Upload PPO LunarLander-v2 trained agent (10M steps)
Browse files- PPO_LunarLander-v2_steps10000000.zip +3 -0
- PPO_LunarLander-v2_steps10000000/_stable_baselines3_version +1 -0
- PPO_LunarLander-v2_steps10000000/data +95 -0
- PPO_LunarLander-v2_steps10000000/policy.optimizer.pth +3 -0
- PPO_LunarLander-v2_steps10000000/policy.pth +3 -0
- PPO_LunarLander-v2_steps10000000/pytorch_variables.pth +3 -0
- PPO_LunarLander-v2_steps10000000/system_info.txt +7 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
PPO_LunarLander-v2_steps10000000.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23dba256972d5a5d229630d0aa08a8c76b0c6977a8f6ced2a17e73c98ea4e0e3
|
3 |
+
size 147481
|
PPO_LunarLander-v2_steps10000000/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
PPO_LunarLander-v2_steps10000000/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f614e752ee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f614e752f70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f614e757040>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f614e7570d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f614e757160>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f614e7571f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f614e757280>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f614e757310>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f614e7573a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f614e757430>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f614e7574c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f614e757550>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f614e758240>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 10010624,
|
47 |
+
"_total_timesteps": 10000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1680450233990911963,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZY5D2Tjlc/Sj6BO0oPHb/OdYg+oA5tPQAAAAAAAAAAZuxdvcONILrmOsY2PzMSMrNoKTtm0+q1AAAAAAAAgD/NLhU8K/uPP+JQHD3aYUu/3D9mvGs817sAAAAAAAAAAJoStzwfVbG55odzu0Mj97ix0gY7UzRlOAAAgD8AAIA/2iyqvY33dD+WTkK+QB5nvxiZ+r2HwDk8AAAAAAAAAACA7Au9ewqouqv80rhJwe2zrhYqOYBt8TcAAIA/AACAP2bSxLvbvLE//pIRvjpHk74+/pM7yvhqvAAAAAAAAAAAs8x4vbl8YD8e5Bi+ESZqv28Pob1QhYG8AAAAAAAAAAC+zJ++1c0UPw5mVL6Sgzq/r0DDvggaLL0AAAAAAAAAAEOzXL7ZL1A+ogKePuA/2L6JlNG9HfL1PAAAAAAAAAAAQJPpvfnSpj/WOve+x/T+vvNvR75yTJC+AAAAAAAAAAAzhhi9cRJnu9lyBL37UYo8HQuQPKitbb0AAIA/AACAP8299z1c3zW62FegOgP5WbbMvuq6yTi5uQAAgD8AAIA/gIaZPe+1Uj5OeIK+M/Lpvhihlr3bx1y+AAAAAAAAAACNwds94YSEusRjj7nAr/0zYIpmu0pCozgAAAAAAACAPwC8jrz2zEu6qki8Pc/xLLbVYJg68hcttQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.0010623999999999079,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVIRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxD4BFKMOcUCUhpRSlIwBbJRLvowBdJRHQMCs1DDTBqN1fZQoaAZoCWgPQwgJGF3enOhwQJSGlFKUaBVLr2gWR0DArOHQyAQQdX2UKGgGaAloD0MIzR5oBYbHc0CUhpRSlGgVS9BoFkdAwKzrMPBi1HV9lChoBmgJaA9DCJlmuteJA3FAlIaUUpRoFUvCaBZHQMCs+y619fF1fZQoaAZoCWgPQwjqCUs8ILpyQJSGlFKUaBVL42gWR0DArQL2Bas7dX2UKGgGaAloD0MIc/IiE/CZcUCUhpRSlGgVS7ZoFkdAwK0KQvHtGHV9lChoBmgJaA9DCCpz843oLGJAlIaUUpRoFU3oA2gWR0DArRCu4gA7dX2UKGgGaAloD0MI/1nz4++7cUCUhpRSlGgVS8NoFkdAwK0bfTkQw3V9lChoBmgJaA9DCGKDhZP0G3FAlIaUUpRoFUukaBZHQMCtHLOAy2x1fZQoaAZoCWgPQwgL8N3mTVlyQJSGlFKUaBVLxWgWR0DArR3Q8fV7dX2UKGgGaAloD0MIBvNXyJyWckCUhpRSlGgVS9hoFkdAwK0ffHggo3V9lChoBmgJaA9DCHDNHf3vCHNAlIaUUpRoFUvbaBZHQMCtIBdMTOB1fZQoaAZoCWgPQwi45LhTOnNyQJSGlFKUaBVLwmgWR0DArSsKJEYwdX2UKGgGaAloD0MICiyAKUMMcUCUhpRSlGgVS55oFkdAwK0uiRGMGXV9lChoBmgJaA9DCEPFOH/TK3FAlIaUUpRoFUvcaBZHQMCtPYUvf0p1fZQoaAZoCWgPQwg9uaZApgZxQJSGlFKUaBVLlmgWR0DArVlcfNiZdX2UKGgGaAloD0MILJ56pEHhcECUhpRSlGgVS51oFkdAwK1lJfYzznV9lChoBmgJaA9DCH79EBts5XBAlIaUUpRoFUvEaBZHQMCta2bobGZ1fZQoaAZoCWgPQwiRY+sZgllzQJSGlFKUaBVL8WgWR0DArXSyfL9udX2UKGgGaAloD0MIGJeqtEUQcUCUhpRSlGgVS+JoFkdAwK13abnX/nV9lChoBmgJaA9DCJlIaTYPynFAlIaUUpRoFUu9aBZHQMCtgaNdZ7p1fZQoaAZoCWgPQwiyYyMQL6lyQJSGlFKUaBVLp2gWR0DArYktsenydX2UKGgGaAloD0MITFMEOL1bcECUhpRSlGgVS61oFkdAwK2LLaEi+3V9lChoBmgJaA9DCFmmXyJe4W5AlIaUUpRoFUuqaBZHQMCti9dVvMt1fZQoaAZoCWgPQwjk2lAxTvpuQJSGlFKUaBVLoWgWR0DArZN6u4gBdX2UKGgGaAloD0MILQjlfZzScECUhpRSlGgVS9FoFkdAwK2V/FzdUXV9lChoBmgJaA9DCNSZe0i4WHBAlIaUUpRoFUufaBZHQMCtlqujh1l1fZQoaAZoCWgPQwjOUNzx5ldxQJSGlFKUaBVLzGgWR0DArZxkqc3EdX2UKGgGaAloD0MIbeF5qRgXdECUhpRSlGgVS7FoFkdAwLExu76HkHV9lChoBmgJaA9DCEiJXdsbanNAlIaUUpRoFU0CAWgWR0DAsUEnCwbEdX2UKGgGaAloD0MIsktUb820cECUhpRSlGgVS59oFkdAwLFO9lEqlXV9lChoBmgJaA9DCN1FmKJcPG9AlIaUUpRoFUunaBZHQMCxWhCD28J1fZQoaAZoCWgPQwj0+L1Nv4VzQJSGlFKUaBVLxWgWR0DAsV5W912adX2UKGgGaAloD0MI7Qvohft7c0CUhpRSlGgVS6doFkdAwLFycx0uDnV9lChoBmgJaA9DCBUBTu/iHHFAlIaUUpRoFUu6aBZHQMCxc+vIOpd1fZQoaAZoCWgPQwh5c7hWu/9xQJSGlFKUaBVLv2gWR0DAsXUpqh11dX2UKGgGaAloD0MIe8A8ZErNcUCUhpRSlGgVS7RoFkdAwLGC0VJti3V9lChoBmgJaA9DCIEIceWsDnNAlIaUUpRoFUu3aBZHQMCxguYplSV1fZQoaAZoCWgPQwjAP6VKFBZwQJSGlFKUaBVLsmgWR0DAsYwOhCdCdX2UKGgGaAloD0MIAFgdOZJXc0CUhpRSlGgVS7loFkdAwLGOBHTZx3V9lChoBmgJaA9DCEn1nV/UGXRAlIaUUpRoFUvBaBZHQMCxlekxh2J1fZQoaAZoCWgPQwjRItv5/tByQJSGlFKUaBVLy2gWR0DAsaKAFxGUdX2UKGgGaAloD0MIwCMqVHfIc0CUhpRSlGgVS+5oFkdAwLGoBZIQOHV9lChoBmgJaA9DCFOVtrjGw3BAlIaUUpRoFUu+aBZHQMCxsAYpDu11fZQoaAZoCWgPQwiSWiiZHNhyQJSGlFKUaBVLq2gWR0DAsbIHLRrrdX2UKGgGaAloD0MINPYlGw+1b0CUhpRSlGgVS6JoFkdAwLHGCuloDnV9lChoBmgJaA9DCBctQNvqQHJAlIaUUpRoFUu6aBZHQMCx0rU9ZA91fZQoaAZoCWgPQwgwf4XM1QRwQJSGlFKUaBVLpmgWR0DAsd2ECeVcdX2UKGgGaAloD0MIevzepn/8cUCUhpRSlGgVS8doFkdAwLHySJTESHV9lChoBmgJaA9DCKxSeqZXHHFAlIaUUpRoFUufaBZHQMCx9WgnMMZ1fZQoaAZoCWgPQwjfjJqvEuVxQJSGlFKUaBVLuGgWR0DAsfsvGp++dX2UKGgGaAloD0MIigCnd3F6ckCUhpRSlGgVS9toFkdAwLIE9Net0XV9lChoBmgJaA9DCPazWIrkinBAlIaUUpRoFUuOaBZHQMCyB4sVclh1fZQoaAZoCWgPQwhG0JhJlAJ0QJSGlFKUaBVL0mgWR0DAshf1YhdMdX2UKGgGaAloD0MIfZbnwd1HckCUhpRSlGgVS8NoFkdAwLIYwt8NQXV9lChoBmgJaA9DCMpRgChYUHJAlIaUUpRoFUu3aBZHQMCyHtpudf91fZQoaAZoCWgPQwiCyvj3GflxQJSGlFKUaBVLu2gWR0DAsjIEEC/5dX2UKGgGaAloD0MIM4gP7DhScUCUhpRSlGgVS8hoFkdAwLI5zOHFgnV9lChoBmgJaA9DCMPwETGlrXBAlIaUUpRoFUuRaBZHQMCyRQaJhv11fZQoaAZoCWgPQwj2YignGkFyQJSGlFKUaBVLuGgWR0DAslet8uzydX2UKGgGaAloD0MIuHU3T3XEOUCUhpRSlGgVS39oFkdAwLJjL5AQhHV9lChoBmgJaA9DCMd/gSBA9XJAlIaUUpRoFUvhaBZHQMCyaXg9/z91fZQoaAZoCWgPQwhM4UGzq3dwQJSGlFKUaBVLq2gWR0DAsnqkM1CPdX2UKGgGaAloD0MIw7tcxHd3ckCUhpRSlGgVS7xoFkdAwLKABbwBo3V9lChoBmgJaA9DCG9+w0SDyG5AlIaUUpRoFUuhaBZHQMCygNnPE891fZQoaAZoCWgPQwju0RvuY0dxQJSGlFKUaBVLv2gWR0DAsoSVlf7adX2UKGgGaAloD0MIWn9LAH6EckCUhpRSlGgVS7hoFkdAwLKjinYQKHV9lChoBmgJaA9DCKWisfZ3+HFAlIaUUpRoFUu8aBZHQMCyqJQDV6N1fZQoaAZoCWgPQwjVzcXftllzQJSGlFKUaBVLxGgWR0DAsrW0eEIxdX2UKGgGaAloD0MIF3/bE2Tmc0CUhpRSlGgVS8ZoFkdAwLLX0HyEtnV9lChoBmgJaA9DCOV8sfei0HJAlIaUUpRoFUvSaBZHQMCy2YtYjjd1fZQoaAZoCWgPQwiCVmDIquhyQJSGlFKUaBVLrWgWR0DAsuP+IdlvdX2UKGgGaAloD0MItB8pIsPPc0CUhpRSlGgVS9JoFkdAwLLv/OMVDnV9lChoBmgJaA9DCF2JQPVPznBAlIaUUpRoFUumaBZHQMCy8MwlByF1fZQoaAZoCWgPQwhrtvKS/7dxQJSGlFKUaBVLs2gWR0DAsvSKLsKLdX2UKGgGaAloD0MIRYDTu3inaECUhpRSlGgVTegDaBZHQMCzBDVYp2F1fZQoaAZoCWgPQwj21Oqra4lxQJSGlFKUaBVLrWgWR0DAsxFmthd/dX2UKGgGaAloD0MIpWd6ifHQcECUhpRSlGgVS71oFkdAwLMUGLUCrHV9lChoBmgJaA9DCGspIO2/0nJAlIaUUpRoFUvdaBZHQMCzMjfWMCN1fZQoaAZoCWgPQwhnYORlzVZzQJSGlFKUaBVL42gWR0DAszXs5XEJdX2UKGgGaAloD0MItFvLZPjAckCUhpRSlGgVS7hoFkdAwLM8SzPa+XV9lChoBmgJaA9DCALTad2GtXJAlIaUUpRoFUuwaBZHQMCzQtBnjAB1fZQoaAZoCWgPQwg8UKc8umRyQJSGlFKUaBVLn2gWR0DAs1Pt0FKTdX2UKGgGaAloD0MItRmnIaq9cECUhpRSlGgVS5hoFkdAwLNiI42jwnV9lChoBmgJaA9DCDUnLzKBqW9AlIaUUpRoFUvEaBZHQMCzeZ8KG+N1fZQoaAZoCWgPQwhywK4mz55xQJSGlFKUaBVLmWgWR0DAs4VxKg7HdX2UKGgGaAloD0MICmmNQefMcECUhpRSlGgVS8hoFkdAwLOJbILgGnV9lChoBmgJaA9DCHHJcaf0SnNAlIaUUpRoFUvnaBZHQMCziuZThpB1fZQoaAZoCWgPQwh7TQ8KypZwQJSGlFKUaBVLs2gWR0DAs5xUcXFcdX2UKGgGaAloD0MIIlLTLuaXcUCUhpRSlGgVS9RoFkdAwLOmW4Vh1HV9lChoBmgJaA9DCAKetHDZlnNAlIaUUpRoFUvxaBZHQMCzrfoJRfp1fZQoaAZoCWgPQwg/H2XEBWhuQJSGlFKUaBVLrmgWR0DAs7xq46OpdX2UKGgGaAloD0MIOC9OfHUZckCUhpRSlGgVS81oFkdAwLPRD2Jzk3V9lChoBmgJaA9DCM/ZAkLr4nNAlIaUUpRoFUusaBZHQMCz7UY0l7d1fZQoaAZoCWgPQwgf8parHyZyQJSGlFKUaBVLwGgWR0DAs+4bjtG/dX2UKGgGaAloD0MI2SYVjTX6ckCUhpRSlGgVS+VoFkdAwLP4uLaVU3V9lChoBmgJaA9DCJBN8iM+b3JAlIaUUpRoFUv0aBZHQMCz/e2NNrV1fZQoaAZoCWgPQwhybagY59hxQJSGlFKUaBVLnmgWR0DAtAno3aSLdX2UKGgGaAloD0MI1CgkmZWycUCUhpRSlGgVTcEBaBZHQMC0CoZZSvV1fZQoaAZoCWgPQwgMzXUaaS1yQJSGlFKUaBVLr2gWR0DAtBfzFuNxdWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 2444,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWV6QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWy9ob21lL3podXFpL2FuYWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFsvaG9tZS96aHVxaS9hbmFjb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
