Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +13 -13
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -2.91 +/- 0.56
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:73a8ac99d86a2bbf97251f8a753cdd73498c493782eb676e459194e2e1cf37f2
|
3 |
+
size 108024
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -41,12 +41,12 @@
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
-
"num_timesteps":
|
45 |
-
"_total_timesteps":
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
@@ -55,10 +55,10 @@
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[ 0.
|
60 |
-
"desired_goal": "[[ 1.
|
61 |
-
"observation": "[[ 0.
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,9 +66,9 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
@@ -77,13 +77,13 @@
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f4f084cc5e0>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f4f084c7900>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
+
"num_timesteps": 2000000,
|
45 |
+
"_total_timesteps": 2000000,
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1674418599366687707,
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAASd7TPvTR7rvqhRA/Sd7TPvTR7rvqhRA/Sd7TPvTR7rvqhRA/Sd7TPvTR7rvqhRA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAH0q8Pz7kED84j98+ULDrvZ4zvb+i7ow9aOKXP/V4Bz/hYws/9BYIv+p5/j7n2Nm+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABJ3tM+9NHuu+qFED8y7wm7fhWrOhbGZTxJ3tM+9NHuu+qFED8y7wm7fhWrOhbGZTxJ3tM+9NHuu+qFED8y7wm7fhWrOhbGZTxJ3tM+9NHuu+qFED8y7wm7fhWrOhbGZTyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.41380528 -0.00728821 0.56454337]\n [ 0.41380528 -0.00728821 0.56454337]\n [ 0.41380528 -0.00728821 0.56454337]\n [ 0.41380528 -0.00728821 0.56454337]]",
|
60 |
+
"desired_goal": "[[ 1.471012 0.5659827 0.43663955]\n [-0.11508238 -1.4781377 0.06881453]\n [ 1.1865969 0.5291894 0.5444928 ]\n [-0.53160024 0.49702388 -0.42548296]]",
|
61 |
+
"observation": "[[ 0.41380528 -0.00728821 0.56454337 -0.00210471 0.00130527 0.01402428]\n [ 0.41380528 -0.00728821 0.56454337 -0.00210471 0.00130527 0.01402428]\n [ 0.41380528 -0.00728821 0.56454337 -0.00210471 0.00130527 0.01402428]\n [ 0.41380528 -0.00728821 0.56454337 -0.00210471 0.00130527 0.01402428]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmSzFPUjatT3lS9A8wKoYPXJsuj1LleI9q1d/vY6c4rzRMYw+2aqmPNf9zz35gS4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.09627647 0.08879524 0.02542681]\n [ 0.03727221 0.09102716 0.11063632]\n [-0.06233947 -0.02766254 0.27381757]\n [ 0.02034514 0.10155838 0.17041768]]",
