zipbomb commited on
Commit
8ff366d
·
1 Parent(s): 783a77d

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1311.37 +/- 108.73
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c90346f7aac257a607f9a178be9ab4516715b58dd03720a041fb116f3087dfd8
3
+ size 129256
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f17ff883160>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f17ff8831f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f17ff883280>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f17ff883310>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f17ff8833a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f17ff883430>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f17ff8834c0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f17ff883550>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f17ff8835e0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f17ff883670>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f17ff883700>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f17ff883790>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f17ff87bde0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674405476710269336,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAD/aH76/CZq+lrhMP2JqZr4nnrk+p63Dv7vowz6CPXc/lDkKvzUgCL2GlR6/++JTwEXogz9/e/6+TJIgvyMNQ7+JdH+/55s6wE2dC7/t9WHALEz9vhfDrb8cxWC/uIkNPzS6br+73CQ/3ValPjtXAj+I6V6/V9DZPhn6yj4L3Yy/nM/HvVYhDD9mMnI+YydMPBXTQ7//SPs+6OKuPbMOED60Jb0+lAy0vwS1eD96IUw8gQEYv2ySjT8SRSk/xgPePG+PHD/4dTBAKlw5vx6oFT/cQok/iMLGv91WpT4QZ/u/Fun7vq0tYT9e8xG+9V1dP3j7Ab8xpCI/XqwOP45lTz5+WV2/B7lWv4Kvhb4PKQQ9x3Sov3gkCT9vl/++Uz62vR4EkT51JXG+3issP0s2Cz3R5Le+LY2PvqtDTb/Wuuo9NLpuv7vcJD/dVqU+O1cCPzFjhTwVkTw/bZubPZ0qDT/mm7E/mnvvPF0rRD4FNDa++9lcvwkhEMBYqDw/kmZyP+/9fD+7rW++est5P1Y9lbyfFts9EnMvP+27rT4Rcek/MmuTP+dJFT5PcJ8+oYeaP9xCiT+Iwsa/3ValPhBn+7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACKGqi2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAiYATPQAAAADAAO2/AAAAAJuvuT0AAAAAX+bkPwAAAABeuga+AAAAAKuE+T8AAAAAEckEPgAAAACSHfS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC5AsNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgC9x+r0AAAAAJBLrvwAAAACtNI08AAAAAPQfAUAAAAAAsZmsPQAAAAD2g+E/AAAAAION5T0AAAAAVsnfvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL5gTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBGAi68AAAAAEfJ/78AAAAAx4QHPgAAAADWPgFAAAAAAAFSC70AAAAA5hTpPwAAAAByHVG9AAAAAJXe/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhhrc0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAycoHPQAAAADu9vq/AAAAAEkk470AAAAAJGr5PwAAAADJ3BA9AAAAAHCa8T8AAAAAKBH9vQAAAAASsve/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJXkRvl2eQOMAWyUTegDjAF0lEdApoy5XIU8FXV9lChoBkdAl3S2tU4rBmgHTegDaAhHQKaNCajvd/J1fZQoaAZHQJmbCtZFG5NoB03oA2gIR0CmkJvU8V59dX2UKGgGR0CYldMF2V3VaAdN6ANoCEdApparSeAd4nV9lChoBkdAlvNutbLU1GgHTegDaAhHQKaYdqBVdX11fZQoaAZHQJgeResxO+JoB03oA2gIR0CmmMjslb/wdX2UKGgGR0CZXPubZvkzaAdN6ANoCEdAppxuXmeUZHV9lChoBkdAmoMRpxm03WgHTegDaAhHQKaifonrpq11fZQoaAZHQJSMdq1w5vNoB03oA2gIR0CmpFHvUjLTdX2UKGgGR0CaFlu76Hj7aAdN6ANoCEdApqSfljmSyXV9lChoBkdAmB6h6rvLHWgHTegDaAhHQKaoQvLX+VF1fZQoaAZHQJoeCax5cC5oB03oA2gIR0CmrloatLcsdX2UKGgGR0CaVEfmcOLBaAdN6ANoCEdAprAyHsTnJXV9lChoBkdAmNmJPl+3IGgHTegDaAhHQKawf4LThHd1fZQoaAZHQJky8QCjk+5oB03oA2gIR0CmtBmEPDpDdX2UKGgGR0CY8bP1L8JlaAdN6ANoCEdAproftpmEoXV9lChoBkdAlnakVSGahGgHTegDaAhHQKa758UEgW91fZQoaAZHQJknRl4C6pZoB03oA2gIR0CmvDcA7xNJdX2UKGgGR8A4wGZ/kNnXaAdLdmgIR0CmvZyBTXJ6dX2UKGgGR0CYHMC79Q40aAdN6ANoCEdApr/ectoSMHV9lChoBkdAmgHxeC04R2gHTegDaAhHQKbGLmapgkV1fZQoaAZHQJlZuT6i0v5oB03oA2gIR0Cmx/aHTI/8dX2UKGgGR0CZPHSG8EmqaAdN6ANoCEdApsmvpQk5ZXV9lChoBkdAmm1uby6MBWgHTegDaAhHQKbL4W1twaR1fZQoaAZHQJg2AkX1rZdoB03oA2gIR0Cm0fJVCHARdX2UKGgGR0CVqkhNM496aAdN6ANoCEdAptPJn6Eal3V9lChoBkdAmAJctwrDqGgHTegDaAhHQKbVhlAeJYV1fZQoaAZHQJo0sXhwVCZoB03oA2gIR0Cm18JwKjSHdX2UKGgGR0CXay1r6+FlaAdN6ANoCEdApt3ZHiFTN3V9lChoBkdAlNfFT72tdWgHTegDaAhHQKbfsZUkv9N1fZQoaAZHQJlHvw5NoJ1oB03oA2gIR0Cm4WwmeDnOdX2UKGgGR0CUfmu8scyWaAdN6ANoCEdApuOn9vS+g3V9lChoBkdAlptt5UtI1GgHTegDaAhHQKbpt1hb4ah1fZQoaAZHQJXE1pN9H+ZoB03oA2gIR0Cm65pblijMdX2UKGgGR0CSLIr56+nJaAdN6ANoCEdApu1iVQhwEXV9lChoBkdAlK6zuOS4fGgHTegDaAhHQKbvmJv5xip1fZQoaAZHQJV996qsEJVoB03oA2gIR0Cm9ZQlruYydX2UKGgGR0CSv5UkOZssaAdN6ANoCEdApvdu3x4IKXV9lChoBkdAmD8y3G4qgGgHTegDaAhHQKb5JP557gN1fZQoaAZHQJi71DRc/t9oB03oA2gIR0Cm+1lEAo5QdX2UKGgGR0CZpzF72L5zaAdN6ANoCEdApwFxagVXWHV9lChoBkdAl9p2/BWPtGgHTegDaAhHQKcDbPoFFDx1fZQoaAZHQJZ9Tr6ciGFoB03oA2gIR0CnBSk6DGtIdX2UKGgGR0CQj/tx+8XfaAdN6ANoCEdApwdc2UB4lnV9lChoBkdAleVIVdonKGgHTegDaAhHQKcNT+I/JNl1fZQoaAZHQJby7jzZpSJoB03oA2gIR0CnDyTXarWAdX2UKGgGR0CX5okCV8kVaAdN6ANoCEdApxDdruYx+XV9lChoBkdAlRY68pTdcmgHTegDaAhHQKcTFLFGXol1fZQoaAZHQJix+sQumJpoB03oA2gIR0CnGS+xfOUudX2UKGgGR0CX7/a9bor4aAdN6ANoCEdApxr/Uaya/nV9lChoBkdAmLoTqbBoEmgHTegDaAhHQKccuLa24NJ1fZQoaAZHQJYrlrdnCfpoB03oA2gIR0CnHvDUd7v5dX2UKGgGR0CTm4VcD8tPaAdN6ANoCEdApyTrNt65XnV9lChoBkdAmtONBKL88GgHTegDaAhHQKcmwr1/UfB1fZQoaAZHQJdiq5OJtSBoB03oA2gIR0CnKHLYGt6pdX2UKGgGR0CYCRoBq9GraAdN6ANoCEdApyqnMQmNR3V9lChoBkdAl0Eo0qH45GgHTegDaAhHQKcwoPWhAW11fZQoaAZHQJfcjYJ3PiVoB03oA2gIR0CnMnZm7J4jdX2UKGgGR0CWCF/3nIQwaAdN6ANoCEdApzQs7nxJ/XV9lChoBkdAlhvOt4iX6mgHTegDaAhHQKc2Y+VTrE91fZQoaAZHQI0hT9GZuyhoB03oA2gIR0CnPHRT0g8sdX2UKGgGR0CQ33ZEDyOJaAdN6ANoCEdApz5hhYvFnHV9lChoBkdAjKnRZMcp9mgHTegDaAhHQKdAOymALAp1fZQoaAZHQJdE3mozeoFoB03oA2gIR0CnQniQkonbdX2UKGgGR0CVw9Qp4KQaaAdN6ANoCEdAp0iTbcoH9nV9lChoBkdAk0/v+jua4WgHTegDaAhHQKdKb/zasZJ1fZQoaAZHQJTOPACW/rVoB03oA2gIR0CnTDoexOcldX2UKGgGR0CMBWG+K0laaAdN6ANoCEdAp06JXyRSxnV9lChoBkdAkWsPixVyWGgHTegDaAhHQKdUuC9ytFN1fZQoaAZHQJCWQAPuogpoB03oA2gIR0CnVpCMglnidX2UKGgGR0CSVcAlOXVtaAdN6ANoCEdAp1hKakRBeHV9lChoBkdAi5eNiQT24GgHTegDaAhHQKdajOclPad1fZQoaAZHQIBZ9YISlFdoB03oA2gIR0CnYKVBlcyFdX2UKGgGR0CH2AUJOWSmaAdN6ANoCEdAp2J0DEFW4nV9lChoBkdAh9LaCDmKZWgHTegDaAhHQKdkQJ2MbWF1fZQoaAZHQHWhinUDuBtoB03oA2gIR0CnZnMVUModdX2UKGgGR0CRsltcv/R3aAdN6ANoCEdAp2xkmnfl63V9lChoBkdAinPDX4CZGGgHTegDaAhHQKduOu7pV0d1fZQoaAZHQJFz3pt78eloB03oA2gIR0Cnb/uHFglXdX2UKGgGR0CPeIjGDL8raAdN6ANoCEdAp3I/Mt9QXXV9lChoBkdAkCSRxDLKWGgHTegDaAhHQKd4TKTSssB1fZQoaAZHQIqdcuctoSNoB03oA2gIR0CnekUUXYUWdX2UKGgGR0CKnpd0q6OHaAdN6ANoCEdAp3wIKSgXdnV9lChoBkdAiVhKxs2vS2gHTegDaAhHQKd+RBAv+Ox1fZQoaAZHQIdT9GTcIqtoB03oA2gIR0CnhGmvfTCtdX2UKGgGR0COroizsyBTaAdN6ANoCEdAp4ZPcFhXsHV9lChoBkdAjOGplar3kGgHTegDaAhHQKeIC9aEBbR1fZQoaAZHQIQh1cry1/loB03oA2gIR0CnilLXtjTbdX2UKGgGR0CM2KkMTewcaAdN6ANoCEdAp5Bwr6LwWnV9lChoBkdAlgeE/SpiqmgHTegDaAhHQKeSRXxvvSd1fZQoaAZHQJYjuP91loVoB03oA2gIR0CnlALVFx4qdX2UKGgGR0CTul8nuy/saAdN6ANoCEdAp5Y4c94eLnV9lChoBkdAlCz9Nvfj0mgHTegDaAhHQKecV48lolF1fZQoaAZHQJhtzuv2XcBoB03oA2gIR0CnnjIJJGvwdX2UKGgGR0CQN0xhlUZOaAdN6ANoCEdAp5/rWsijcnV9lChoBkdAkw/g4jrzG2gHTegDaAhHQKeiJ3dKujh1fZQoaAZHQJNJHTx5LRNoB03oA2gIR0CnqCZJbt7bdX2UKGgGR0CTbe8D0UXYaAdN6ANoCEdAp6n2xOclPnV9lChoBkdAli8PNqxkd2gHTegDaAhHQKerrYTTOPh1fZQoaAZHQJibFpBX0XhoB03oA2gIR0Cnregh0QsgdWUu"
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7c96bfa1958208448e7ef1dd4dfbb798f42a427101336e0dfcd1f1ab06ee78b
