|
import os |
|
import os.path as osp |
|
from mmengine.dist import master_only |
|
from .base_eval_dataset import BaseEvalDataset |
|
|
|
from xtuner.registry import BUILDER |
|
from mmengine.logging import print_log |
|
import pandas as pd |
|
from xtuner.dataset.utils import decode_base64_to_image |
|
import numpy as np |
|
from .utils import custom_data_process |
|
|
|
|
|
def levenshtein_distance(s1, s2): |
|
if len(s1) > len(s2): |
|
s1, s2 = s2, s1 |
|
|
|
distances = range(len(s1) + 1) |
|
for i2, c2 in enumerate(s2): |
|
distances_ = [i2 + 1] |
|
for i1, c1 in enumerate(s1): |
|
if c1 == c2: |
|
distances_.append(distances[i1]) |
|
else: |
|
distances_.append(1 + min((distances[i1], distances[i1 + 1], distances_[-1]))) |
|
distances = distances_ |
|
return distances[-1] |
|
|
|
|
|
def anls_compute(groundtruth, prediction): |
|
gt_answer = ' '.join(groundtruth.strip().lower().split()) |
|
det_answer = ' '.join(prediction.strip().lower().split()) |
|
dist = levenshtein_distance(gt_answer, det_answer) |
|
length = max(len(groundtruth.upper()), len(prediction.upper())) |
|
values = 0.0 if length == 0 else float(dist) / float(length) |
|
return values |
|
|
|
|
|
def hit_calculate(result, dataset_name, anls_threshold=0.5): |
|
if 'DocVQA' in dataset_name or 'InfoVQA' in dataset_name: |
|
|
|
return [0.0 if 1 - np.min(x['match']) < anls_threshold else 1 - np.min(x['match']) for x in result] |
|
elif 'OCRVQA' in dataset_name: |
|
return [np.max(x['match']) for x in result] |
|
else: |
|
raise NotImplementedError(f"Dataset {dataset_name} not supported for hit calculation") |
|
|
|
|
|
def istype(s, type): |
|
if isinstance(s, type): |
|
return True |
|
try: |
|
return isinstance(eval(s), type) |
|
except Exception as _: |
|
return False |
|
|
|
|
|
class GeneralVQADataset(BaseEvalDataset): |
|
METAINFO: dict = dict(name='gvqa') |
|
|
|
def __init__(self, data_file, image_processor, |
|
pad_image_to_square=True, |
|
anls_threshold=0.5, metainfo=None,): |
|
super().__init__(metainfo) |
|
self.anls_threshold = anls_threshold |
|
self.data_file = data_file |
|
self.df = pd.read_csv(data_file, sep='\t') |
|
self.ocr = False |
|
if 'OCR' in data_file: |
|
self.ocr = True |
|
|
|
skip_noimg = True |
|
if skip_noimg: |
|
self.df = self.df[~pd.isna(self.df['image'])] |
|
|
|
self.image_processor = BUILDER.build(image_processor) |
|
self.pad_image_to_square = pad_image_to_square |
|
self.name = os.path.splitext(os.path.basename(data_file))[0] |
|
self.results_xlsx_path = os.path.splitext(os.path.basename(data_file))[0] + '-results.xlsx' |
|
self.data = self.load_data_list() |
|
|
|
def get_image(self, image): |
|
while len(image) < 16: |
|
if self.ocr: |
|
image = self.df[self.df['index'] == image]['image'].values |
|
else: |
|
image = self.df[self.df['index'] == int(image)]['image'].values |
|
assert len(image) == 1 |
|
image = image[0] |
|
image = decode_base64_to_image(image) |
|
return image |
|
|
|
def __len__(self): |
|
return len(self.df) |
|
|
|
def __getitem__(self, idx): |
|
data = self.data[idx] |
|
data_dict = custom_data_process(self, data) |
|
return data_dict |
|
|
|
def load_data_list(self): |
|
data_list = [] |
|
for idx in range(len(self.df)): |
|
index = self.df.iloc[idx]['index'] |
|
image = self.df.iloc[idx]['image'] |
|
question = self.df.iloc[idx]['question'] |
|
split = self.df.iloc[idx]['split'] if 'split' in self.df.iloc[ |
|
0].keys() else None |
|
answer = self.df.iloc[idx]['answer'] if 'answer' in self.df.iloc[ |
|
0].keys() else None |
|
|
|
data = { |
|
'img': image, |
|
'question': question, |
|
'answer': answer, |
|
'index': index, |
|
'img_id': idx |
|
} |
|
if split is not None: |
|
data['split'] = split |
|
|
|
data_list.append(data) |
|
return data_list |
|
|
|
@master_only |
|
def evaluate(self, results, work_dir): |
|
orig_index = [x['img_id'] for x in self.data] |
|
new_results = [] |
|
for pred_dict in results: |
|
index = pred_dict['img_id'] |
|
new_index = orig_index.index(index) |
|
filtered_rows = self.data[new_index] |
|
|
|
cur_result = {} |
|
cur_result['question'] = filtered_rows.get('question') |
|
cur_result['split'] = filtered_rows.get('split') |
|
cur_result['prediction'] = pred_dict['prediction'] |
|
cur_result['index'] = filtered_rows.get('index') |
|
cur_result['index'] = filtered_rows.get('answer') |
|
answers = filtered_rows.get('answer') |
|
if istype(answers, list): |
|
answers = eval(answers) |
|
else: |
|
answers = [answers] |
|
if 'OCRVQA' in self.name: |
|
match = [(1.0 if (x.strip().lower() == cur_result['prediction'].strip().lower()) else 0.0) for x in |
|
answers] |
|
else: |
|
match = [anls_compute(x, cur_result['prediction']) for x in answers] |
|
cur_result['match'] = match |
|
|
|
new_results.append(cur_result) |
|
|
|
results_df = pd.DataFrame(new_results) |
|
with pd.ExcelWriter(osp.join(work_dir, self.results_xlsx_path), engine='openpyxl') as writer: |
|
results_df.to_excel(writer, index=False) |
|
|
|
ret = dict() |
|
if 'split' in results_df: |
|
splits = list(set(results_df['split'])) |
|
for sp in splits: |
|
sub = [new_results[i] for i, x in enumerate(new_results) if x['split'] == sp] |
|
hit = hit_calculate(sub, self.name) |
|
ret[sp] = np.mean(hit) * 100 |
|
else: |
|
hit = hit_calculate(new_results, self.name) |
|
ret['overall'] = np.mean(hit) * 100 |
|
|
|
print_log('============================================', 'current') |
|
print_log(ret, 'current') |
|
print_log('============================================', 'current') |
|
print_log(f'{self.name} successfully finished evaluating', 'current') |
|
return ret |
|
|