DenseLabelDev / third_parts /scripts /test_sam_part.py
zhouyik's picture
Upload folder using huggingface_hub
032e687 verified
import os
from pycocotools import mask as mask_util
import json
import numpy as np
import cv2
from distinctipy import distinctipy
import matplotlib.pyplot as plt
from PIL import Image
from types import MethodType
import json
import random
import torch
import torchvision
from detectron2.data import MetadataCatalog
from detectron2.structures import BitMasks, PolygonMasks
from detectron2.utils.visualizer import ColorMode, Visualizer
from detectron2.data.detection_utils import read_image
from third_parts.APE.build_ape import build_ape_predictor
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def sample_points(box, mask, min_points=3, max_points=16, dense_max_points=32):
x0, y0, w, h = box
aspect_ratio = w / h
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_points, max_points + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_points and i * j >= min_points)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, w, h, 50)
width_bin = w / target_aspect_ratio[0]
height_bin = h / target_aspect_ratio[1]
ret_points = []
for wi in range(target_aspect_ratio[0]):
xi = x0 + (wi+0.5) * width_bin
for hi in range(target_aspect_ratio[1]):
yi = y0 + (hi+0.5) * height_bin
if mask[int(yi), int(xi)] > 0:
ret_points.append((xi, yi))
# if len(ret_points) < min_points:
temp_points = []
for wi in range(int(x0), int(x0+w)):
for hi in range(int(y0), int(y0+h)):
if mask[int(hi), int(wi)] > 0:
temp_points.append((wi, hi))
if len(temp_points)//dense_max_points < 1:
uniform_indices = list(range(0, len(temp_points)))
else:
uniform_indices = list(range(0, len(temp_points), len(temp_points)//dense_max_points))
additional_points = [temp_points[uniform_idx] for uniform_idx in uniform_indices[1:-1]]
# ret_points = [temp_points[uniform_indices[1]], temp_points[uniform_indices[2]], temp_points[uniform_indices[3]]]
ret_points = ret_points + additional_points
return ret_points
def mask_iou(masks, chunk_size=50, chunk_mode=False):
masks1 = masks.unsqueeze(1).char() # n, 1, h, w
masks2 = masks.unsqueeze(0).char() # 1, n, h, w
if not chunk_mode:
intersection = (masks1 * masks2)
union = (masks1 + masks2 - intersection).sum(-1).sum(-1)
intersection = intersection.sum(-1).sum(-1)
return intersection, union
def chunk_mask_iou(_chunk_size=50):
num_chunks = masks1.shape[0] // _chunk_size
if masks1.shape[0] % _chunk_size > 0:
num_chunks += 1
row_chunks_intersection, row_chunks_union = [], []
for row_idx in range(num_chunks):
col_chunks_intersection, col_chunks_union = [], []
masks1_chunk = masks1[row_idx*_chunk_size:(row_idx+1)*_chunk_size]
for col_idx in range(num_chunks):
masks2_chunk = masks2[:, col_idx*_chunk_size:(col_idx+1)*_chunk_size]
try:
intersection = masks1_chunk * masks2_chunk
temp_sum = masks1_chunk + masks2_chunk
union = (temp_sum - intersection).sum(-1).sum(-1)
intersection = intersection.sum(-1).sum(-1)
except torch.cuda.OutOfMemoryError:
return False, None, None
col_chunks_intersection.append(intersection)
col_chunks_union.append(union)
row_chunks_intersection.append(torch.cat(col_chunks_intersection, dim=1))
row_chunks_union.append(torch.cat(col_chunks_union, dim=1))
intersection = torch.cat(row_chunks_intersection, dim=0)
union = torch.cat(row_chunks_union, dim=0)
return True, intersection, union
for c_size in [chunk_size, chunk_size//2, chunk_size//4]:
is_ok, intersection, union = chunk_mask_iou(c_size)
if not is_ok:
continue
return intersection, union
def mask_iou_v2(masks1, masks2, chunk_size=50, chunk_mode=False):
masks1 = masks1.unsqueeze(1).char() # n, 1, h, w
masks2 = masks2.unsqueeze(0).char() # 1, m, h, w
if not chunk_mode:
intersection = (masks1 * masks2)
union = (masks1 + masks2 - intersection).sum(-1).sum(-1)
