+
"version_minor": 0
|
176 |
+
},
|
177 |
+
"text/plain": [
|
178 |
+
" 0%| | 0/5 [00:00<?, ?it/s]"
|
179 |
+
]
|
180 |
+
},
|
181 |
+
"metadata": {},
|
182 |
+
"output_type": "display_data"
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"data": {
|
186 |
+
"text/plain": [
|
187 |
+
"DatasetDict({\n",
|
188 |
+
" train: Dataset({\n",
|
189 |
+
" features: ['client_id', 'path', 'audio', 'sentence', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment'],\n",
|
190 |
+
" num_rows: 39456\n",
|
191 |
+
" })\n",
|
192 |
+
" test: Dataset({\n",
|
193 |
+
" features: ['client_id', 'path', 'audio', 'sentence', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment'],\n",
|
194 |
+
" num_rows: 11598\n",
|
195 |
+
" })\n",
|
196 |
+
" validation: Dataset({\n",
|
197 |
+
" features: ['client_id', 'path', 'audio', 'sentence', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment'],\n",
|
198 |
+
" num_rows: 10849\n",
|
199 |
+
" })\n",
|
200 |
+
" other: Dataset({\n",
|
201 |
+
" features: ['client_id', 'path', 'audio', 'sentence', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment'],\n",
|
202 |
+
" num_rows: 119461\n",
|
203 |
+
" })\n",
|
204 |
+
" invalidated: Dataset({\n",
|
205 |
+
" features: ['client_id', 'path', 'audio', 'sentence', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment'],\n",
|
206 |
+
" num_rows: 11276\n",
|
207 |
+
" })\n",
|
208 |
+
"})"
|
209 |
+
]
|
210 |
+
},
|
211 |
+
"execution_count": 12,
|
212 |
+
"metadata": {},
|
213 |
+
"output_type": "execute_result"
|
214 |
+
}
|
215 |
+
],
|
216 |
+
"source": [
|
217 |
+
"dataset_dict = load_dataset(\"mozilla-foundation/common_voice_8_0\", \"uz\", use_auth_token=True)\n",
|
218 |
+
"dataset_dict"
|
219 |
+
]
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"cell_type": "code",
|
223 |
+
"execution_count": 17,
|
224 |
+
"id": "c22aee32",
|
225 |
+
"metadata": {},
|
226 |
+
"outputs": [],
|
227 |
+
"source": [
|
228 |
+
"chars_to_ignore_regex=f\"[{re.escape(string.punctuation)}]\" \n",
|
229 |
+
"\n",
|
230 |
+
"def remove_special_characters(batch):\n",
|
231 |
+
" batch[\"text\"] = re.sub(\n",
|
232 |
+
" chars_to_ignore_regex, \n",
|
233 |
+
" \"\", \n",
|
234 |
+
" re.sub(\"['`´]\", \"’\", # elsewhere probably meant as glottal stop\n",
|
235 |
+
" re.sub(\"([og])['`´]\", \"\\g<1>‘\", # after o/g indicate modified char\n",
|
236 |
+
" unidecode.unidecode(batch[\"sentence\"]).lower()\n",
|
237 |
+
" )\n",
|
238 |
+
" )\n",
|
239 |
+
" ) + \" \"\n",
|
240 |
+
" return batch"
|
241 |
+
]
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"cell_type": "code",
|
245 |
+
"execution_count": 18,
|
246 |
+
"id": "f28dc522",
|
247 |
+
"metadata": {},
|
248 |
+
"outputs": [
|
249 |
+
{
|
250 |
+
"data": {
|
251 |
+
"application/vnd.jupyter.widget-view+json": {
|
252 |
+
"model_id": "4b8d2f0df8ea46bdaee2c94996583c5e",
|
253 |
+
"version_major": 2,
|
254 |
+
"version_minor": 0
|
255 |
+
},
|
