Initial training for AntBulletEnv-v0
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 2235.05 +/- 48.79
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15289f636e6c6c65adbf4ab9c59a5eef385b9e9d40fa32d29cc161ece8d5d3d0
|
3 |
+
size 129259
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f01ad3dbe50>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f01ad3dbee0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f01ad3dbf70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f01ad3e2040>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f01ad3e20d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f01ad3e2160>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f01ad3e21f0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f01ad3e2280>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f01ad3e2310>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f01ad3e23a0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f01ad3e2430>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f01ad3e24c0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f01ad3d6b70>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1675731678184346462,
|
68 |
+
"learning_rate": 0.0007,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGm5jj6KYku/0usIPvOQnT//L3C+Si9LPxRUHb2B7I6/V9CXPztatr6/g3s/M1lxv1ffpL93Eng+gW3/vV6vPr/cSJm+W88Ju4CsNj+fEXu/dO4Tv8YfKD9mUSO/h07qPl2AXz+PKMg+zlHFPpLzj7/yuCw9985Zv4Wrpj08xN0/ud+XPkZEEb6C2qg+479xvnGVWT9MARzAlZD5PoTGhL6LarG/juGpPC9LFL+IouU+Y57aPVGc8b9K19o+DC9oP7dTF78+hIK/5+7Pvm/9Lz9dgF8/jyjIPs5RxT6S84+/AEHvvU6wSb+2/g4+PWBcPxIvvL0u8a8+On1bvnPifb9dHCs/WnPOPjacGz94NBw/2qSKvxKPAcCTpRM/Sl1ovy9R8z1H0nO/irsJP9+CkD9r1GO/cBTtPuoAkL6OV+q/XYBfP9a1I8DOUcU+kvOPv9vqUz2Rsxu/xOuQPvQ0sj9s3cI/vrUuP2/UCb19LTq/VEBSP7kBiT9dyCo/aQ9JP51yEj0MAKS/3IEMPzj8jL89QxU/3zphvzAzjz535rE/Jt9Dv36ONj91PLy+mUDcv12AXz+PKMg+zlHFPpLzj7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAcMwQ3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACACW4xvQAAAADekvW/AAAAACnMCz4AAAAAMRbrPwAAAAB/x8s9AAAAAHa3+T8AAAAAgMBwvQAAAAD8Bv6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDs1tQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgP5/HT0AAAAAtv3wvwAAAAA71n87AAAAALz05z8AAAAAkDTMPAAAAABkId4/AAAAAIfulTwAAAAAXT/2vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSfV7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDkyD49AAAAAHdO2r8AAAAA79OYvQAAAACi7OM/AAAAAA6y/r0AAAAA0gruPwAAAAAZA+i9AAAAAEWy+78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABnsp+0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6ZqIPAAAAABe2++/AAAAACL0PjsAAAAAQE/ePwAAAAAchNY9AAAAAHSw7j8AAAAAgxrGPQAAAABT8/2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKAnNDJlrdqMAWyUTegDjAF0lEdArKA1g8bJfnV9lChoBkdAnvg1pTMq0GgHTegDaAhHQKykD7w8W9F1fZQoaAZHQKB1wemvW6NoB03oA2gIR0Csp2mdAgPmdX2UKGgGR0Cf80K0UoKEaAdN6ANoCEdArKurbi6xxHV9lChoBkdAoULhIlMRH2gHTegDaAhHQKyujxlxwQ11fZQoaAZHQKFYzxR2r4poB03oA2gIR0CssPPybx3FdX2UKGgGR0Ch3r1Iy0rtaAdN6ANoCEdArLQsRJ2+wnV9lChoBkdAnVSHM+u/12gHTegDaAhHQKy6o5lvqC91fZQoaAZHQKBnh9aUzKtoB03oA2gIR0CsvhBE0BOpdX2UKGgGR0CcCmBZ6lchaAdN6ANoCEdArMCA9Pk7wXV9lChoBkdAnr1tJrcj7mgHTegDaAhHQKzDWpkwvg51fZQoaAZHQJzrQW43FUBoB03oA2gIR0Csx6iiItUXdX2UKGgGR0CdkzIDHOryaAdN6ANoCEdArMpP4yoGZHV9lChoBkdAni495yEL6WgHTegDaAhHQKzMxcFhXsB1fZQoaAZHQJ4r2XKKYRdoB03oA2gIR0Csz26o2n89dX2UKGgGR0CfWuIWxhUjaAdN6ANoCEdArNUNlsguAnV9lChoBkdAoQLJTAFgUmgHTegDaAhHQKzZcmois4l1fZQoaAZHQKESacKgIyFoB03oA2gIR0Cs3Gjtw71adX2UKGgGR0CgpcO2iL2paAdN6ANoCEdArN8FqYZ2p3V9lChoBkdAoZb3Rb8m8mgHTegDaAhHQKzjM1jRUm51fZQoaAZHQKFb1Jq7AcloB03oA2gIR0Cs5gftY0VKdX2UKGgGR0CgOcH/DLr5aAdN6ANoCEdArOmDHXEqD3V9lChoBkdAoP7wE4ecQWgHTegDaAhHQKztpRbbDdh1fZQoaAZHQKHoE/JNj9ZoB03oA2gIR0Cs9G2XLNfPdX2UKGgGR0ChFyYaxX4kaAdN6ANoCEdArPjKGnGbTnV9lChoBkdAoY3y3y7PIGgHTegDaAhHQKz7oHrQgLZ1fZQoaAZHQKIYGCp3os9oB03oA2gIR0Cs/m3wb2lEdX2UKGgGR0CiMq+rlvIfaAdN6ANoCEdArQK19KEnLXV9lChoBkdAocQBltj0+WgHTegDaAhHQK0FYwi7kGR1fZQoaAZHQKGfTC9h7VtoB03oA2gIR0CtB9bDuSfUdX2UKGgGR0ChbNre67NCaAdN6ANoCEdArQqJtcfNinV9lChoBkdAoUYGAZsKs2gHTegDaAhHQK0PBqptJnR1fZQoaAZHQKFDwA2AG0NoB03oA2gIR0CtEwgX2ugZdX2UKGgGR0Ch0bQ0XP7faAdN6ANoCEdArRbbdpItlXV9lChoBkdAny336qKgqWgHTegDaAhHQK0aG6y0KJF1fZQoaAZHQJ4mTd0q6OJoB03oA2gIR0CtHi/EOy3TdX2UKGgGR0CedjTkyULVaAdN6ANoCEdArSDcvoNd7nV9lChoBkdAoQfOsHSncmgHTegDaAhHQK0jVdFfAsV1fZQoaAZHQKHH/xOLzf9oB03oA2gIR0CtJgdIwudxdX2UKGgGR0Cg0hbuUliSaAdN6ANoCEdArSo2jsUqQXV9lChoBkdAoXIiYzBRAWgHTegDaAhHQK0tcmEXcg11fZQoaAZHQJ9c82itaINoB03oA2gIR0CtMRQXqJMydX2UKGgGR0CawLby6MBIaAdN6ANoCEdArTY+uLaVU3V9lChoBkdAoaaf/JeVs2gHTegDaAhHQK09HmQKa5R1fZQoaAZHQJoiprBTGYNoB03oA2gIR0CtQJh/iHZcdX2UKGgGR0CdwRL5ylvZaAdN6ANoCEdArUMVp9JBgXV9lChoBkdAmcZUwBYFJWgHTegDaAhHQK1FzeJHiFV1fZQoaAZHQJhhT642CNFoB03oA2gIR0CtSg6Ogg5jdX2UKGgGR0Cey7E+xGDuaAdN6ANoCEdArU0fS4OMEXV9lChoBkdAnQvf7BO58WgHTegDaAhHQK1QxenAIpp1fZQoaAZHQJkM/6k6901oB03oA2gIR0CtVPZ9NN8FdX2UKGgGR0CZVtDqGDcuaAdN6ANoCEdArVm/9JjDsXV9lChoBkdAnt3gdS2phmgHTegDaAhHQK1cjPC2tuF1fZQoaAZHQJ9EDsF+uvFoB03oA2gIR0CtXwEyDZlGdX2UKGgGR0CdmIQNTcZcaAdN6ANoCEdArWGx17pmmXV9lChoBkdAmaJqHKwIMWgHTegDaAhHQK1lyQXhwVF1fZQoaAZHQJt/lIqbz9VoB03oA2gIR0CtaHlwDNhWdX2UKGgGR0CcAuP+4smOaAdN6ANoCEdArWspcAzYVnV9lChoBkdAmoKBCpm29mgHTegDaAhHQK1vEW69TP11fZQoaAZHQJ5Bqd1+y7hoB03oA2gIR0CtdXf7JnxsdX2UKGgGR0CcqItNzr/saAdN6ANoCEdArXg3OD8Lr3V9lChoBkdAntdAu7HyVmgHTegDaAhHQK16xtLteD51fZQoaAZHQKBIQnWrfchoB03oA2gIR0CtfXhkiD/VdX2UKGgGR0CgqvXVkMCtaAdN6ANoCEdArYMSsZHd43V9lChoBkdAoRjcAR02cmgHTegDaAhHQK2HQoegctJ1fZQoaAZHQKGphjRUm2NoB03oA2gIR0CtipTiKiwjdX2UKGgGR0CiISIZhrnDaAdN6ANoCEdArY55ZwGW2XV9lChoBkdAoagU580DU2gHTegDaAhHQK2UZQLux8l1fZQoaAZHQKBEF5B1LapoB03oA2gIR0CtlzKT8pCsdX2UKGgGR0CgZGuEmICVaAdN6ANoCEdArZmr39JjD3V9lChoBkdAod+K0OVgQmgHTegDaAhHQK2cQouwost1fZQoaAZHQKA9VwbVBldoB03oA2gIR0CtoG8jzI3jdX2UKGgGR0ChDkHbZezEaAdN6ANoCEdAraMjz7MxGnV9lChoBkdAnweWapgkT2gHTegDaAhHQK2llTuv2Xd1fZQoaAZHQKB/K42jwhJoB03oA2gIR0CtqNOL74zrdX2UKGgGR0CfD2nXumaZaAdN6ANoCEdAra9WwcHW0HV9lChoBkdAobDb3j+72GgHTegDaAhHQK2yzWuoxYd1fZQoaAZHQKEja3mV7hNoB03oA2gIR0CttT/BN21VdX2UKGgGR0CgBIk+xGDuaAdN6ANoCEdArbfW9OARTXV9lChoBkdAnNPbfDUExWgHTegDaAhHQK28Col2Ned1fZQoaAZHQJ6EKon8baRoB03oA2gIR0CtvtrORkmQdX2UKGgGR0CgixZ+YtxuaAdN6ANoCEdArcE8OXmeUnV9lChoBkdAofpsBp5/smgHTegDaAhHQK3D7GwRoRJ1fZQoaAZHQKFpXW4EwFloB03oA2gIR0Ctybjw6QvIdX2UKGgGR0Cg0Go7/4qPaAdN6ANoCEdArc9N+w1R+HV9lChoBkdAoZcNnmJWNmgHTegDaAhHQK3TnSS/0ul1fZQoaAZHQKBWB2wmmchoB03oA2gIR0Ct19CtihFmdX2UKGgGR0ChqCIvSMLnaAdN6ANoCEdArdwVKXfIjnV9lChoBkdAoK7fGff4y2gHTegDaAhHQK3e6SGJvYR1fZQoaAZHQKFFmX2M85loB03oA2gIR0Ct4V2tEG7jdX2UKGgGR0ChV0gWBSUDaAdN6ANoCEdAreQFbNbC8HV9lChoBkdAoIKOHP/rB2gHTegDaAhHQK3pHXU6PsB1fZQoaAZHQJ2D53Roh6loB03oA2gIR0Ct7UeueSSvdX2UKGgGR0CeCAt65XlsaAdN6ANoCEdArfEGuDBdlnV9lChoBkdAoI4crVe8f2gHTegDaAhHQK3zvWKdhAp1fZQoaAZHQKAggU1yeZpoB03oA2gIR0Ct9+rBCUosdX2UKGgGR0CfC4/rSmZWaAdN6ANoCEdArfqsf5k9U3V9lChoBkdAng6KYNRWLmgHTegDaAhHQK39OJBPbfx1fZQoaAZHQJ5Z251/2CdoB03oA2gIR0Ct/+j4xk/bdX2UKGgGR0Cfwx7ALy+YaAdN6ANoCEdArgQ2cUdq+XVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40036114ac5f566ebb2bedfdf6f9e6dafc15a2349b4ad0bd1192bfcfa3e82527
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5803a4d8c822d4f452ae20a5c38ccf390708fa5cae381ec27602fdc22f348ca7