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0gDeAgkqCMCUhpRSlIwBbJRLMowBdJRHQLTyezSThYN1fZQoaAZoCWgPQwgSEf5F0BgEwJSGlFKUaBVLMmgWR0C08lvFR51OdX2UKGgGaAloD0MIucFQhxWuDsCUhpRSlGgVSzJoFkdAtPI+SX+l03V9lChoBmgJaA9DCJW4jnHFBQfAlIaUUpRoFUsyaBZHQLTyHtA9mpV1fZQoaAZoCWgPQwhvLCgMytQCwJSGlFKUaBVLMmgWR0C08vaNyYG/dX2UKGgGaAloD0MIFjCBW3fz+7+UhpRSlGgVSzJoFkdAtPLXIU8FIXV9lChoBmgJaA9DCAHAsWfPhQXAlIaUUpRoFUsyaBZHQLTyuadc0Lt1fZQoaAZoCWgPQwiQZ5dvfdgDwJSGlFKUaBVLMmgWR0C08po6CDmKdX2UKGgGaAloD0MIsVJBRdXPDMCUhpRSlGgVSzJoFkdAtPNmdoWYW3V9lChoBmgJaA9DCGwKZHYW3QjAlIaUUpRoFUsyaBZHQLTzRvkzXSV1fZQoaAZoCWgPQwgaFqOutccTwJSGlFKUaBVLMmgWR0C08ymBreqJdX2UKGgGaAloD0MIjQqcbAM3AMCUhpRSlGgVSzJoFkdAtPMKDxsl9nV9lChoBmgJaA9DCJzAdFq38RLAlIaUUpRoFUsyaBZHQLTz45Fw1ix1fZQoaAZoCWgPQwjrw3qjVmgQwJSGlFKUaBVLMmgWR0C088RoduHfdX2UKGgGaAloD0MIKxa/Kaw0AcCUhpRSlGgVSzJoFkdAtPOnJnxri3V9lChoBmgJaA9DCIpXWdsUTwTAlIaUUpRoFUsyaBZHQLTzh6a9bot1fZQoaAZoCWgPQwi6+UZ0z5oFwJSGlFKUaBVLMmgWR0C09FpQLux9dX2UKGgGaAloD0MIAMXIkjm2CMCUhpRSlGgVSzJoFkdAtPQ66Ymb9nV9lChoBmgJaA9DCLaBO1Cn3AfAlIaUUpRoFUsyaBZHQLT0HXYlIEt1fZQoaAZoCWgPQwh00vvG1x4IwJSGlFKUaBVLMmgWR0C08/4fr8iwdX2UKGgGaAloD0MIm+JxUS3iAMCUhpRSlGgVSzJoFkdAtPTVZIQOF3V9lChoBmgJaA9DCAE0Spf+xQbAlIaUUpRoFUsyaBZHQLT0tfGMn7Z1fZQoaAZoCWgPQwjpmzQNilYSwJSGlFKUaBVLMmgWR0C09Jh8+iaidX2UKGgGaAloD0MI/MIrSZ6LEMCUhpRSlGgVSzJoFkdAtPR5Brvb5HV9lChoBmgJaA9DCHuhgO1gZAfAlIaUUpRoFUsyaBZHQLT1UPFNtZV1fZQoaAZoCWgPQwhVFK+ytqkJwJSGlFKUaBVLMmgWR0C09TF50KZ2dX2UKGgGaAloD0MIKbSs+8fCBMCUhpRSlGgVSzJoFkdAtPUUEKVpsXV9lChoBmgJaA9DCL9+iA0WDg/AlIaUUpRoFUsyaBZHQLT09JGe+VV1fZQoaAZoCWgPQwjRQZdw6C0FwJSGlFKUaBVLMmgWR0C09cz238XOdX2UKGgGaAloD0MIgZiEC3mkAsCUhpRSlGgVSzJoFkdAtPWtgx8D0XV9lChoBmgJaA9DCNWT+UffBATAlIaUUpRoFUsyaBZHQLT1kBGx2St1fZQoaAZoCWgPQwh9k6ZB0RwDwJSGlFKUaBVLMmgWR0C09XCb2Dg7dX2UKGgGaAloD0MIlq/L8J8OCMCUhpRSlGgVSzJoFkdAtPZAWbgCOnV9lChoBmgJaA9DCDV+4ZUkTwLAlIaUUpRoFUsyaBZHQLT2IO5avA51fZQoaAZoCWgPQwj8VBUaiEUJwJSGlFKUaBVLMmgWR0C09gN4Z/CqdX2UKGgGaAloD0MIrfcb7bgBCsCUhpRSlGgVSzJoFkdAtPXj/95yEXV9lChoBmgJaA9DCBzuI7cmbRLAlIaUUpRoFUsyaBZHQLT2t/0dzXB1fZQoaAZoCWgPQwieCU0SS6oMwJSGlFKUaBVLMmgWR0C09piP+4smdX2UKGgGaAloD0MIT3Yzox9NBsCUhpRSlGgVSzJoFkdAtPZ7Jq7AcnV9lChoBmgJaA9DCLmpgeZzzgXAlIaUUpRoFUsyaBZHQLT2W9FWn0l1fZQoaAZoCWgPQwio/kEkQ94SwJSGlFKUaBVLMmgWR0C09zUvGp++dX2UKGgGaAloD0MIeVioNc0LE8CUhpRSlGgVSzJoFkdAtPcVxzaK13V9lChoBmgJaA9DCH6pnzcV6QLAlIaUUpRoFUsyaBZHQLT2+EQGwA51fZQoaAZoCWgPQwjAywwbZX0FwJSGlFKUaBVLMmgWR0C09tjUutfYdX2UKGgGaAloD0MIe4ZwzLLHDcCUhpRSlGgVSzJoFkdAtPe2D0163XV9lChoBmgJaA9DCM76lGOyGA3AlIaUUpRoFUsyaBZHQLT3lrR0EHN1fZQoaAZoCWgPQwhnLJrOTuYIwJSGlFKUaBVLMmgWR0C093lOCXhPdX2UKGgGaAloD0MIXtvbLcmB/7+UhpRSlGgVSzJoFkdAtPdZ0fYBeXV9lChoBmgJaA9DCAXAeAYN/QXAlIaUUpRoFUsyaBZHQLT4LGViWmh1fZQoaAZoCWgPQwicNA2K5kEGwJSGlFKUaBVLMmgWR0C0+AzxgAp8dX2UKGgGaAloD0MINuSfGcSHDcCUhpRSlGgVSzJoFkdAtPfvjuKGcnV9lChoBmgJaA9DCHXlszwPLg3AlIaUUpRoFUsyaBZHQLT30CWeHzp1fZQoaAZoCWgPQwgWokPgSIAGwJSGlFKUaBVLMmgWR0C0+KSLMs6JdX2UKGgGaAloD0MI9n04SIhSAcCUhpRSlGgVSzJoFkdAtPiFKmKqGXV9lChoBmgJaA9DCNFa0eY4NwPAlIaUUpRoFUsyaBZHQLT4Z9cKPXF1fZQoaAZoCWgPQwha9E4F3BMEwJSGlFKUaBVLMmgWR0C0+EhdUsFudX2UKGgGaAloD0MI7GrylNW0BcCUhpRSlGgVSzJoFkdAtPkZcjZ+QXV9lChoBmgJaA9DCCzvqgfMAwDAlIaUUpRoFUsyaBZHQLT4+gtvn8t1fZQoaAZoCWgPQwhCsKpefgcFwJSGlFKUaBVLMmgWR0C0+NycTakAdX2UKGgGaAloD0MI3zXoS2+/BMCUhpRSlGgVSzJoFkdAtPi9LxqfvnV9lChoBmgJaA9DCJgvL8A+mgbAlIaUUpRoFUsyaBZHQLT5kU6PsAx1fZQoaAZoCWgPQwguG53zU3wFwJSGlFKUaBVLMmgWR0C0+XHXVbzLdX2UKGgGaAloD0MIswkwLH8eA8CUhpRSlGgVSzJoFkdAtPlUYyfthXV9lChoBmgJaA9DCJOQSNv44xLAlIaUUpRoFUsyaBZHQLT5NN8E3bV1fZQoaAZoCWgPQwiL+49Mh64KwJSGlFKUaBVLMmgWR0C0+gL2QGOddX2UKGgGaAloD0MI4pNOJJhqCMCUhpRSlGgVSzJoFkdAtPnjgXMyJ3V9lChoBmgJaA9DCFwbKsb52w/AlIaUUpRoFUsyaBZHQLT5xg6EJ0J1fZQoaAZoCWgPQwhApUqUvSUPwJSGlFKUaBVLMmgWR0C0+aapPykLdX2UKGgGaAloD0MI0JhJ1AueDcCUhpRSlGgVSzJoFkdAtPp6BSUC73V9lChoBmgJaA9DCPfq46HvzgfAlIaUUpRoFUsyaBZHQLT6WornTy91fZQoaAZoCWgPQwh55XrbTOULwJSGlFKUaBVLMmgWR0C0+j0X+ERKdX2UKGgGaAloD0MIKPIk6ZoJBsCUhpRSlGgVSzJoFkdAtPodnscABHV9lChoBmgJaA9DCIVALnHkoQjAlIaUUpRoFUsyaBZHQLT68gPVd5Z1fZQoaAZoCWgPQwgTtwpioFsUwJSGlFKUaBVLMmgWR0C0+tKRMewLdX2UKGgGaAloD0MI6bmFrkQgCcCUhpRSlGgVSzJoFkdAtPq1Fc6eXnV9lChoBmgJaA9DCDxQpzy6kQjAlIaUUpRoFUsyaBZHQLT6lZr56+p1fZQoaAZoCWgPQwge+u5WlugHwJSGlFKUaBVLMmgWR0C0+2SF9KEndX2UKGgGaAloD0MIRwVOtoH7DsCUhpRSlGgVSzJoFkdAtPtFGiHqNnV9lChoBmgJaA9DCDCEnPf/8QLAlIaUUpRoFUsyaBZHQLT7J8QqZtx1fZQoaAZoCWgPQwjNBS6PNeMFwJSGlFKUaBVLMmgWR0C0+whQSBbwdX2UKGgGaAloD0MIyogLQKPUA8CUhpRSlGgVSzJoFkdAtPvbY02tMnV9lChoBmgJaA9DCKDDfHkBRhHAlIaUUpRoFUsyaBZHQLT7u/cWTHN1fZQoaAZoCWgPQwgzpfW3BGAIwJSGlFKUaBVLMmgWR0C0+55+c6NmdX2UKGgGaAloD0MIE0TdByD1BcCUhpRSlGgVSzJoFkdAtPt++Yc/+3V9lChoBmgJaA9DCKkwthDkYAPAlIaUUpRoFUsyaBZHQLT8S14Pf9B1fZQoaAZoCWgPQwhjC0EOSpgRwJSGlFKUaBVLMmgWR0C0/CwJ9iMHdX2UKGgGaAloD0MIsFWCxeFMA8CUhpRSlGgVSzJoFkdAtPwOqABkqnV9lChoBmgJaA9DCB9JSQ9DKxHAlIaUUpRoFUsyaBZHQLT77zeoDPp1fZQoaAZoCWgPQwjUf9b8+MsGwJSGlFKUaBVLMmgWR0C0/LuPBBRidX2UKGgGaAloD0MIM9/BTxwAEMCUhpRSlGgVSzJoFkdAtPycD1XeWXV9lChoBmgJaA9DCI1jJHuE2v+/lIaUUpRoFUsyaBZHQLT8fpnYg7p1fZQoaAZoCWgPQwjmXIqryr4FwJSGlFKUaBVLMmgWR0C0/F8W0qpcdX2UKGgGaAloD0MI0TyARX59BMCUhpRSlGgVSzJoFkdAtP0rA1vVE3V9lChoBmgJaA9DCNKL2v0qkBHAlIaUUpRoFUsyaBZHQLT9C71qWTp1fZQoaAZoCWgPQwhyNbIrLeMOwJSGlFKUaBVLMmgWR0C0/O4+4b0fdX2UKGgGaAloD0MIkE/IzttYEsCUhpRSlGgVSzJoFkdAtPzOwRoRI3V9lChoBmgJaA9DCL/wSpLnegbAlIaUUpRoFUsyaBZHQLT9p1c+qzZ1fZQoaAZoCWgPQwjHoBNCB50UwJSGlFKUaBVLMmgWR0C0/YgIIF/ydX2UKGgGaAloD0MI0ZUIVP9AEsCUhpRSlGgVSzJoFkdAtP1qnqFAV3V9lChoBmgJaA9DCD4GK061dgfAlIaUUpRoFUsyaBZHQLT9S1ndweh1ZS4="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
+
"_n_updates": 100000,
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f396d4921047fe5e986730b6641a3d779bf30114db4e0ab1a1586cb17362d966
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9215899d13de01bb4abc3839041ab53058307ee2ac5d54597acd653564af9892
