|
|
import copy |
|
|
import json |
|
|
import os |
|
|
|
|
|
import numpy as np |
|
|
import cv2 |
|
|
import pycocotools.mask as maskUtils |
|
|
|
|
|
|
|
|
def get_video_frames(video_path): |
|
|
cap = cv2.VideoCapture(video_path) |
|
|
|
|
|
if not cap.isOpened(): |
|
|
print("Error: Cannot open video file.") |
|
|
return |
|
|
|
|
|
frames = [] |
|
|
|
|
|
frame_id = 0 |
|
|
while True: |
|
|
ret, frame = cap.read() |
|
|
|
|
|
if not ret: |
|
|
break |
|
|
|
|
|
frames.append(frame) |
|
|
|
|
|
frame_id += 1 |
|
|
|
|
|
cap.release() |
|
|
return frames |
|
|
|
|
|
|
|
|
def images_to_video(frames, video_name, fps=6): |
|
|
height, width, layers = frames[0].shape |
|
|
|
|
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v') |
|
|
video = cv2.VideoWriter(video_name, fourcc, fps, (width, height)) |
|
|
|
|
|
for frame in frames: |
|
|
video.write(frame) |
|
|
|
|
|
|
|
|
video.release() |
|
|
return |
|
|
|
|
|
def decode_masklet(masklet): |
|
|
masks = [] |
|
|
for _rle in masklet: |
|
|
mask = maskUtils.decode(_rle) |
|
|
print('mask_shape: ', mask.shape) |
|
|
masks.append(mask) |
|
|
print(len(masks)) |
|
|
return masks |
|
|
|
|
|
def draw_mask(image, mask): |
|
|
obj_mask = mask * 255 |
|
|
obj_mask = np.stack([obj_mask * 1, obj_mask * 0, obj_mask * 0], axis=2) |
|
|
obj_mask = obj_mask * 0.5 + copy.deepcopy(image) * 0.5 |
|
|
obj_mask = obj_mask.astype(np.uint8) |
|
|
return obj_mask |
|
|
|
|
|
def add_mask2images(frames, masklets): |
|
|
show_videos = [] |
|
|
for i_frames, (frame, masks) in enumerate(zip(frames, masklets)): |
|
|
if i_frames == 0: |
|
|
n_obj = masks.shape[-1] |
|
|
for i_obj in range(n_obj): |
|
|
show_videos.append([]) |
|
|
|
|
|
n_obj = masks.shape[-1] |
|
|
for i_obj in range(n_obj): |
|
|
show_videos[i_obj].append(draw_mask(copy.deepcopy(frame), masks[:, :, i_obj])) |
|
|
return show_videos |
|
|
|
|
|
|
|
|
|
|
|
demo_video_anno = '/mnt/bn/xiangtai-training-data-video/dataset/segmentation_datasets/sam_v_full/sav_000/sav_train/sav_000/sav_000001_manual.json' |
|
|
video_root = '/mnt/bn/xiangtai-training-data-video/dataset/segmentation_datasets/sam_v_full/sav_000/sav_train/sav_000' |
|
|
video_save_path = '/mnt/bn/xiangtai-training-data/project/xiangtai-windows/tt_vlm/work_dirs/sam_v_demos/demo.mp4' |
|
|
|
|
|
caption_json_path = 'work_dirs/pesudo_label_sam2_qwen72b_brief_caption/sav_000/' |
|
|
cap_json_files = os.listdir(caption_json_path) |
|
|
cap_json_paths = [os.path.join(caption_json_path, item) for item in cap_json_files] |
|
|
caption_jsons = [] |
|
|
for cap_json_path in cap_json_paths: |
|
|
with open(cap_json_path, 'r') as f: |
|
|
caption_jsons.extend(json.load(f)) |
|
|
|
|
|
video_obj_cap_dict = {} |
|
|
for cap_item in caption_jsons: |
|
|
video_id = cap_item['video_id'] |
|
|
obj_id = cap_item['obj_id'] |
|
|
if video_id not in video_obj_cap_dict.keys(): |
|
|
video_obj_cap_dict[video_id] = {} |
|
|
video_obj_cap_dict[video_id].update({obj_id: cap_item}) |
|
|
|
|
|
with open(demo_video_anno, 'r') as f: |
|
|
data = json.load(f) |
|
|
|
|
|
print(data.keys()) |
|
|
for key in data.keys(): |
|
|
if key == 'masklet': |
|
|
continue |
|
|
print(key, ': ') |
|
|
print(data[key]) |
|
|
|
|
|
video_path = os.path.join(video_root, '{}.mp4'.format(data['video_id'])) |
|
|
frames = get_video_frames(video_path) |
|
|
masklents = decode_masklet(data['masklet']) |
|
|
frames = frames[::4] |
|
|
assert len(frames) == len(masklents) |
|
|
show_videos = add_mask2images(frames, masklents) |
|
|
|
|
|
for i, show_video in enumerate(show_videos): |
|
|
text = video_obj_cap_dict[data['video_id']][i] |
|
|
print('\n\n', text, '\n\n') |
|
|
video_save_path_ = video_save_path.replace('demo.mp4', 'demo_{}.mp4'.format(i)) |
|
|
images_to_video(show_video, video_save_path_) |
|
|
|
|
|
|