hf_rlc / config.json
zimka's picture
Saved u1 lunar lander
c3dd942 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78ddf4e560c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78ddf4e56160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78ddf4e56200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78ddf4e562a0>", "_build": "<function ActorCriticPolicy._build at 0x78ddf4e56340>", "forward": "<function ActorCriticPolicy.forward at 0x78ddf4e563e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78ddf4e56480>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78ddf4e56520>", "_predict": "<function ActorCriticPolicy._predict at 0x78ddf4e565c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78ddf4e56660>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78ddf4e56700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78ddf4e567a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78ddf4faee80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1740932022162813546, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDQEwvg3tOMAWyUTUsBjAF0lEdAmoo9Tgl4T3V9lChoBkdASS5Uo8ZDRmgHTRUBaAhHQJqMaHVPN3Z1fZQoaAZHQGuII1tO2y9oB007AWgIR0CajjEFW4mUdX2UKGgGR0BxnrWEsasIaAdNTAFoCEdAmpEkzj3mFXV9lChoBkdAbH8JokAxSGgHTS4BaAhHQJqSwx0uDjB1fZQoaAZHQHANInBtUGVoB00wAWgIR0CalHVWCEpRdX2UKGgGR0Bt7JDeCTUzaAdNRwFoCEdAmpdtZ7ojfXV9lChoBkdAcMX59mYjS2gHTVEBaAhHQJqZQg4ffXR1fZQoaAZHQG6A1AJLM9toB01dAWgIR0CamygM+eOGdX2UKGgGR0BwA10yP+4taAdNOAFoCEdAmp4BbjcVQHV9lChoBkdAbqCqbSZ0CGgHTVUBaAhHQJqf86bONYN1fZQoaAZHQG6xGDlHSWtoB002AWgIR0Caoa2NedCmdX2UKGgGR0Bv6v1SOzY3aAdNTwFoCEdAmqSm1x82JnV9lChoBkdAcW+VJtix3WgHTTIBaAhHQJqmVkFwDNh1fZQoaAZHQHExRSUC7shoB01DAWgIR0CaqBTisGPgdX2UKGgGR0Bxa/gwXZXdaAdNNAFoCEdAmqnYfr8iwHV9lChoBkdAcpxBkI5YHWgHTSYBaAhHQJqskJjUd7x1fZQoaAZHQG7JvDYRNAVoB00nAWgIR0CaribNKRMfdX2UKGgGR0BwcqiJwbVCaAdNZgFoCEdAmrASSvC/GnV9lChoBkdAcX8xptaY/mgHTSIBaAhHQJqy00DU3GZ1fZQoaAZHQHMWGdAgPmRoB002AWgIR0CatIXwb2lEdX2UKGgGR0BFojFAE+xGaAdNAAFoCEdAmrZmvfTCtXV9lChoBkdAbSkkP+XJHWgHTUMBaAhHQJq6HeDWbw11fZQoaAZHQEMzfbblA/toB00FAWgIR0CavB25QP7OdX2UKGgGR0BtBP6VMVUNaAdNPQFoCEdAmr3pVfeDWnV9lChoBkdAbVgW/rSmZWgHTTcBaAhHQJq/kbWEsat1fZQoaAZHQG+i0oScslNoB008AWgIR0Cawm85S3spdX2UKGgGR0ByGs7QswtbaAdNMAFoCEdAmsQWh7E5yXV9lChoBkdAcDzi97F85WgHTUsBaAhHQJrF6v6j3251fZQoaAZHQHDEfIKc/dJoB01PAWgIR0CayOBxgiNbdX2UKGgGR0BuH8jTrmheaAdNQQFoCEdAmsqi/CZWrHV9lChoBkdAb3ES6lLvkWgHTS4BaAhHQJrMQLux8lZ1fZQoaAZHQGa8bBO58ShoB03oA2gIR0Ca0uLIxQBQdX2UKGgGR0BsOEvh60IDaAdNMgFoCEdAmtW0IToMa3V9lChoBkdAbVJcZ9/jKmgHTTYBaAhHQJrXX3L3bmF1fZQoaAZHQHA0LBGhEjRoB00oAWgIR0Ca2PHARChOdX2UKGgGR0BvJ6kEcKgJaAdNVwFoCEdAmtrOHrQgLnV9lChoBkdAb8LG0eEIxGgHTUEBaAhHQJrdr/JeVs11fZQoaAZHQHGRHljmSyNoB01OAWgIR0Ca33tYB/7SdX2UKGgGR0BxsxsnAqNIaAdNRwFoCEdAmuE7NwBHTnV9lChoBkdAbP/+ERJ2+2gHTWoBaAhHQJrkY9q1w5x1fZQoaAZHQHMXUhaC+URoB01TAWgIR