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f01ad3dbe50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f01ad3dbee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f01ad3dbf70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f01ad3e2040>", "_build": "<function ActorCriticPolicy._build at 0x7f01ad3e20d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f01ad3e2160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f01ad3e21f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f01ad3e2280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f01ad3e2310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f01ad3e23a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f01ad3e2430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f01ad3e24c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f01ad3d6b70>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675731678184346462, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGm5jj6KYku/0usIPvOQnT//L3C+Si9LPxRUHb2B7I6/V9CXPztatr6/g3s/M1lxv1ffpL93Eng+gW3/vV6vPr/cSJm+W88Ju4CsNj+fEXu/dO4Tv8YfKD9mUSO/h07qPl2AXz+PKMg+zlHFPpLzj7/yuCw9985Zv4Wrpj08xN0/ud+XPkZEEb6C2qg+479xvnGVWT9MARzAlZD5PoTGhL6LarG/juGpPC9LFL+IouU+Y57aPVGc8b9K19o+DC9oP7dTF78+hIK/5+7Pvm/9Lz9dgF8/jyjIPs5RxT6S84+/AEHvvU6wSb+2/g4+PWBcPxIvvL0u8a8+On1bvnPifb9dHCs/WnPOPjacGz94NBw/2qSKvxKPAcCTpRM/Sl1ovy9R8z1H0nO/irsJP9+CkD9r1GO/cBTtPuoAkL6OV+q/XYBfP9a1I8DOUcU+kvOPv9vqUz2Rsxu/xOuQPvQ0sj9s3cI/vrUuP2/UCb19LTq/VEBSP7kBiT9dyCo/aQ9JP51yEj0MAKS/3IEMPzj8jL89QxU/3zphvzAzjz535rE/Jt9Dv36ONj91PLy+mUDcv12AXz+PKMg+zlHFPpLzj7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAcMwQ3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACACW4xvQAAAADekvW/AAAAACnMCz4AAAAAMRbrPwAAAAB/x8s9AAAAAHa3+T8AAAAAgMBwvQAAAAD8Bv6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDs1tQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgP5/HT0AAAAAtv3wvwAAAAA71n87AAAAALz05z8AAAAAkDTMPAAAAABkId4/AAAAAIfulTwAAAAAXT/2vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSfV7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDkyD49AAAAAHdO2r8AAAAA79OYvQAAAACi7OM/AAAAAA6y/r0AAAAA0gruPwAAAAAZA+i9AAAAAEWy+78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABnsp+0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6ZqIPAAAAABe2++/AAAAACL0PjsAAAAAQE/ePwAAAAAchNY9AAAAAHSw7j8AAAAAgxrGPQAAAABT8/2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKAnNDJlrdqMAWyUTegDjAF0lEdArKA1g8bJfnV9lChoBkdAnvg1pTMq0GgHTegDaAhHQKykD7w8W9F1fZQoaAZHQKB1wemvW6NoB03oA2gIR0Csp2mdAgPmdX2UKGgGR0Cf80K0UoKEaAdN6ANoCEdArKurbi6xxHV9lChoBkdAoULhIlMRH2gHTegDaAhHQKyujxlxwQ11fZQoaAZHQKFYzxR2r4poB03oA2gIR0CssPPybx3FdX2UKGgGR0Ch3r1Iy0rtaAdN6ANoCEdArLQsRJ2+wnV9lChoBkdAnVSHM+u/12gHTegDaAhHQKy6o5lvqC91fZQoaAZHQKBnh9aUzKtoB03oA2gIR0CsvhBE0BOpdX2UKGgGR0CcCmBZ6lchaAdN6ANoCEdArMCA9Pk7wXV9lChoBkdAnr1tJrcj7mgHTegDaAhHQKzDWpkwvg51fZQoaAZHQJzrQW43FUBoB03oA2gIR0Csx6iiItUXdX2UKGgGR0CdkzIDHOryaAdN6ANoCEdArMpP4yoGZHV9lChoBkdAni495yEL6WgHTegDaAhHQKzMxcFhXsB1fZQoaAZHQJ4r2XKKYRdoB03oA2gIR0Csz26o2n89dX2UKGgGR0CfWuIWxhUjaAdN6ANoCEdArNUNlsguAnV9lChoBkdAoQLJTAFgUmgHTegDaAhHQKzZcmois4l1fZQoaAZHQKESacKgIyFoB03oA2gIR0Cs3Gjtw71adX2UKGgGR0CgpcO2iL2paAdN6ANoCEdArN8FqYZ2p3V9lChoBkdAoZb3Rb8m8mgHTegDaAhHQKzjM1jRUm51fZQoaAZHQKFb1Jq7AcloB03oA2gIR0Cs5gftY0VKdX2UKGgGR0CgOcH/DLr5aAdN6ANoCEdArOmDHXEqD3V9lChoBkdAoP7wE4ecQWgHTegDaAhHQKztpRbbDdh1fZQoaAZHQKHoE/JNj9ZoB03oA2gIR0Cs9G2XLNfPdX2UKGgGR0ChFyYaxX4kaAdN6ANoCEdArPjKGnGbTnV9lChoBkdAoY3y3y7PIGgHTegDaAhHQKz7oHrQgLZ1fZQoaAZHQKIYGCp3os9oB03oA2gIR0Cs/m3wb2lEdX2UKGgGR0CiMq+rlvIfaAdN6ANoCEdArQK19KEnLXV9lChoBkdAocQBltj0+WgHTegDaAhHQK0FYwi7kGR1fZQoaAZHQKGfTC9h7VtoB03oA2gIR0CtB9bDuSfUdX2UKGgGR0ChbNre67NCaAdN6ANoCEdArQqJtcfNinV9lChoBkdAoUYGAZsKs2gHTegDaAhHQK0PBqptJnR1fZQoaAZHQKFDwA2AG0NoB03oA2gIR0CtEwgX2ugZdX2UKGgGR0Ch0bQ0XP7faAdN6ANoCEdArRbbdpItlXV9lChoBkdAny336qKgqWgHTegDaAhHQK0aG6y0KJF1fZQoaAZHQJ4mTd0q6OJoB03oA2gIR0CtHi/EOy3TdX2UKGgGR0CedjTkyULVaAdN6ANoCEdArSDcvoNd7nV9lChoBkdAoQfOsHSncmgHTegDaAhHQK0jVdFfAsV1fZQoaAZHQKHH/xOLzf9oB03oA2gIR0CtJgdIwudxdX2UKGgGR0Cg0hbuUliSaAdN6ANoCEdArSo2jsUqQXV9lChoBkdAoXIiYzBRAWgHTegDaAhHQK0tcmEXcg11fZQoaAZHQJ9c82itaINoB03oA2gIR0CtMRQXqJMydX2UKGgGR0CawLby6MBIaAdN6ANoCEdArTY+uLaVU3V9lChoBkdAoaaf/JeVs2gHTegDaAhHQK09HmQKa5R1fZQoaAZHQJoiprBTGYNoB03oA2gIR0CtQJh/iHZcdX2UKGgGR0CdwRL5ylvZaAdN6ANoCEdArUMVp9JBgXV9lChoBkdAmcZUwBYFJWgHTegDaAhHQK1FzeJHiFV1fZQoaAZHQJhhT642CNFoB03oA2gIR0CtSg6Ogg5jdX2UKGgGR0Cey7E+xGDuaAdN6ANoCEdArU0fS4OMEXV9lChoBkdAnQvf7BO58WgHTegDaAhHQK1QxenAIpp1fZQoaAZHQJkM/6k6901oB03oA2gIR0CtVPZ9NN8FdX2UKGgGR0CZVtDqGDcuaAdN6ANoCEdArVm/9JjDsXV9lChoBkdAnt3gdS2phmgHTegDaAhHQK1cjPC2tuF1fZQoaAZHQJ9EDsF+uvFoB03oA2gIR0CtXwEyDZlGdX2UKGgGR0CdmIQNTcZcaAdN6ANoCEdArWGx17pmmXV9lChoBkdAmaJqHKwIMWgHTegDaAhHQK1lyQXhwVF1fZQoaAZHQJt/lIqbz9VoB03oA2gIR0CtaHlwDNhWdX2UKGgGR0CcAuP+4smOaAdN6ANoCEdArWspcAzYVnV9lChoBkdAmoKBCpm29mgHTegDaAhHQK1vEW69TP11fZQoaAZHQJ5Bqd1+y7hoB03oA2gIR0CtdXf7JnxsdX2UKGgGR0CcqItNzr/saAdN6ANoCEdArXg3OD8Lr3V9lChoBkdAntdAu7HyVmgHTegDaAhHQK16xtLteD51fZQoaAZHQKBIQnWrfchoB03oA2gIR0CtfXhkiD/VdX2UKGgGR0CgqvXVkMCtaAdN6ANoCEdArYMSsZHd43V9lChoBkdAoRjcAR02cmgHTegDaAhHQK2HQoegctJ1fZQoaAZHQKGphjRUm2NoB03oA2gIR0CtipTiKiwjdX2UKGgGR0CiISIZhrnDaAdN6ANoCEdArY55ZwGW2XV9lChoBkdAoagU580DU2gHTegDaAhHQK2UZQLux8l1fZQoaAZHQKBEF5B1LapoB03oA2gIR0CtlzKT8pCsdX2UKGgGR0CgZGuEmICVaAdN6ANoCEdArZmr39JjD3V9lChoBkdAod+K0OVgQmgHTegDaAhHQK2cQouwost1fZQoaAZHQKA9VwbVBldoB03oA2gIR0CtoG8jzI3jdX2UKGgGR0ChDkHbZezEaAdN6ANoCEdAraMjz7MxGnV9lChoBkdAnweWapgkT2gHTegDaAhHQK2llTuv2Xd1fZQoaAZHQKB/K42jwhJoB03oA2gIR0CtqNOL74zrdX2UKGgGR0CfD2nXumaZaAdN6ANoCEdAra9WwcHW0HV9lChoBkdAobDb3j+72GgHTegDaAhHQK2yzWuoxYd1fZQoaAZHQKEja3mV7hNoB03oA2gIR0CttT/BN21VdX2UKGgGR0CgBIk+xGDuaAdN6ANoCEdArbfW9OARTXV9lChoBkdAnNPbfDUExWgHTegDaAhHQK28Col2Ned1fZQoaAZHQJ6EKon8baRoB03oA2gIR0CtvtrORkmQdX2UKGgGR0CgixZ+YtxuaAdN6ANoCEdArcE8OXmeUnV9lChoBkdAofpsBp5/smgHTegDaAhHQK3D7GwRoRJ1fZQoaAZHQKFpXW4EwFloB03oA2gIR0Ctybjw6QvIdX2UKGgGR0Cg0Go7/4qPaAdN6ANoCEdArc9N+w1R+HV9lChoBkdAoZcNnmJWNmgHTegDaAhHQK3TnSS/0ul1fZQoaAZHQKBWB2wmmchoB03oA2gIR0Ct19CtihFmdX2UKGgGR0ChqCIvSMLnaAdN6ANoCEdArdwVKXfIjnV9lChoBkdAoK7fGff4y2gHTegDaAhHQK3e6SGJvYR1fZQoaAZHQKFFmX2M85loB03oA2gIR0Ct4V2tEG7jdX2UKGgGR0ChV0gWBSUDaAdN6ANoCEdAreQFbNbC8HV9lChoBkdAoIKOHP/rB2gHTegDaAhHQK3pHXU6PsB1fZQoaAZHQJ2D53Roh6loB03oA2gIR0Ct7UeueSSvdX2UKGgGR0CeCAt65XlsaAdN6ANoCEdArfEGuDBdlnV9lChoBkdAoI4crVe8f2gHTegDaAhHQK3zvWKdhAp1fZQoaAZHQKAggU1yeZpoB03oA2gIR0Ct9+rBCUosdX2UKGgGR0CfC4/rSmZWaAdN6ANoCEdArfqsf5k9U3V9lChoBkdAng6KYNRWLmgHTegDaAhHQK39OJBPbfx1fZQoaAZHQJ5Z251/2CdoB03oA2gIR0Ct/+j4xk/bdX2UKGgGR0Cfwx7ALy+YaAdN6ANoCEdArgQ2cUdq+XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:adf8655bd1ba20f94293e674ffc0220370a3cee90ef0bfa3f4b4cd466596f2ce
|
3 |
+
size 1094410
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 2235.04888643141, "std_reward": 48.794572262863305, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-07T02:04:28.497941"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c38927ecf3210ad075f1ed393e1c61858ed1f805e0321d887bb04e5441d65391
|
3 |
+
size 2129
|