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f17ff8838b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f17ff8870c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674409050541852529, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA3v0MPzI51b0gmhc/3v0MPzI51b0gmhc/3v0MPzI51b0gmhc/3v0MPzI51b0gmhc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUnXKPzmxyT+428k+TL2oPqgmoT+mar++mfm+P5ludL5PLUY/+CHLv/tE2T9Vb4E/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADe/Qw/MjnVvSCaFz/KqL47sydFvDl6nbve/Qw/MjnVvSCaFz/KqL47sydFvDl6nbve/Qw/MjnVvSCaFz/KqL47sydFvDl6nbve/Qw/MjnVvSCaFz/KqL47sydFvDl6nbuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.5507487 -0.104113 0.5921955]\n [ 0.5507487 -0.104113 0.5921955]\n [ 0.5507487 -0.104113 0.5921955]\n [ 0.5507487 -0.104113 0.5921955]]", "desired_goal": "[[ 1.5817053 1.5757209 0.39425445]\n [ 0.32956922 1.2589922 -0.37386054]\n [ 1.4919921 -0.23870315 0.77412885]\n [-1.5869741 1.6974176 1.0112101 ]]", "observation": "[[ 0.5507487 -0.104113 0.5921955 0.00581846 -0.01203339 -0.00480583]\n [ 0.5507487 -0.104113 0.5921955 0.00581846 -0.01203339 -0.00480583]\n [ 0.5507487 -0.104113 0.5921955 0.00581846 -0.01203339 -0.00480583]\n [ 0.5507487 -0.104113 0.5921955 0.00581846 -0.01203339 -0.00480583]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUPC7vb6clT2VRZA+uZ3+PZv1o73Ggdo92+AQvtlOJD0KmI0+bLFIvYxpiz1gzlg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.09176695 0.07305287 0.28178087]\n [ 0.12432427 -0.0800583 0.10669284]\n [-0.14148276 0.04011426 0.2765506 ]\n [-0.04899733 0.06807241 0.21172476]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiC6ob5nTA8CUhpRSlIwBbJRLMowBdJRHQKJBqLofSx91fZQoaAZoCWgPQwhJ9DKK5XYLwJSGlFKUaBVLMmgWR0CiQW3yiEg4dX2UKGgGaAloD0MI4stEEVK3D8CUhpRSlGgVSzJoFkdAokEsqDsdDXV9lChoBmgJaA9DCKPJxRhY5w7AlIaUUpRoFUsyaBZHQKJA8iB5HEx1fZQoaAZoCWgPQwj7dDxmoBIGwJSGlFKUaBVLMmgWR0CiQoUq6OHWdX2UKGgGaAloD0MIOiLfpdTlCsCUhpRSlGgVSzJoFkdAokJKYVqN63V9lChoBmgJaA9DCM7DCUynNSHAlIaUUpRoFUsyaBZHQKJCCSElE7Z1fZQoaAZoCWgPQwjGi4UhcjoEwJSGlFKUaBVLMmgWR0CiQc7dSEUTdX2UKGgGaAloD0MIeCrgnudvEMCUhpRSlGgVSzJoFkdAokNcC5mRNnV9lChoBmgJaA9DCKfoSC7/gQjAlIaUUpRoFUsyaBZHQKJDIUSqU/x1fZQoaAZoCWgPQwjL8nUZ/mMUwJSGlFKUaBVLMmgWR0CiQt/+jua4dX2UKGgGaAloD0MIY/GbwkolFsCUhpRSlGgVSzJoFkdAokKlfmcOLHV9lChoBmgJaA9DCHIVi98UlgzAlIaUUpRoFUsyaBZHQKJEOxlg+hZ1fZQoaAZoCWgPQwgxBtZx/LALwJSGlFKUaBVLMmgWR0CiRABgmZ3LdX2UKGgGaAloD0MIV1uxv+x+BcCUhpRSlGgVSzJoFkdAokO/Ns3yZ3V9lChoBmgJaA9DCKA3FakwphrAlIaUUpRoFUsyaBZHQKJDhLgXMyJ1fZQoaAZoCWgPQwjaqE4Hsv4FwJSGlFKUaBVLMmgWR0CiRQ+Ad4mkdX2UKGgGaAloD0MIkX9mEB9YE8CUhpRSlGgVSzJoFkdAokTUrVe8f3V9lChoBmgJaA9DCJ/J/nka8AfAlIaUUpRoFUsyaBZHQKJEk1xbSql1fZQoaAZoCWgPQwjmzHaFPigYwJSGlFKUaBVLMmgWR0CiRFkYO2AodX2UKGgGaAloD0MI9TC0OjnTEcCUhpRSlGgVSzJoFkdAokXvHJcPfHV9lChoBmgJaA9DCByygXSxyRXAlIaUUpRoFUsyaBZHQKJFtHxSYPZ1fZQoaAZoCWgPQwgVjbW/sx0CwJSGlFKUaBVLMmgWR0CiRXMySFGodX2UKGgGaAloD0MIdXgI46cREMCUhpRSlGgVSzJoFkdAokU42/BWP3V9lChoBmgJaA9DCHQkl/+QfhLAlIaUUpRoFUsyaBZHQKJGyndfsu51fZQoaAZoCWgPQwiMvoI0YzEOwJSGlFKUaBVLMmgWR0CiRo/ChvitdX2UKGgGaAloD0MIm3EaogofAMCUhpRSlGgVSzJoFkdAokZOfAbhnHV9lChoBmgJaA9DCEeNCTGX1AXAlIaUUpRoFUsyaBZHQKJGE/UvwmV1fZQoaAZoCWgPQwi9jc2OVI8UwJSGlFKUaBVLMmgWR0CiR6MFEAo5dX2UKGgGaAloD0MIM2yU9ZvJFMCUhpRSlGgVSzJoFkdAokdoXj2i+XV9lChoBmgJaA9DCAjHLHsSeBfAlIaUUpRoFUsyaBZHQKJHJxn3+Mt1fZQoaAZoCWgPQwid1QJ7TFQRwJSGlFKUaBVLMmgWR0CiRuyLIgeSdX2UKGgGaAloD0MIpWsm32yTAMCUhpRSlGgVSzJoFkdAokiE1dgOSXV9lChoBmgJaA9DCD0nvW98LQ7AlIaUUpRoFUsyaBZHQKJISg9Net11fZQoaAZoCWgPQwj4wmSqYBQFwJSGlFKUaBVLMmgWR0CiSAjR2KVIdX2UKGgGaAloD0MI6dMq+kNzBsCUhpRSlGgVSzJoFkdAokfOYBvJinV9lChoBmgJaA9DCL6DnziA/gPAlIaUUpRoFUsyaBZHQKJJXoQFs551fZQoaAZoCWgPQwjpDfeRW7MAwJSGlFKUaBVLMmgWR0CiSSPcJtzkdX2UKGgGaAloD0MIj1a1pKMMGsCUhpRSlGgVSzJoFkdAokjijafzz3V9lChoBmgJaA9DCN1e0hit0xnAlIaUUpRoFUsyaBZHQKJIqC5mRNh1fZQoaAZoCWgPQwhTeqaXGAsVwJSGlFKUaBVLMmgWR0CiSj7Ackt3dX2UKGgGaAloD0MIv4HJjSLrFMCUhpRSlGgVSzJoFkdAokoEIiTt9nV9lChoBmgJaA9DCHam0HmN3RXAlIaUUpRoFUsyaBZHQKJJwtrbg0l1fZQoaAZoCWgPQwhccXFUbkIBwJSGlFKUaBVLMmgWR0CiSYhttQ9BdX2UKGgGaAloD0MIKuPfZ1x4/r+UhpRSlGgVSzJoFkdAoksZDE3sHHV9lChoBmgJaA9DCEZ4exACcv+/lIaUUpRoFUsyaBZHQKJK3k7wKBx1fZQoaAZoCWgPQwgFUfcBSA0BwJSGlFKUaBVLMmgWR0CiSp0B4lhPdX2UKGgGaAloD0MI/wdYq3Y1IMCUhpRSlGgVSzJoFkdAokpijrRjSXV9lChoBmgJaA9DCGbbaWtEUAnAlIaUUpRoFUsyaBZHQKJL7mmLtNV1fZQoaAZoCWgPQwgqApzexVsVwJSGlFKUaBVLMmgWR0CiS7O09hZydX2UKGgGaAloD0MI4c6FkV4EE8CUhpRSlGgVSzJoFkdAoktyZ0CA+nV9lChoBmgJaA9DCJmAXyNJEAHAlIaUUpRoFUsyaBZHQKJLN+so2GZ1fZQoaAZoCWgPQwie76fGSzcVwJSGlFKUaBVLMmgWR0CiTMxCIDYAdX2UKGgGaAloD0MIjSRBuAIqCMCUhpRSlGgVSzJoFkdAokyRb6guiHV9lChoBmgJaA9DCATLETKQpxnAlIaUUpRoFUsyaBZHQKJMUDgZTAF1fZQoaAZoCWgPQwjtnjws1BoGwJSGlFKUaBVLMmgWR0CiTBXOObRXdX2UKGgGaAloD0MIn3WNlgMNEMCUhpRSlGgVSzJoFkdAok2pl8PWhHV9lChoBmgJaA9DCNtN8E3TBw/AlIaUUpRoFUsyaBZHQKJNbwcYIjZ1fZQoaAZoCWgPQwiAfXTqykcBwJSGlFKUaBVLMmgWR0CiTS26TW5IdX2UKGgGaAloD0MIpaMczCaABsCUhpRSlGgVSzJoFkdAokzzXSSeRXV9lChoBmgJaA9DCPhwyXGnVAHAlIaUUpRoFUsyaBZHQKJOrf5ULlV1fZQoaAZoCWgPQwgfn5Cdt3EGwJSGlFKUaBVLMmgWR0CiTnQ7DEWJdX2UKGgGaAloD0MI1qpdE9K6BcCUhpRSlGgVSzJoFkdAok4zqSowVXV9lChoBmgJaA9DCExw6gPJCxDAlIaUUpRoFUsyaBZHQKJN+Vk+X7d1fZQoaAZoCWgPQwiVC5V/LQ8BwJSGlFKUaBVLMmgWR0CiT5f9pAUtdX2UKGgGaAloD0MImrM+5ZisD8CUhpRSlGgVSzJoFkdAok9dMVUMonV9lChoBmgJaA9DCNgo6zcTUwPAlIaUUpRoFUsyaBZHQKJPG/k/8l51fZQoaAZoCWgPQwhuUtFY+/v7v5SGlFKUaBVLMmgWR0CiTuGJm/WUdX2UKGgGaAloD0MIqTC2EORADsCUhpRSlGgVSzJoFkdAolCQVfu1GHV9lChoBmgJaA9DCHzWNVoOlALAlIaUUpRoFUsyaBZHQKJQVZUT+Nt1fZQoaAZoCWgPQwhl+5C3XP0KwJSGlFKUaBVLMmgWR0CiUBRuTA32dX2UKGgGaAloD0MIlPlH36TJBMCUhpRSlGgVSzJoFkdAok/aeumrKnV9lChoBmgJaA9DCFZI+Um1zxLAlIaUUpRoFUsyaBZHQKJRZ+w1R+B1fZQoaAZoCWgPQwjpYtNKIVARwJSGlFKUaBVLMmgWR0CiUS0se4kNdX2UKGgGaAloD0MI5s+3BUvVBMCUhpRSlGgVSzJoFkdAolDr37DVIHV9lChoBmgJaA9DCFSqRNlbCgfAlIaUUpRoFUsyaBZHQKJQsWBSUC91fZQoaAZoCWgPQwiJ7e4Buu/+v5SGlFKUaBVLMmgWR0CiUkQokRjCdX2UKGgGaAloD0MIY7ZkVYQ7F8CUhpRSlGgVSzJoFkdAolIJcxCY1HV9lChoBmgJaA9DCFNA2v8AywDAlIaUUpRoFUsyaBZHQKJRyCgbp/x1fZQoaAZoCWgPQwjuJY3ROqoAwJSGlFKUaBVLMmgWR0CiUY3U6PsBdX2UKGgGaAloD0MIcR5OYDptF8CUhpRSlGgVSzJoFkdAolMhLXcxkHV9lChoBmgJaA9DCKZEEr2MIg3AlIaUUpRoFUsyaBZHQKJS5nmq5sl1fZQoaAZoCWgPQwjMQ6Z8COoIwJSGlFKUaBVLMmgWR0CiUqUzKs+3dX2UKGgGaAloD0MIlDMUd7x5FsCUhpRSlGgVSzJoFkdAolJqtzS1E3V9lChoBmgJaA9DCNpU3SObWxHAlIaUUpRoFUsyaBZHQKJT8+fywwF1fZQoaAZoCWgPQwiallgZjZQiwJSGlFKUaBVLMmgWR0CiU7kTg2qDdX2UKGgGaAloD0MIPx2PGaisCMCUhpRSlGgVSzJoFkdAolN30Eovz3V9lChoBmgJaA9DCHehuU4j7f6/lIaUUpRoFUsyaBZHQKJTPWCEpRZ1fZQoaAZoCWgPQwirksg+yPIQwJSGlFKUaBVLMmgWR0CiVNP6TGHYdX2UKGgGaAloD0MIsJEkCFcADMCUhpRSlGgVSzJoFkdAolSZTqB3A3V9lChoBmgJaA9DCNuF5jqNxBfAlIaUUpRoFUsyaBZHQKJUWAmReTp1fZQoaAZoCWgPQwgaMEj6tOoDwJSGlFKUaBVLMmgWR0CiVB2QGOdYdX2UKGgGaAloD0MINuZ1xCFbD8CUhpRSlGgVSzJoFkdAolW2CiAUcnV9lChoBmgJaA9DCDOkiuJVtg7AlIaUUpRoFUsyaBZHQKJVe1G9YfZ1fZQoaAZoCWgPQwhRiIBDqPIawJSGlFKUaBVLMmgWR0CiVToClrM1dX2UKGgGaAloD0MI7/54r1ppGMCUhpRSlGgVSzJoFkdAolT/f2saKnV9lChoBmgJaA9DCN1ELc2tUA3AlIaUUpRoFUsyaBZHQKJWnX5nDix1fZQoaAZoCWgPQwhpVyHlJ6UawJSGlFKUaBVLMmgWR0CiVmKtga3rdX2UKGgGaAloD0MIk2+2uTH9EsCUhpRSlGgVSzJoFkdAolYhdKNADHV9lChoBmgJaA9DCAdDHVa4JQnAlIaUUpRoFUsyaBZHQKJV521UlzF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f4f084cc5e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4f084c7900>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674418599366687707, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAASd7TPvTR7rvqhRA/Sd7TPvTR7rvqhRA/Sd7TPvTR7rvqhRA/Sd7TPvTR7rvqhRA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAH0q8Pz7kED84j98+ULDrvZ4zvb+i7ow9aOKXP/V4Bz/hYws/9BYIv+p5/j7n2Nm+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABJ3tM+9NHuu+qFED8y7wm7fhWrOhbGZTxJ3tM+9NHuu+qFED8y7wm7fhWrOhbGZTxJ3tM+9NHuu+qFED8y7wm7fhWrOhbGZTxJ3tM+9NHuu+qFED8y7wm7fhWrOhbGZTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.41380528 -0.00728821 0.56454337]\n [ 0.41380528 -0.00728821 0.56454337]\n [ 0.41380528 -0.00728821 0.56454337]\n [ 0.41380528 -0.00728821 0.56454337]]", "desired_goal": "[[ 1.471012 0.5659827 0.43663955]\n [-0.11508238 -1.4781377 0.06881453]\n [ 1.1865969 0.5291894 0.5444928 ]\n [-0.53160024 0.49702388 -0.42548296]]", "observation": "[[ 0.41380528 -0.00728821 0.56454337 -0.00210471 0.00130527 0.01402428]\n [ 0.41380528 -0.00728821 0.56454337 -0.00210471 0.00130527 0.01402428]\n [ 0.41380528 -0.00728821 0.56454337 -0.00210471 0.00130527 0.01402428]\n [ 0.41380528 -0.00728821 0.56454337 -0.00210471 0.00130527 0.01402428]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmSzFPUjatT3lS9A8wKoYPXJsuj1LleI9q1d/vY6c4rzRMYw+2aqmPNf9zz35gS4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.09627647 0.08879524 0.02542681]\n [ 0.03727221 0.09102716 0.11063632]\n [-0.06233947 -0.02766254 0.27381757]\n [ 0.02034514 0.10155838 