PPO_LunarLander-v2_steps10000000/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72ced7df94a583ff0055ecde03d7664685a40e053c4ab786dae31a1f4b4ccd2e
|
3 |
+
size 88057
|
PPO_LunarLander-v2_steps10000000/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:68c69f0049ed7badc5c08b66602a35eaeccd8bee2d7b4cad1c3a7c3658d9063e
|
3 |
+
size 43393
|
PPO_LunarLander-v2_steps10000000/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO_LunarLander-v2_steps10000000/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 284.96 +/- 22.41
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f614e752ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f614e752f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f614e757040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f614e7570d0>", "_build": "<function ActorCriticPolicy._build at 0x7f614e757160>", "forward": "<function ActorCriticPolicy.forward at 0x7f614e7571f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f614e757280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f614e757310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f614e7573a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f614e757430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f614e7574c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f614e757550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f614e758240>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 10010624, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680450233990911963, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZY5D2Tjlc/Sj6BO0oPHb/OdYg+oA5tPQAAAAAAAAAAZuxdvcONILrmOsY2PzMSMrNoKTtm0+q1AAAAAAAAgD/NLhU8K/uPP+JQHD3aYUu/3D9mvGs817sAAAAAAAAAAJoStzwfVbG55odzu0Mj97ix0gY7UzRlOAAAgD8AAIA/2iyqvY33dD+WTkK+QB5nvxiZ+r2HwDk8AAAAAAAAAACA7Au9ewqouqv80rhJwe2zrhYqOYBt8TcAAIA/AACAP2bSxLvbvLE//pIRvjpHk74+/pM7yvhqvAAAAAAAAAAAs8x4vbl8YD8e5Bi+ESZqv28Pob1QhYG8AAAAAAAAAAC+zJ++1c0UPw5mVL6Sgzq/r0DDvggaLL0AAAAAAAAAAEOzXL7ZL1A+ogKePuA/2L6JlNG9HfL1PAAAAAAAAAAAQJPpvfnSpj/WOve+x/T+vvNvR75yTJC+AAAAAAAAAAAzhhi9cRJnu9lyBL37UYo8HQuQPKitbb0AAIA/AACAP8299z1c3zW62FegOgP5WbbMvuq6yTi5uQAAgD8AAIA/gIaZPe+1Uj5OeIK+M/Lpvhihlr3bx1y+AAAAAAAAAACNwds94YSEusRjj7nAr/0zYIpmu0pCozgAAAAAAACAPwC8jrz2zEu6qki8Pc/xLLbVYJg68hcttQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0010623999999999079, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxD4BFKMOcUCUhpRSlIwBbJRLvowBdJRHQMCs1DDTBqN1fZQoaAZoCWgPQwgJGF3enOhwQJSGlFKUaBVLr2gWR0DArOHQyAQQdX2UKGgGaAloD0MIzR5oBYbHc0CUhpRSlGgVS9BoFkdAwKzrMPBi1HV9lChoBmgJaA9DCJlmuteJA3FAlIaUUpRoFUvCaBZHQMCs+y619fF1fZQoaAZoCWgPQwjqCUs8ILpyQJSGlFKUaBVL42gWR0DArQL2Bas7dX2UKGgGaAloD0MIc/IiE/CZcUCUhpRSlGgVS7ZoFkdAwK0KQvHtGHV9lChoBmgJaA9DCCpz843oLGJAlIaUUpRoFU3oA2gWR0DArRCu4gA7dX2UKGgGaAloD0MI/1nz4++7cUCUhpRSlGgVS8NoFkdAwK0bfTkQw3V9lChoBmgJaA9DCGKDhZP0G3FAlIaUUpRoFUukaBZHQMCtHLOAy2x1fZQoaAZoCWgPQwgL8N3mTVlyQJSGlFKUaBVLxWgWR0DArR3Q8fV7dX2UKGgGaAloD0MIBvNXyJyWckCUhpRSlGgVS9hoFkdAwK0ffHggo3V9lChoBmgJaA9DCHDNHf3vCHNAlIaUUpRoFUvbaBZHQMCtIBdMTOB1fZQoaAZoCWgPQwi45LhTOnNyQJSGlFKUaBVLwmgWR0DArSsKJEYwdX2UKGgGaAloD0MICiyAKUMMcUCUhpRSlGgVS55oFkdAwK0uiRGMGXV9lChoBmgJaA9DCEPFOH/TK3FAlIaUUpRoFUvcaBZHQMCtPYUvf0p1fZQoaAZoCWgPQwg9uaZApgZxQJSGlFKUaBVLlmgWR0DArVlcfNiZdX2UKGgGaAloD0MILJ56pEHhcECUhpRSlGgVS51oFkdAwK1lJfYzznV9lChoBmgJaA9DCH79EBts5XBAlIaUUpRoFUvEaBZHQMCta2bobGZ1fZQoaAZoCWgPQwiRY+sZgllzQJSGlFKUaBVL8WgWR0DArXSyfL9udX2UKGgGaAloD0MIGJeqtEUQcUCUhpRSlGgVS+JoFkdAwK13abnX/nV9lChoBmgJaA9DCJlIaTYPynFAlIaUUpRoFUu9aBZHQMCtgaNdZ7p1fZQoaAZoCWgPQwiyYyMQL6lyQJSGlFKUaBVLp2gWR0DArYktsenydX2UKGgGaAloD0MITFMEOL1bcECUhpRSlGgVS61oFkdAwK2LLaEi+3V9lChoBmgJaA9DCFmmXyJe4W5AlIaUUpRoFUuqaBZHQMCti9dVvMt1fZQoaAZoCWgPQwjk2lAxTvpuQJSGlFKUaBVLoWgWR0DArZN6u4gBdX2UKGgGaAloD0MILQjlfZzScECUhpRSlGgVS9FoFkdAwK2V/FzdUXV9lChoBmgJaA9DCNSZe0i4WHBAlIaUUpRoFUufaBZHQMCtlqujh1l1fZQoaAZoCWgPQwjOUNzx5ldxQJSGlFKUaBVLzGgWR0DArZxkqc3EdX2UKGgGaAloD0MIbeF5qRgXdECUhpRSlGgVS7FoFkdAwLExu76HkHV9lChoBmgJaA9DCEiJXdsbanNAlIaUUpRoFU0CAWgWR0DAsUEnCwbEdX2UKGgGaAloD0MIsktUb820cECUhpRSlGgVS59oFkdAwLFO9lEqlXV9lChoBmgJaA9DCN1FmKJcPG9AlIaUUpRoFUunaBZHQMCxWhCD28