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8f8123fc7dbc9cba268ecde855d23c0e40857857e5eb762aa4fde044aa34052
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f17ff883160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f17ff8831f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f17ff883280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f17ff883310>", "_build": "<function ActorCriticPolicy._build at 0x7f17ff8833a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f17ff883430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f17ff8834c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f17ff883550>", "_predict": "<function ActorCriticPolicy._predict at 0x7f17ff8835e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f17ff883670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f17ff883700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f17ff883790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f17ff87bde0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674405476710269336, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAD/aH76/CZq+lrhMP2JqZr4nnrk+p63Dv7vowz6CPXc/lDkKvzUgCL2GlR6/++JTwEXogz9/e/6+TJIgvyMNQ7+JdH+/55s6wE2dC7/t9WHALEz9vhfDrb8cxWC/uIkNPzS6br+73CQ/3ValPjtXAj+I6V6/V9DZPhn6yj4L3Yy/nM/HvVYhDD9mMnI+YydMPBXTQ7//SPs+6OKuPbMOED60Jb0+lAy0vwS1eD96IUw8gQEYv2ySjT8SRSk/xgPePG+PHD/4dTBAKlw5vx6oFT/cQok/iMLGv91WpT4QZ/u/Fun7vq0tYT9e8xG+9V1dP3j7Ab8xpCI/XqwOP45lTz5+WV2/B7lWv4Kvhb4PKQQ9x3Sov3gkCT9vl/++Uz62vR4EkT51JXG+3issP0s2Cz3R5Le+LY2PvqtDTb/Wuuo9NLpuv7vcJD/dVqU+O1cCPzFjhTwVkTw/bZubPZ0qDT/mm7E/mnvvPF0rRD4FNDa++9lcvwkhEMBYqDw/kmZyP+/9fD+7rW++est5P1Y9lbyfFts9EnMvP+27rT4Rcek/MmuTP+dJFT5PcJ8+oYeaP9xCiT+Iwsa/3ValPhBn+7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACKGqi2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAiYATPQAAAADAAO2/AAAAAJuvuT0AAAAAX+bkPwAAAABeuga+AAAAAKuE+T8AAAAAEckEPgAAAACSHfS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC5AsNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgC9x+r0AAAAAJBLrvwAAAACtNI08AAAAAPQfAUAAAAAAsZmsPQAAAAD2g+E/AAAAAION5T0AAAAAVsnfvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL5gTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBGAi68AAAAAEfJ/78AAAAAx4QHPgAAAADWPgFAAAAAAAFSC70AAAAA5hTpPwAAAAByHVG9AAAAAJXe/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhhrc0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAycoHPQAAAADu9vq/AAAAAEkk470AAAAAJGr5PwAAAADJ3BA9AAAAAHCa8T8AAAAAKBH9vQAAAAASsve/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJXkRvl2eQOMAWyUTegDjAF0lEdApoy5XIU8FXV9lChoBkdAl3S2tU4rBmgHTegDaAhHQKaNCajvd/J1fZQoaAZHQJmbCtZFG5NoB03oA2gIR0CmkJvU8V59dX2UKGgGR0CYldMF2V3VaAdN6ANoCEdApparSeAd4nV9lChoBkdAlvNutbLU1GgHTegDaAhHQKaYdqBVdX11fZQoaAZHQJgeResxO+JoB03oA2gIR0CmmMjslb/wdX2UKGgGR0CZXPubZvkzaAdN6ANoCEdAppxuXmeUZHV9lChoBkdAmoMRpxm03WgHTegDaAhHQKaifonrpq11fZQoaAZHQJSMdq1w5vNoB03oA2gIR0CmpFHvUjLTdX2UKGgGR0CaFlu76Hj7aAdN6ANoCEdApqSfljmSyXV9lChoBkdAmB6h6rvLHWgHTegDaAhHQKaoQvLX+VF1fZQoaAZHQJoeCax5cC5oB03oA2gIR0CmrloatLcsdX2UKGgGR0CaVEfmcOLBaAdN6ANoCEdAprAyHsTnJXV9lChoBkdAmNmJPl+3IGgHTegDaAhHQKawf4LThHd1fZQoaAZHQJky8QCjk+5oB03oA2gIR0CmtBmEPDpDdX2UKGgGR0CY8bP1L8JlaAdN6ANoCEdAproftpmEoXV9lChoBkdAlnakVSGahGgHTegDaAhHQKa758UEgW91fZQoaAZHQJknRl4C6pZoB03oA2gIR0CmvDcA7xNJdX2UKGgGR8A4wGZ/kNnXaAdLdmgIR0CmvZyBTXJ6dX2UKGgGR0CYHMC79Q40aAdN6ANoCEdApr/ectoSMHV9lChoBkdAmgHxeC04R2gHTegDaAhHQKbGLmapgkV1fZQoaAZHQJlZuT6i0v5oB03oA2gIR0Cmx/aHTI/8dX2UKGgGR0CZPHSG8EmqaAdN6ANoCEdApsmvpQk5ZXV9lChoBkdAmm1uby6MBWgHTegDaAhHQKbL4W1twaR1fZQoaAZHQJg2AkX1rZdoB03oA2gIR0Cm0fJVCHARdX2UKGgGR0CVqkhNM496aAdN6ANoCEdAptPJn6Eal3V9lChoBkdAmAJctwrDqGgHTegDaAhHQKbVhlAeJYV1fZQoaAZHQJo0sXhwVCZoB03oA2gIR0Cm18JwKjSHdX2UKGgGR0CXay1r6+FlaAdN6ANoCEdApt3ZHiFTN3V9lChoBkdAlNfFT72tdWgHTegDaAhHQKbfsZUkv9N1fZQoaAZHQJlHvw5NoJ1oB03oA2gIR0Cm4WwmeDnOdX2UKGgGR0CUfmu8scyWaAdN6ANoCEdApuOn9vS+g3V9lChoBkdAlptt5UtI1GgHTegDaAhHQKbpt1hb4ah1fZQoaAZHQJXE1pN9H+ZoB03oA2gIR0Cm65pblijMdX2UKGgGR0CSLIr56+nJaAdN6ANoCEdApu1iVQhwEXV9lChoBkdAlK6zuOS4fGgHTegDaAhHQKbvmJv5xip1fZQoaAZHQJV996qsEJVoB03oA2gIR0Cm9ZQlruYydX2UKGgGR0CSv5UkOZssaAdN6ANoCEdApvdu3x4IKXV9lChoBkdAmD8y3G4qgGgHTegDaAhHQKb5JP557gN1fZQoaAZHQJi71DRc/t9oB03oA2gIR0Cm+1lEAo5QdX2UKGgGR0CZpzF72L5zaAdN6ANoCEdApwFxagVXWHV9lChoBkdAl9p2/BWPtGgHTegDaAhHQKcDbPoFFDx1fZQoaAZHQJZ9Tr6ciGFoB03oA2gIR0CnBSk6DGtIdX2UKGgGR0CQj/tx+8XfaAdN6ANoCEdApwdc2UB4lnV9lChoBkdAleVIVdonKGgHTegDaAhHQKcNT+I/JNl1fZQoaAZHQJby7jzZpSJoB03oA2gIR0CnDyTXarWAdX2UKGgGR0CX5okCV8kVaAdN6ANoCEdApxDdruYx+XV9lChoBkdAlRY68pTdcmgHTegDaAhHQKcTFLFGXol1fZQoaAZHQJix+sQumJpoB03oA2gIR0CnGS+xfOUudX2UKGgGR0CX7/a9bor4aAdN6ANoCEdApxr/Uaya/nV9lChoBkdAmLoTqbBoEmgHTegDaAhHQKccuLa24NJ1fZQoaAZHQJYrlrdnCfpoB03oA2gIR0CnHvDUd7v5dX2UKGgGR0CTm4VcD8tPaAdN6ANoCEdApyTrNt65XnV9lChoBkdAmtONBKL88GgHTegDaAhHQKcmwr1/UfB1fZQoaAZHQJdiq5OJtSBoB03oA2gIR0CnKHLYGt6pdX2UKGgGR0CYCRoBq9GraAdN6ANoCEdApyqnMQmNR3V9lChoBkdAl0Eo0qH45GgHTegDaAhHQKcwoPWhAW11fZQoaAZHQJfcjYJ3PiVoB03oA2gIR0CnMnZm7J4jdX2UKGgGR0CWCF/3nIQwaAdN6ANoCEdApzQs7nxJ/XV9lChoBkdAlhvOt4iX6mgHTegDaAhHQKc2Y+VTrE91fZQoaAZHQI0hT9GZuyhoB03oA2gIR0CnPHRT0g8sdX2UKGgGR0CQ33ZEDyOJaAdN6ANoCEdApz5hhYvFnHV9lChoBkdAjKnRZMcp9mgHTegDaAhHQKdAOymALAp1fZQoaAZHQJdE3mozeoFoB03oA2gIR0CnQniQkonbdX2UKGgGR0CVw9Qp4KQaaAdN6ANoCEdAp0iTbcoH9nV9lChoBkdAk0/v+jua4WgHTegDaAhHQKdKb/zasZJ1fZQoaAZHQJTOPACW/rVoB03oA2gIR0CnTDoexOcldX2UKGgGR0CMBWG+K0laaAdN6ANoCEdAp06JXyRSxnV9lChoBkdAkWsPixVyWGgHTegDaAhHQKdUuC9ytFN1fZQoaAZHQJCWQAPuogpoB03oA2gIR0CnVpCMglnidX2UKGgGR0CSVcAlOXVtaAdN6ANoCEdAp1hKakRBeHV9lChoBkdAi5eNiQT24GgHTegDaAhHQKdajOclPad1fZQoaAZHQIBZ9YISlFdoB03oA2gIR0CnYKVBlcyFdX2UKGgGR0CH2AUJOWSmaAdN6ANoCEdAp2J0DEFW4nV9lChoBkdAh9LaCDmKZWgHTegDaAhHQKdkQJ2MbWF1fZQoaAZHQHWhinUDuBtoB03oA2gIR0CnZnMVUModdX2UKGgGR0CRsltcv/R3aAdN6ANoCEdAp2xkmnfl63V9lChoBkdAinPDX4CZGGgHTegDaAhHQKduOu7pV0d1fZQoaAZHQJFz3pt78eloB03oA2gIR0Cnb/uHFglXdX2UKGgGR0CPeIjGDL8raAdN6ANoCEdAp3I/Mt9QXXV9lChoBkdAkCSRxDLKWGgHTegDaAhHQKd4TKTSssB1fZQoaAZHQIqdcuctoSNoB03oA2gIR0CnekUUXYUWdX2UKGgGR0CKnpd0q6OHaAdN6ANoCEdAp3wIKSgXdnV9lChoBkdAiVhKxs2vS2gHTegDaAhHQKd+RBAv+Ox1fZQoaAZHQIdT9GTcIqtoB03oA2gIR0CnhGmvfTCtdX2UKGgGR0COroizsyBTaAdN6ANoCEdAp4ZPcFhXsHV9lChoBkdAjOGplar3kGgHTegDaAhHQKeIC9aEBbR1fZQoaAZHQIQh1cry1/loB03oA2gIR0CnilLXtjTbdX2UKGgGR0CM2KkMTewcaAdN6ANoCEdAp5Bwr6LwWnV9lChoBkdAlgeE/SpiqmgHTegDaAhHQKeSRXxvvSd1fZQoaAZHQJYjuP91loVoB03oA2gIR0CnlALVFx4qdX2UKGgGR0CTul8nuy/saAdN6ANoCEdAp5Y4c94eLnV9lChoBkdAlCz9Nvfj0mgHTegDaAhHQKecV48lolF1fZQoaAZHQJhtzuv2XcBoB03oA2gIR0CnnjIJJGvwdX2UKGgGR0CQN0xhlUZOaAdN6ANoCEdAp5/rWsijcnV9lChoBkdAkw/g4jrzG2gHTegDaAhHQKeiJ3dKujh1fZQoaAZHQJNJHTx5LRNoB03oA2gIR0CnqCZJbt7bdX2UKGgGR0CTbe8D0UXYaAdN6ANoCEdAp6n2xOclPnV9lChoBkdAli8PNqxkd2gHTegDaAhHQKerrYTTOPh1fZQoaAZHQJibFpBX0XhoB03oA2gIR0Cnregh0QsgdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (958 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1311.3658790118818, "std_reward": 108.72730432435716, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T17:34:38.019191"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a92d3a19e213c172ec4f0490df3cf95d9fd5809d79814e787b3b7d54192415b
3
+ size 2136