256 |
+
"text/plain": [
|
257 |
+
"0ex [00:00, ?ex/s]"
|
258 |
+
]
|
259 |
+
},
|
260 |
+
"metadata": {},
|
261 |
+
"output_type": "display_data"
|
262 |
+
}
|
263 |
+
],
|
264 |
+
"source": [
|
265 |
+
"dataset = dataset_dict[\"train\"].map(remove_special_characters, remove_columns=dataset_dict[\"train\"].column_names)"
|
266 |
+
]
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"cell_type": "code",
|
270 |
+
"execution_count": 23,
|
271 |
+
"id": "38e02d29",
|
272 |
+
"metadata": {},
|
273 |
+
"outputs": [
|
274 |
+
{
|
275 |
+
"name": "stdout",
|
276 |
+
"output_type": "stream",
|
277 |
+
"text": [
|
278 |
+
" 0 244494 2030240 uz_cv8_train.txt\n"
|
279 |
+
]
|
280 |
+
}
|
281 |
+
],
|
282 |
+
"source": [
|
283 |
+
"text_data = \"uz_cv8_train.txt\"\n",
|
284 |
+
"with open(text_data, \"w\") as fs:\n",
|
285 |
+
" fs.write(\" \".join(dataset[\"text\"]))\n",
|
286 |
+
"\n",
|
287 |
+
"!wc $text_data"
|
288 |
+
]
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"cell_type": "code",
|
292 |
+
"execution_count": 26,
|
293 |
+
"id": "7b3d70f0",
|
294 |
+
"metadata": {},
|
295 |
+
"outputs": [
|
296 |
+
{
|
297 |
+
"name": "stdout",
|
298 |
+
"output_type": "stream",
|
299 |
+
"text": [
|
300 |
+
"--2022-02-07 03:18:36-- https://kheafield.com/code/kenlm.tar.gz\n",
|
301 |
+
"Resolving kheafield.com (kheafield.com)... 35.196.63.85\n",
|
302 |
+
"Connecting to kheafield.com (kheafield.com)|35.196.63.85|:443... connected.\n",
|
303 |
+
"HTTP request sent, awaiting response... 200 OK\n",
|
304 |
+
"Length: 491090 (480K) [application/x-gzip]\n",
|
305 |
+
"Saving to: ‘STDOUT’\n",
|
306 |
+
"\n",
|
307 |
+
"- 100%[===================>] 479.58K 2.31MB/s in 0.2s \n",
|
308 |
+
"\n",
|
309 |
+
"2022-02-07 03:18:37 (2.31 MB/s) - written to stdout [491090/491090]\n",
|
310 |
+
"\n",
|
311 |
+
"/bin/bash: line 1: cmake: command not found\n"
|
312 |
+
]
|
313 |
+
}
|
314 |
+
],
|
315 |
+
"source": [
|
316 |
+
"!wget -O - https://kheafield.com/code/kenlm.tar.gz | tar xz\n",
|
317 |
+
"!mkdir kenlm/build && cd kenlm/build && cmake .. && make -j2\n"
|
318 |
+
]
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"cell_type": "code",
|
322 |
+
"execution_count": null,
|
323 |
+
"id": "65118a69",
|
324 |
+
"metadata": {},
|
325 |
+
"outputs": [],
|
326 |
+
"source": []
|
327 |
+
}
|
328 |
+
],
|
329 |
+
"metadata": {
|
330 |
+
"kernelspec": {
|
331 |
+
"display_name": "Python 3 (ipykernel)",
|
332 |
+
"language": "python",
|
333 |
+
"name": "python3"
|
334 |
+
},
|
335 |
+
"language_info": {
|
336 |
+
"codemirror_mode": {
|
337 |
+
"name": "ipython",
|
338 |
+
"version": 3
|
339 |
+
},
|
340 |
+
"file_extension": ".py",
|
341 |
+
"mimetype": "text/x-python",
|
342 |
+
"name": "python",
|
343 |
+
"nbconvert_exporter": "python",
|
344 |
+
"pygments_lexer": "ipython3",
|
345 |
+
"version": "3.8.8"
|
346 |
+
}
|
347 |
+
},
|
348 |
+
"nbformat": 4,
|
349 |
+
"nbformat_minor": 5
|
350 |
+
}
|