Upload README.md
Browse files
README.md
CHANGED
@@ -1,7 +1,99 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
# TODO
|
4 |
|
5 |
-
- [x] self-instruct data
|
6 |
-
- [
|
7 |
-
- [ ]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
|
4 |
+
# Model summary
|
5 |
+
|
6 |
+
* instruction-tuning on medical data based on LLaMA
|
7 |
+
|
8 |
+
|
9 |
+
# data
|
10 |
+
|
11 |
+
* Common
|
12 |
+
* alpaca-5.2k
|
13 |
+
* unatural-instruct 80k
|
14 |
+
* OIG-40M
|
15 |
+
* Chinese
|
16 |
+
* english/chinese translation data
|
17 |
+
* zhihu QA
|
18 |
+
* pCLUE
|
19 |
+
* Medical Domain:
|
20 |
+
* MedDialog-200k
|
21 |
+
* Chinese-medical-dialogue-data
|
22 |
+
* WebMedQA
|
23 |
+
* code
|
24 |
+
* alpaca_code-20k
|
25 |
+
|
26 |
+
|
27 |
+
# training
|
28 |
+
|
29 |
+
## Model
|
30 |
+
|
31 |
+
* LLaMA-7B
|
32 |
+
|
33 |
+
## Hardware
|
34 |
+
* 6 x A100 40G using NVLink 4 inter-gpu connects
|
35 |
+
|
36 |
+
## Software
|
37 |
+
|
38 |
+
* tokenizers==0.12.1
|
39 |
+
* sentencepiece==0.1.97
|
40 |
+
* transformers==4.28
|
41 |
+
* torch==2.0.0+cu117
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
# How to use
|
46 |
+
|
47 |
+
```
|
48 |
+
import torch
|
49 |
+
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
|
50 |
+
from peft import PeftModel
|
51 |
+
|
52 |
+
base_model="llma-7b"
|
53 |
+
LORA_WEIGHTS = "llma-med-alpaca-7b"
|
54 |
+
LOAD_8BIT = False
|
55 |
+
|
56 |
+
tokenizer = LlamaTokenizer.from_pretrained(base_model)
|
57 |
+
|
58 |
+
model = LlamaForCausalLM.from_pretrained(
|
59 |
+
base_model
|
60 |
+
load_in_8bit=LOAD_8BIT,
|
61 |
+
torch_dtype=torch.float16,
|
62 |
+
device_map="auto",
|
63 |
+
)
|
64 |
+
model = PeftModel.from_pretrained(
|
65 |
+
model,
|
66 |
+
LORA_WEIGHTS,
|
67 |
+
torch_dtype=torch.float16,
|
68 |
+
)
|
69 |
+
|
70 |
+
config = {
|
71 |
+
"temperature": 0 ,
|
72 |
+
"max_new_tokens": 1024,
|
73 |
+
"top_p": 0.5
|
74 |
+
}
|
75 |
+
|
76 |
+
prompt = "Translate to English: Je t’aime."
|
77 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
|
78 |
+
outputs = model.generate(input_ids=input_ids, max_new_tokens=config["max_new_tokens"], temperature=config["temperature"])
|
79 |
+
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
|
80 |
+
print(decoded[len(prompt):])
|
81 |
+
|
82 |
+
|
83 |
+
```
|
84 |
+
|
85 |
+
# Limitations
|
86 |
+
|
87 |
+
* This model may output harmful, biased, toxic, and illusory things, and currently does not undergo RLHF training, so this model is only for research purposes
|
88 |
|
89 |
# TODO
|
90 |
|
91 |
+
- [x] self-instruct data
|
92 |
+
- [x] english medical data
|
93 |
+
- [ ] code data
|
94 |
+
- [ ] chinese corpus/medical dialog data
|
95 |
+
|
96 |
+
|
97 |
+
# Reference
|
98 |
+
* [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971)
|
99 |
+
* [Alpaca: A strong open-source instruction-following model](https://crfm.stanford.edu/2023/03/13/alpaca.html)
|