0.17041768]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0gDeAgkqCMCUhpRSlIwBbJRLMowBdJRHQLTyezSThYN1fZQoaAZoCWgPQwgSEf5F0BgEwJSGlFKUaBVLMmgWR0C08lvFR51OdX2UKGgGaAloD0MIucFQhxWuDsCUhpRSlGgVSzJoFkdAtPI+SX+l03V9lChoBmgJaA9DCJW4jnHFBQfAlIaUUpRoFUsyaBZHQLTyHtA9mpV1fZQoaAZoCWgPQwhvLCgMytQCwJSGlFKUaBVLMmgWR0C08vaNyYG/dX2UKGgGaAloD0MIFjCBW3fz+7+UhpRSlGgVSzJoFkdAtPLXIU8FIXV9lChoBmgJaA9DCAHAsWfPhQXAlIaUUpRoFUsyaBZHQLTyuadc0Lt1fZQoaAZoCWgPQwiQZ5dvfdgDwJSGlFKUaBVLMmgWR0C08po6CDmKdX2UKGgGaAloD0MIsVJBRdXPDMCUhpRSlGgVSzJoFkdAtPNmdoWYW3V9lChoBmgJaA9DCGwKZHYW3QjAlIaUUpRoFUsyaBZHQLTzRvkzXSV1fZQoaAZoCWgPQwgaFqOutccTwJSGlFKUaBVLMmgWR0C08ymBreqJdX2UKGgGaAloD0MIjQqcbAM3AMCUhpRSlGgVSzJoFkdAtPMKDxsl9nV9lChoBmgJaA9DCJzAdFq38RLAlIaUUpRoFUsyaBZHQLTz45Fw1ix1fZQoaAZoCWgPQwjrw3qjVmgQwJSGlFKUaBVLMmgWR0C088RoduHfdX2UKGgGaAloD0MIKxa/Kaw0AcCUhpRSlGgVSzJoFkdAtPOnJnxri3V9lChoBmgJaA9DCIpXWdsUTwTAlIaUUpRoFUsyaBZHQLTzh6a9bot1fZQoaAZoCWgPQwi6+UZ0z5oFwJSGlFKUaBVLMmgWR0C09FpQLux9dX2UKGgGaAloD0MIAMXIkjm2CMCUhpRSlGgVSzJoFkdAtPQ66Ymb9nV9lChoBmgJaA9DCLaBO1Cn3AfAlIaUUpRoFUsyaBZHQLT0HXYlIEt1fZQoaAZoCWgPQwh00vvG1x4IwJSGlFKUaBVLMmgWR0C08/4fr8iwdX2UKGgGaAloD0MIm+JxUS3iAMCUhpRSlGgVSzJoFkdAtPTVZIQOF3V9lChoBmgJaA9DCAE0Spf+xQbAlIaUUpRoFUsyaBZHQLT0tfGMn7Z1fZQoaAZoCWgPQwjpmzQNilYSwJSGlFKUaBVLMmgWR0C09Jh8+iaidX2UKGgGaAloD0MI/MIrSZ6LEMCUhpRSlGgVSzJoFkdAtPR5Brvb5HV9lChoBmgJaA9DCHuhgO1gZAfAlIaUUpRoFUsyaBZHQLT1UPFNtZV1fZQoaAZoCWgPQwhVFK+ytqkJwJSGlFKUaBVLMmgWR0C09TF50KZ2dX2UKGgGaAloD0MIKbSs+8fCBMCUhpRSlGgVSzJoFkdAtPUUEKVpsXV9lChoBmgJaA9DCL9+iA0WDg/AlIaUUpRoFUsyaBZHQLT09JGe+VV1fZQoaAZoCWgPQwjRQZdw6C0FwJSGlFKUaBVLMmgWR0C09cz238XOdX2UKGgGaAloD0MIgZiEC3mkAsCUhpRSlGgVSzJoFkdAtPWtgx8D0XV9lChoBmgJaA9DCNWT+UffBATAlIaUUpRoFUsyaBZHQLT1kBGx2St1fZQoaAZoCWgPQwh9k6ZB0RwDwJSGlFKUaBVLMmgWR0C09XCb2Dg7dX2UKGgGaAloD0MIlq/L8J8OCMCUhpRSlGgVSzJoFkdAtPZAWbgCOnV9lChoBmgJaA9DCDV+4ZUkTwLAlIaUUpRoFUsyaBZHQLT2IO5avA51fZQoaAZoCWgPQwj8VBUaiEUJwJSGlFKUaBVLMmgWR0C09gN4Z/CqdX2UKGgGaAloD0MIrfcb7bgBCsCUhpRSlGgVSzJoFkdAtPXj/95yEXV9lChoBmgJaA9DCBzuI7cmbRLAlIaUUpRoFUsyaBZHQLT2t/0dzXB1fZQoaAZoCWgPQwieCU0SS6oMwJSGlFKUaBVLMmgWR0C09piP+4smdX2UKGgGaAloD0MIT3Yzox9NBsCUhpRSlGgVSzJoFkdAtPZ7Jq7AcnV9lChoBmgJaA9DCLmpgeZzzgXAlIaUUpRoFUsyaBZHQLT2W9FWn0l1fZQoaAZoCWgPQwio/kEkQ94SwJSGlFKUaBVLMmgWR0C09zUvGp++dX2UKGgGaAloD0MIeVioNc0LE8CUhpRSlGgVSzJoFkdAtPcVxzaK13V9lChoBmgJaA9DCH6pnzcV6QLAlIaUUpRoFUsyaBZHQLT2+EQGwA51fZQoaAZoCWgPQwjAywwbZX0FwJSGlFKUaBVLMmgWR0C09tjUutfYdX2UKGgGaAloD0MIe4ZwzLLHDcCUhpRSlGgVSzJoFkdAtPe2D0163XV9lChoBmgJaA9DCM76lGOyGA3AlIaUUpRoFUsyaBZHQLT3lrR0EHN1fZQoaAZoCWgPQwhnLJrOTuYIwJSGlFKUaBVLMmgWR0C093lOCXhPdX2UKGgGaAloD0MIXtvbLcmB/7+UhpRSlGgVSzJoFkdAtPdZ0fYBeXV9lChoBmgJaA9DCAXAeAYN/QXAlIaUUpRoFUsyaBZHQLT4LGViWmh1fZQoaAZoCWgPQwicNA2K5kEGwJSGlFKUaBVLMmgWR0C0+AzxgAp8dX2UKGgGaAloD0MINuSfGcSHDcCUhpRSlGgVSzJoFkdAtPfvjuKGcnV9lChoBmgJaA9DCHXlszwPLg3AlIaUUpRoFUsyaBZHQLT30CWeHzp1fZQoaAZoCWgPQwgWokPgSIAGwJSGlFKUaBVLMmgWR0C0+KSLMs6JdX2UKGgGaAloD0MI9n04SIhSAcCUhpRSlGgVSzJoFkdAtPiFKmKqGXV9lChoBmgJaA9DCNFa0eY4NwPAlIaUUpRoFUsyaBZHQLT4Z9cKPXF1fZQoaAZoCWgPQwha9E4F3BMEwJSGlFKUaBVLMmgWR0C0+EhdUsFudX2UKGgGaAloD0MI7GrylNW0BcCUhpRSlGgVSzJoFkdAtPkZcjZ+QXV9lChoBmgJaA9DCCzvqgfMAwDAlIaUUpRoFUsyaBZHQLT4+gtvn8t1fZQoaAZoCWgPQwhCsKpefgcFwJSGlFKUaBVLMmgWR0C0+NycTakAdX2UKGgGaAloD0MI3zXoS2+/BMCUhpRSlGgVSzJoFkdAtPi9LxqfvnV9lChoBmgJaA9DCJgvL8A+mgbAlIaUUpRoFUsyaBZHQLT5kU6PsAx1fZQoaAZoCWgPQwguG53zU3wFwJSGlFKUaBVLMmgWR0C0+XHXVbzLdX2UKGgGaAloD0MIswkwLH8eA8CUhpRSlGgVSzJoFkdAtPlUYyfthXV9lChoBmgJaA9DCJOQSNv44xLAlIaUUpRoFUsyaBZHQLT5NN8E3bV1fZQoaAZoCWgPQwiL+49Mh64KwJSGlFKUaBVLMmgWR0C0+gL2QGOddX2UKGgGaAloD0MI4pNOJJhqCMCUhpRSlGgVSzJoFkdAtPnjgXMyJ3V9lChoBmgJaA9DCFwbKsb52w/AlIaUUpRoFUsyaBZHQLT5xg6EJ0J1fZQoaAZoCWgPQwhApUqUvSUPwJSGlFKUaBVLMmgWR0C0+aapPykLdX2UKGgGaAloD0MI0JhJ1AueDcCUhpRSlGgVSzJoFkdAtPp6BSUC73V9lChoBmgJaA9DCPfq46HvzgfAlIaUUpRoFUsyaBZHQLT6WornTy91fZQoaAZoCWgPQwh55XrbTOULwJSGlFKUaBVLMmgWR0C0+j0X+ERKdX2UKGgGaAloD0MIKPIk6ZoJBsCUhpRSlGgVSzJoFkdAtPodnscABHV9lChoBmgJaA9DCIVALnHkoQjAlIaUUpRoFUsyaBZHQLT68gPVd5Z1fZQoaAZoCWgPQwgTtwpioFsUwJSGlFKUaBVLMmgWR0C0+tKRMewLdX2UKGgGaAloD0MI6bmFrkQgCcCUhpRSlGgVSzJoFkdAtPq1Fc6eXnV9lChoBmgJaA9DCDxQpzy6kQjAlIaUUpRoFUsyaBZHQLT6lZr56+p1fZQoaAZoCWgPQwge+u5WlugHwJSGlFKUaBVLMmgWR0C0+2SF9KEndX2UKGgGaAloD0MIRwVOtoH7DsCUhpRSlGgVSzJoFkdAtPtFGiHqNnV9lChoBmgJaA9DCDCEnPf/8QLAlIaUUpRoFUsyaBZHQLT7J8QqZtx1fZQoaAZoCWgPQwjNBS6PNeMFwJSGlFKUaBVLMmgWR0C0+whQSBbwdX2UKGgGaAloD0MIyogLQKPUA8CUhpRSlGgVSzJoFkdAtPvbY02tMnV9lChoBmgJaA9DCKDDfHkBRhHAlIaUUpRoFUsyaBZHQLT7u/cWTHN1fZQoaAZoCWgPQwgzpfW3BGAIwJSGlFKUaBVLMmgWR0C0+55+c6NmdX2UKGgGaAloD0MIE0TdByD1BcCUhpRSlGgVSzJoFkdAtPt++Yc/+3V9lChoBmgJaA9DCKkwthDkYAPAlIaUUpRoFUsyaBZHQLT8S14Pf9B1fZQoaAZoCWgPQwhjC0EOSpgRwJSGlFKUaBVLMmgWR0C0/CwJ9iMHdX2UKGgGaAloD0MIsFWCxeFMA8CUhpRSlGgVSzJoFkdAtPwOqABkqnV9lChoBmgJaA9DCB9JSQ9DKxHAlIaUUpRoFUsyaBZHQLT77zeoDPp1fZQoaAZoCWgPQwjUf9b8+MsGwJSGlFKUaBVLMmgWR0C0/LuPBBRidX2UKGgGaAloD0MIM9/BTxwAEMCUhpRSlGgVSzJoFkdAtPycD1XeWXV9lChoBmgJaA9DCI1jJHuE2v+/lIaUUpRoFUsyaBZHQLT8fpnYg7p1fZQoaAZoCWgPQwjmXIqryr4FwJSGlFKUaBVLMmgWR0C0/F8W0qpcdX2UKGgGaAloD0MI0TyARX59BMCUhpRSlGgVSzJoFkdAtP0rA1vVE3V9lChoBmgJaA9DCNKL2v0qkBHAlIaUUpRoFUsyaBZHQLT9C71qWTp1fZQoaAZoCWgPQwhyNbIrLeMOwJSGlFKUaBVLMmgWR0C0/O4+4b0fdX2UKGgGaAloD0MIkE/IzttYEsCUhpRSlGgVSzJoFkdAtPzOwRoRI3V9lChoBmgJaA9DCL/wSpLnegbAlIaUUpRoFUsyaBZHQLT9p1c+qzZ1fZQoaAZoCWgPQwjHoBNCB50UwJSGlFKUaBVLMmgWR0C0/YgIIF/ydX2UKGgGaAloD0MI0ZUIVP9AEsCUhpRSlGgVSzJoFkdAtP1qnqFAV3V9lChoBmgJaA9DCD4GK061dgfAlIaUUpRoFUsyaBZHQLT9S1ndweh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -2.9118598151020705, "std_reward": 0.5629096982819471, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T21:46:11.604988"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38720136e2c4a7ba5a5331470a75b14ee9787a7ba19312f10e5ee9d8b2bc40d8
|
3 |
size 3056
|