0Ca5tVvuPV/dX2UKGgGR0BvnNm6GxlhaAdNTwFoCEdAmukKFRHf/HV9lChoBkdAcB3mWt2cKGgHTUQBaAhHQJrs1ph4MWp1fZQoaAZHQGmfc4YJmd1oB00uAWgIR0Ca7n/FzdULdX2UKGgGR0Bw1KfZmI0qaAdNUQFoCEdAmvBOe4Cp33V9lChoBkdAbKYgieNDMWgHTWABaAhHQJrzcUmD15B1fZQoaAZHQHJ6Ck9ECvJoB003AWgIR0Ca9SHEuQIVdX2UKGgGR0BtsBda+vhZaAdNcAFoCEdAmvcnCXQdCHV9lChoBkdAb2Pm8M/hVGgHTSIBaAhHQJr52pLmITJ1fZQoaAZHQG2gWtuDSPVoB001AWgIR0Ca+4uRcNYsdX2UKGgGR0Bxc1II4VASaAdNMwFoCEdAmv0p8fFJhHV9lChoBkdAYjTdxAB1cWgHTegDaAhHQJsDyaa1Cw91fZQoaAZHQGZk+L3sXzloB03oA2gIR0CbCnBK+SKWdX2UKGgGR0Bx8tX9zfaYaAdNbQFoCEdAmw2gpnYg73V9lChoBkdAYb+WYWtU42gHTegDaAhHQJsUZld1Mdt1fZQoaAZHQG+E0bT+ee5oB02GAWgIR0CbFyAt4A0bdX2UKGgGR0BtytZeRgZ1aAdNKQFoCEdAmxkqwpvxY3V9lChoBkdAbzw6nR9gGGgHTV0BaAhHQJsc92icoYx1fZQoaAZHQGy8HBDXvphoB01xAWgIR0CbHvURWcSXdX2UKGgGR0BvpTS7Xg+AaAdNRAFoCEdAmyC8kD6nBXV9lChoBkdAcDr+WnjyWmgHTUsBaAhHQJsj0JE6T4d1fZQoaAZHQGxkxHPNVzZoB01XAWgIR0CbJaOh0yP/dX2UKGgGR0BwKMuK4x1xaAdNigFoCEdAmyfYzJp35nV9lChoBkdAcWQ7sfJV82gHTUUBaAhHQJsqwpKBd2R1fZQoaAZHQHCb3Sa3I+5oB02eAWgIR0CbLRY8Md92dX2UKGgGR0BwYrvlU6xPaAdNVQFoCEdAmy7nuJDVpnV9lChoBkdAcAlGOuJUHmgHTTsBaAhHQJsxw9eQdS51fZQoaAZHQE2fi1iONo9oB00iAWgIR0CbM1OYplSTdX2UKGgGR0BsZccsDnvEaAdNOwFoCEdAmzUPEjxCpnV9lChoBkdAcYVHLA57xGgHTT0BaAhHQJs36FcpsoF1fZQoaAZHQHChUDp1RtRoB01UAWgIR0CbOcGEwnIAdX2UKGgGR0BwGxCBwuM/aAdNYAFoCEdAmzudFvybx3V9lChoBkdAYYswGGEf1mgHTegDaAhHQJtCPHn2ZiN1fZQoaAZHQHBt6RuCPIZoB01DAWgIR0CbRCGD+R5kdX2UKGgGR0Bx7z8baRISaAdNPwFoCEdAm0fQaR6ni3V9lChoBkdAbmp8EV32VWgHTXkBaAhHQJtKmi7Ciyp1fZQoaAZHQG8O/keZG8VoB01HAWgIR0CbTJk+X7cgdX2UKGgGR0BxLbYkE9t/aAdNXgFoCEdAm0+khNdqtnV9lChoBkdAbuDQBPsRhGgHTUsBaAhHQJtRdQVKwpx1fZQoaAZHQG2FPIfbKzRoB01EAWgIR0CbUzKFZgXudX2UKGgGR0BxbzG1hLGraAdNTQFoCEdAm1YsZk0783V9lChoBkdAbw8c4HX2/WgHTVcBaAhHQJtYB3jdYXB1fZQoaAZHQHFVrcCYCyRoB004AWgIR0CbWbmOlwcYdX2UKGgGR0BueBxtHhCMaAdNTwFoCEdAm1ysbNr0rnV9lChoBkdAbhGj1PFefWgHTUIBaAhHQJtebb5/LDB1fZQoaAZHQG89GX5WRzRoB006AWgIR0CbYB1MdtEYdX2UKGgGR0BwqTBguyu7aAdNLgFoCEdAm2LqVUuL8HV9lChoBkdAcDaIdlum8GgHTT8BaAhHQJtkn0th/iJ1fZQoaAZHQGs7Y9X9zfdoB01OAWgIR0CbZnHBk7OndX2UKGgGR0BvKzS7Xg+AaAdNUQFoCEdAm2lgXl8w6HV9lChoBkdAcfMW7e2uxWgHTTkBaAhHQJtrD+ZPVNJ1fZQoaAZHQG/a5UtI065oB01oAWgIR0CbbPGgzxgBdX2UKGgGR0BtGuGZeAuqaAdNOQFoCEdAm2/NlEqlQHV9lChoBkdAcNNdAxBVuWgHTVYBaAhHQJtxoRradtl1fZQoaAZHQHEIGbgCOm1oB01EAWgIR0Cbc3eTV2A5dX2UKGgGR0BtrbFAE+xGaAdNOgFoCEdAm3c2HUMG5nV9lChoBkdAbQbhzeXRgWgHTTUBaAhHQJt5YDlo11p1fZQoaAZHQHDEE1IiC8RoB005AWgIR0Cbe5Alv60qdX2UKGgGR0Bw4jVXmvGIaAdNPAFoCEdAm30+Ofdyk3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVxwEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB+MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCqKEbqd9F021+6rSXX4UB5WIs4AjANpbmOUihERkAOEOX9EqdHkpg1iQ573AHWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylIoFoQElkAB1YnViLg==", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}