LML-diffusion-sampler / scripts /control_net_canny.py
王方懿康
Initial commit
ab2369a
import sys
import torch
import os
import json
import argparse
sys.path.append(os.getcwd())
from PIL import Image
import torchvision.transforms as transforms
import numpy as np
import glob
from diffusers import StableDiffusionPipeline, DDIMScheduler
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
from diffusers.utils import load_image
from diffusers import StableDiffusionPipeline, DDPMPipeline, DDIMPipeline, PNDMPipeline, PNDMLMPipeline, DDPMLMPipeline, DPMLMPipeline, UniPCPipeline, LDMPipeline, PNDMScheduler, UniPCMultistepScheduler,DDIMScheduler
from scheduler.scheduling_dpmsolver_multistep_lm import DPMSolverMultistepLMScheduler
from scheduler.scheduling_ddim_lm import DDIMLMScheduler
import cv2
import numpy as np
def main():
parser = argparse.ArgumentParser(description="sampling script for ControlNet-canny.")
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--num_inference_steps', type=int, default=20)
parser.add_argument('--guidance', type=float, default=7.5)
parser.add_argument('--sampler_type', type = str,default='lag')
parser.add_argument('--prompt', type=str, default='an asian girl')
parser.add_argument('--original_image_path', type=str, default="/xxx/xxx/data/input_image_vermeer.png")
parser.add_argument('--lamb', type=float, default=5.0)
parser.add_argument('--kappa', type=float, default=0.0)
parser.add_argument('--freeze', type=float, default=0.0)
# parser.add_argument('--prompt_list', nargs='+', type=str,
# default=['an asian girl'])
parser.add_argument('--save_dir', type=str, default='/xxx/xxx/result/0402')
parser.add_argument('--controlnet_dir', type=str, default="/xxx/xxx/sd-controlnet-canny")
parser.add_argument('--sd_dir', type=str, default="/xxx/xxx/stable-diffusion-v1-5")
args = parser.parse_args()
if args.sampler_type in ['bdia']:
parser.add_argument('--bdia_gamma', type=float, default=0.5)
if args.sampler_type in ['edict']:
parser.add_argument('--edict_p', type=float, default=0.93)
args = parser.parse_args()
device = 'cuda'
sampler_type = args.sampler_type
guidance_scale = args.guidance
num_inference_steps = args.num_inference_steps
lamb = args.lamb
freeze = args.freeze
kappa = args.kappa
save_dir = args.save_dir
if not os.path.exists(save_dir):
os.makedirs(save_dir, exist_ok=True)
torch.manual_seed(args.seed)
controlnet = ControlNetModel.from_pretrained(args.controlnet_dir, torch_dtype=torch.float16,use_safetensors=True)
control_pipe = StableDiffusionControlNetPipeline.from_pretrained(
args.sd_dir, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True
)
control_pipe.enable_model_cpu_offload()
control_pipe.safety_checker = None
if sampler_type in ['dpm_lm']:
control_pipe.scheduler = DPMSolverMultistepLMScheduler.from_config(control_pipe.scheduler.config)
control_pipe.scheduler.config.solver_order = 3
control_pipe.scheduler.config.algorithm_type = "dpmsolver"
control_pipe.scheduler.lamb = lamb
control_pipe.scheduler.lm = True
elif sampler_type in ['dpm']:
control_pipe.scheduler = DPMSolverMultistepLMScheduler.from_config(control_pipe.scheduler.config)
control_pipe.scheduler.config.solver_order = 3
control_pipe.scheduler.config.algorithm_type = "dpmsolver"
control_pipe.scheduler.lamb = lamb
control_pipe.scheduler.lm = False
elif sampler_type in ['dpm++']:
control_pipe.scheduler = DPMSolverMultistepLMScheduler.from_config(control_pipe.scheduler.config)
control_pipe.scheduler.config.solver_order = 3
control_pipe.scheduler.config.algorithm_type = "dpmsolver++"
control_pipe.scheduler.lamb = lamb
control_pipe.scheduler.lm = False
elif sampler_type in ['dpm++_lm']:
control_pipe.scheduler = DPMSolverMultistepLMScheduler.from_config(control_pipe.scheduler.config)
control_pipe.scheduler.config.solver_order = 3
control_pipe.scheduler.config.algorithm_type = "dpmsolver++"
control_pipe.scheduler.lamb = lamb
control_pipe.scheduler.lm = True
elif sampler_type in ['pndm']:
control_pipe.scheduler = PNDMScheduler.from_config(control_pipe.scheduler.config)
elif sampler_type in ['ddim']:
control_pipe.scheduler = DDIMScheduler.from_config(control_pipe.scheduler.config)
elif sampler_type in ['ddim_lm']:
control_pipe.scheduler = DDIMLMScheduler.from_config(control_pipe.scheduler.config)
control_pipe.scheduler.lamb = lamb
control_pipe.scheduler.lm = True
control_pipe.scheduler.kappa = kappa
control_pipe.scheduler.freeze = freeze
elif sampler_type in ['unipc']:
control_pipe.scheduler = UniPCMultistepScheduler.from_config(control_pipe.scheduler.config)
original_image = load_image(
args.original_image_path
)
image = np.array(original_image)
low_threshold = 100
high_threshold = 200
image = cv2.Canny(image, low_threshold, high_threshold)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)
for prompt, negative_prompt in [['the mona lisa',''],
['an asian girl',''],
['an asian princess',''],
['a portrait of a beautiful woman standing amidst a bed of vibrant tulips.',''],
['a stunning Arabic woman dressed in traditional clothing',''],
['a stunning Asian woman dressed in traditional clothing',''],
['a stunning Black woman dressed in traditional clothing', ''],
['a stunning German woman dressed in traditional clothing', ''],
['a stunning Japan woman dressed in traditional clothing', ''],
['a stunning Chinese woman dressed in traditional clothing', ''],
['a stunning Jewish woman dressed in traditional clothing', ''],
]:
for seed in range(1):
torch.manual_seed(seed)
res = control_pipe(
prompt=prompt, negative_prompt=negative_prompt, image=canny_image,num_inference_steps=num_inference_steps,
).images[0]
res.save(os.path.join(save_dir,
f"{args.model}_{prompt[:20]}_seed{seed}_{sampler_type}_infer{num_inference_steps}_g{guidance_scale}_lamb{args.lamb}.png"))
if __name__ == '__main__':
main()