|
import os |
|
|
|
import pandas as pd |
|
from mmengine.dist import master_only |
|
from PIL import Image |
|
|
|
from xtuner.registry import BUILDER |
|
from mmengine.logging import print_log |
|
from .base_eval_dataset import BaseEvalDataset |
|
|
|
from .utils import YOrN_Extraction, load_jsonl |
|
from .utils import custom_data_process |
|
|
|
|
|
def eval_func(pred_list, label_list): |
|
pos = 1 |
|
neg = 0 |
|
yes_ratio = pred_list.count(1) / len(pred_list) |
|
|
|
TP, TN, FP, FN = 0, 0, 0, 0 |
|
for pred, label in zip(pred_list, label_list): |
|
if pred == pos and label == pos: |
|
TP += 1 |
|
elif pred == pos and label == neg: |
|
FP += 1 |
|
elif pred == neg and label == neg: |
|
TN += 1 |
|
elif pred == neg and label == pos: |
|
FN += 1 |
|
|
|
print_log('TP\tFP\tTN\tFN\t', 'current') |
|
print_log(f'{TP}\t{FP}\t{TN}\t{FN}', 'current') |
|
|
|
precision = float(TP) / float(TP + FP) |
|
recall = float(TP) / float(TP + FN) |
|
f1 = 2 * precision * recall / (precision + recall) |
|
acc = (TP + TN) / (TP + TN + FP + FN) |
|
print_log(f'Accuracy: {acc}', 'current') |
|
print_log(f'Precision: {precision}', 'current') |
|
print_log(f'Recall: {recall}', 'current') |
|
print_log(f'F1 score: {f1}', 'current') |
|
print_log(f'Yes ratio: {yes_ratio}', 'current') |
|
return f1 |
|
|
|
|
|
class POPEDataset(BaseEvalDataset): |
|
METAINFO: dict = dict(name='pope') |
|
|
|
def __init__(self, data_file, coco_val_path, image_processor, |
|
pad_image_to_square=True, |
|
metainfo=None): |
|
super().__init__(metainfo) |
|
if isinstance(data_file, str): |
|
data_file = [data_file] |
|
self.raw_data = [load_jsonl(f) for f in data_file] |
|
|
|
self.name = [ |
|
os.path.splitext(os.path.basename(f))[0] for f in data_file |
|
] |
|
|
|
self.coco_val_path = coco_val_path |
|
self.image_processor = BUILDER.build(image_processor) |
|
self.pad_image_to_square = pad_image_to_square |
|
|
|
self.results_xlsx_path = 'pope-results.xlsx' |
|
self.data = self.load_data_list() |
|
|
|
def get_image(self, image): |
|
image = Image.open(os.path.join(self.coco_val_path, image)) |
|
return image |
|
|
|
def __len__(self): |
|
return len(self.data) |
|
|
|
def load_data_list(self): |
|
data_list = [] |
|
idx = 0 |
|
for data_idx in range(len(self.raw_data)): |
|
for sample_idx in range(len(self.raw_data[data_idx])): |
|
sample = self.raw_data[data_idx][sample_idx] |
|
index = sample['question_id'] |
|
image_path = sample['image'] |
|
question = sample['text'] |
|
answer = sample['label'] |
|
category = self.name[data_idx] |
|
assert answer in ['yes', 'no'] |
|
data = { |
|
'img_id': idx, |
|
'index': index, |
|
'img': image_path, |
|
'question': question, |
|
'answer': answer, |
|
'category': category |
|
} |
|
data_list.append(data) |
|
idx += 1 |
|
return data_list |
|
|
|
def __getitem__(self, idx): |
|
data = self.data[idx] |
|
data_dict = custom_data_process(self, data) |
|
return data_dict |
|
|
|
@master_only |
|
def evaluate(self, result, work_dir, show=True): |
|
orig_index = [x['img_id'] for x in self.data] |
|
results = [] |
|
for pred_dict in result: |
|
index = pred_dict['img_id'] |
|
new_index = orig_index.index(index) |
|
filtered_rows = self.data[new_index] |
|
cur_result = {} |
|
cur_result['question'] = filtered_rows.get('question') |
|
cur_result['prediction'] = pred_dict['prediction'] |
|
cur_result['category'] = filtered_rows['category'] |
|
cur_result['index'] = filtered_rows.get('index') |
|
cur_result['answer'] = filtered_rows.get('answer') |
|
results.append(cur_result) |
|
|
|
results_df = pd.DataFrame(results) |
|
with pd.ExcelWriter( |
|
os.path.join(work_dir, self.results_xlsx_path), |
|
engine='openpyxl') as writer: |
|
results_df.to_excel(writer, index=False) |
|
|
|
score = 0 |
|
for sub_name in self.name: |
|
sub_results = [x for x in results if x['category'] == sub_name] |
|
pred_list = [ |
|
int(YOrN_Extraction(x['prediction']) == 'Yes') |
|
for x in sub_results |
|
] |
|
label_list = [ |
|
int(YOrN_Extraction(x['answer']) == 'Yes') for x in sub_results |
|
] |
|
print_log('============================================', 'current') |
|
print_log('Category: {}, # samples: {}'.format(sub_name, |
|
len(sub_results)), 'current') |
|
cur_f1 = eval_func(pred_list, label_list) |
|
score += cur_f1 |
|
|
|
score /= len(self.name) |
|
print_log('============================================', 'current') |
|
print_log(f'Average F1-score: {score}', 'current') |
|
print_log('============================================', 'current') |
|
print_log('POPE successfully finished evaluating', 'current') |
|
return score |
|
|