J1fZQoaAZoCWgPQwj0+L1Nv4VzQJSGlFKUaBVLxWgWR0DAsV5W912adX2UKGgGaAloD0MI7Qvohft7c0CUhpRSlGgVS6doFkdAwLFycx0uDnV9lChoBmgJaA9DCBUBTu/iHHFAlIaUUpRoFUu6aBZHQMCxc+vIOpd1fZQoaAZoCWgPQwh5c7hWu/9xQJSGlFKUaBVLv2gWR0DAsXUpqh11dX2UKGgGaAloD0MIe8A8ZErNcUCUhpRSlGgVS7RoFkdAwLGC0VJti3V9lChoBmgJaA9DCIEIceWsDnNAlIaUUpRoFUu3aBZHQMCxguYplSV1fZQoaAZoCWgPQwjAP6VKFBZwQJSGlFKUaBVLsmgWR0DAsYwOhCdCdX2UKGgGaAloD0MIAFgdOZJXc0CUhpRSlGgVS7loFkdAwLGOBHTZx3V9lChoBmgJaA9DCEn1nV/UGXRAlIaUUpRoFUvBaBZHQMCxlekxh2J1fZQoaAZoCWgPQwjRItv5/tByQJSGlFKUaBVLy2gWR0DAsaKAFxGUdX2UKGgGaAloD0MIwCMqVHfIc0CUhpRSlGgVS+5oFkdAwLGoBZIQOHV9lChoBmgJaA9DCFOVtrjGw3BAlIaUUpRoFUu+aBZHQMCxsAYpDu11fZQoaAZoCWgPQwiSWiiZHNhyQJSGlFKUaBVLq2gWR0DAsbIHLRrrdX2UKGgGaAloD0MINPYlGw+1b0CUhpRSlGgVS6JoFkdAwLHGCuloDnV9lChoBmgJaA9DCBctQNvqQHJAlIaUUpRoFUu6aBZHQMCx0rU9ZA91fZQoaAZoCWgPQwgwf4XM1QRwQJSGlFKUaBVLpmgWR0DAsd2ECeVcdX2UKGgGaAloD0MIevzepn/8cUCUhpRSlGgVS8doFkdAwLHySJTESHV9lChoBmgJaA9DCKxSeqZXHHFAlIaUUpRoFUufaBZHQMCx9WgnMMZ1fZQoaAZoCWgPQwjfjJqvEuVxQJSGlFKUaBVLuGgWR0DAsfsvGp++dX2UKGgGaAloD0MIigCnd3F6ckCUhpRSlGgVS9toFkdAwLIE9Net0XV9lChoBmgJaA9DCPazWIrkinBAlIaUUpRoFUuOaBZHQMCyB4sVclh1fZQoaAZoCWgPQwhG0JhJlAJ0QJSGlFKUaBVL0mgWR0DAshf1YhdMdX2UKGgGaAloD0MIfZbnwd1HckCUhpRSlGgVS8NoFkdAwLIYwt8NQXV9lChoBmgJaA9DCMpRgChYUHJAlIaUUpRoFUu3aBZHQMCyHtpudf91fZQoaAZoCWgPQwiCyvj3GflxQJSGlFKUaBVLu2gWR0DAsjIEEC/5dX2UKGgGaAloD0MIM4gP7DhScUCUhpRSlGgVS8hoFkdAwLI5zOHFgnV9lChoBmgJaA9DCMPwETGlrXBAlIaUUpRoFUuRaBZHQMCyRQaJhv11fZQoaAZoCWgPQwj2YignGkFyQJSGlFKUaBVLuGgWR0DAslet8uzydX2UKGgGaAloD0MIuHU3T3XEOUCUhpRSlGgVS39oFkdAwLJjL5AQhHV9lChoBmgJaA9DCMd/gSBA9XJAlIaUUpRoFUvhaBZHQMCyaXg9/z91fZQoaAZoCWgPQwhM4UGzq3dwQJSGlFKUaBVLq2gWR0DAsnqkM1CPdX2UKGgGaAloD0MIw7tcxHd3ckCUhpRSlGgVS7xoFkdAwLKABbwBo3V9lChoBmgJaA9DCG9+w0SDyG5AlIaUUpRoFUuhaBZHQMCygNnPE891fZQoaAZoCWgPQwju0RvuY0dxQJSGlFKUaBVLv2gWR0DAsoSVlf7adX2UKGgGaAloD0MIWn9LAH6EckCUhpRSlGgVS7hoFkdAwLKjinYQKHV9lChoBmgJaA9DCKWisfZ3+HFAlIaUUpRoFUu8aBZHQMCyqJQDV6N1fZQoaAZoCWgPQwjVzcXftllzQJSGlFKUaBVLxGgWR0DAsrW0eEIxdX2UKGgGaAloD0MIF3/bE2Tmc0CUhpRSlGgVS8ZoFkdAwLLX0HyEtnV9lChoBmgJaA9DCOV8sfei0HJAlIaUUpRoFUvSaBZHQMCy2YtYjjd1fZQoaAZoCWgPQwiCVmDIquhyQJSGlFKUaBVLrWgWR0DAsuP+IdlvdX2UKGgGaAloD0MItB8pIsPPc0CUhpRSlGgVS9JoFkdAwLLv/OMVDnV9lChoBmgJaA9DCF2JQPVPznBAlIaUUpRoFUumaBZHQMCy8MwlByF1fZQoaAZoCWgPQwhrtvKS/7dxQJSGlFKUaBVLs2gWR0DAsvSKLsKLdX2UKGgGaAloD0MIRYDTu3inaECUhpRSlGgVTegDaBZHQMCzBDVYp2F1fZQoaAZoCWgPQwj21Oqra4lxQJSGlFKUaBVLrWgWR0DAsxFmthd/dX2UKGgGaAloD0MIpWd6ifHQcECUhpRSlGgVS71oFkdAwLMUGLUCrHV9lChoBmgJaA9DCGspIO2/0nJAlIaUUpRoFUvdaBZHQMCzMjfWMCN1fZQoaAZoCWgPQwhnYORlzVZzQJSGlFKUaBVL42gWR0DAszXs5XEJdX2UKGgGaAloD0MItFvLZPjAckCUhpRSlGgVS7hoFkdAwLM8SzPa+XV9lChoBmgJaA9DCALTad2GtXJAlIaUUpRoFUuwaBZHQMCzQtBnjAB1fZQoaAZoCWgPQwg8UKc8umRyQJSGlFKUaBVLn2gWR0DAs1Pt0FKTdX2UKGgGaAloD0MItRmnIaq9cECUhpRSlGgVS5hoFkdAwLNiI42jwnV9lChoBmgJaA9DCDUnLzKBqW9AlIaUUpRoFUvEaBZHQMCzeZ8KG+N1fZQoaAZoCWgPQwhywK4mz55xQJSGlFKUaBVLmWgWR0DAs4VxKg7HdX2UKGgGaAloD0MICmmNQefMcECUhpRSlGgVS8hoFkdAwLOJbILgGnV9lChoBmgJaA9DCHHJcaf0SnNAlIaUUpRoFUvnaBZHQMCziuZThpB1fZQoaAZoCWgPQwh7TQ8KypZwQJSGlFKUaBVLs2gWR0DAs5xUcXFcdX2UKGgGaAloD0MIIlLTLuaXcUCUhpRSlGgVS9RoFkdAwLOmW4Vh1HV9lChoBmgJaA9DCAKetHDZlnNAlIaUUpRoFUvxaBZHQMCzrfoJRfp1fZQoaAZoCWgPQwg/H2XEBWhuQJSGlFKUaBVLrmgWR0DAs7xq46OpdX2UKGgGaAloD0MIOC9OfHUZckCUhpRSlGgVS81oFkdAwLPRD2Jzk3V9lChoBmgJaA9DCM/ZAkLr4nNAlIaUUpRoFUusaBZHQMCz7UY0l7d1fZQoaAZoCWgPQwgf8parHyZyQJSGlFKUaBVLwGgWR0DAs+4bjtG/dX2UKGgGaAloD0MI2SYVjTX6ckCUhpRSlGgVS+VoFkdAwLP4uLaVU3V9lChoBmgJaA9DCJBN8iM+b3JAlIaUUpRoFUv0aBZHQMCz/e2NNrV1fZQoaAZoCWgPQwhybagY59hxQJSGlFKUaBVLnmgWR0DAtAno3aSLdX2UKGgGaAloD0MI1CgkmZWycUCUhpRSlGgVTcEBaBZHQMC0CoZZSvV1fZQoaAZoCWgPQwgMzXUaaS1yQJSGlFKUaBVLr2gWR0DAtBfzFuNxdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2444, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV6QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWy9ob21lL3podXFpL2FuYWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFsvaG9tZS96aHVxaS9hbmFjb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (185 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 284.96125554523354, "std_reward": 22.412603289228393, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-03T01:48:54.760013"}
|