intersection = intersection.sum(-1).sum(-1)
return intersection, union
def chunk_mask_iou(_chunk_size=50):
num_chunks1 = masks1.shape[0] // _chunk_size
if masks1.shape[0] % _chunk_size > 0:
num_chunks1 += 1
num_chunks2 = masks2.shape[1] // _chunk_size
if masks2.shape[0] % _chunk_size > 0:
num_chunks2 += 1
row_chunks_intersection, row_chunks_union = [], []
for row_idx in range(num_chunks1):
col_chunks_intersection, col_chunks_union = [], []
masks1_chunk = masks1[row_idx*_chunk_size:(row_idx+1)*_chunk_size]
for col_idx in range(num_chunks2):
masks2_chunk = masks2[:, col_idx*_chunk_size:(col_idx+1)*_chunk_size]
try:
intersection = masks1_chunk * masks2_chunk
temp_sum = masks1_chunk + masks2_chunk
union = (temp_sum - intersection).sum(-1).sum(-1)
intersection = intersection.sum(-1).sum(-1)
except torch.cuda.OutOfMemoryError:
return False, None, None
col_chunks_intersection.append(intersection)
col_chunks_union.append(union)
row_chunks_intersection.append(torch.cat(col_chunks_intersection, dim=1))
row_chunks_union.append(torch.cat(col_chunks_union, dim=1))
intersection = torch.cat(row_chunks_intersection, dim=0)
union = torch.cat(row_chunks_union, dim=0)
return True, intersection, union
for c_size in [chunk_size, chunk_size//2, chunk_size//4]:
is_ok, intersection, union = chunk_mask_iou(c_size)
if not is_ok:
continue
return intersection, union
return intersection, union
def mask_area(masks, chunk_size=50, chunk_mode=False):
if not chunk_mode:
return masks.sum(-1).sum(-1)
num_chunks = masks.shape[0] // chunk_size
if masks.shape[0] % chunk_size > 0:
num_chunks += 1
areas = []
for i in range(num_chunks):
masks_i = masks[i*chunk_size:(i+1)*chunk_size]
areas.append(masks_i.sum(-1).sum(-1))
return torch.cat(areas, dim=0)
def run_on_image(image_file, anno_file, save_path, sam_predictor, sam_auto_mask_generator):
if not os.path.exists(image_file):
return None
file_name = os.path.basename(image_file).split('.')[0]
with open(anno_file, 'r') as f:
json_results = json.load(f)
sam_image = cv2.imread(image_file)
ori_height, ori_width = sam_image.shape[:2]
sam_image = cv2.cvtColor(sam_image, cv2.COLOR_BGR2RGB)
ori_image = Image.open(image_file)
for ins_anno in json_results:
root_ins_id = ins_anno['ins_id']
object_mask = ins_anno['segmentation']
if isinstance(object_mask["counts"], list):
object_mask = mask_util.frPyObjects(object_mask, object_mask["size"][0], object_mask["size"][1])
root_mask = mask_util.decode(object_mask)
root_mask = root_mask.astype(np.uint8).squeeze()
root_mask = torch.from_numpy(root_mask).unsqueeze(0)
root_bbox = torchvision.ops.masks_to_boxes(root_mask)
# crop
root_bbox = root_bbox[0].numpy().tolist()
box_w = root_bbox[2] - root_bbox[0]
box_h = root_bbox[3] - root_bbox[1]
loose_box_x0 = int(root_bbox[0] - box_w // 4)
loose_box_y0 = int(root_bbox[1] - box_h // 4)
loose_box_x1 = int(root_bbox[2] + box_w // 4)
loose_box_y1 = int(root_bbox[3] + box_h // 4)
loose_box_x0 = loose_box_x0 if loose_box_x0 > 0 else 0
loose_box_y0 = loose_box_y0 if loose_box_y0 > 0 else 0
loose_box_x1 = loose_box_x1 if loose_box_x1 < ori_width else ori_width
loose_box_y1 = loose_box_y1 if loose_box_y1 < ori_height else ori_height
loose_box_w = loose_box_x1 - loose_box_x0
loose_box_h = loose_box_y1 - loose_box_y0
if not (loose_box_w >= box_w and loose_box_h >= box_h):
continue
if loose_box_w < 256:
padded_length_w = 256 - loose_box_w
left_padded = padded_length_w // 2
right_padded = padded_length_w - left_padded
if loose_box_x0 - left_padded < 0:
right_padded = right_padded + left_padded - loose_box_x0
left_padded = loose_box_x0
if loose_box_x1 + right_padded > ori_width:
left_padded = left_padded + loose_box_x1 + right_padded - ori_width
right_padded = ori_width - loose_box_x1
loose_box_x0 = int(loose_box_x0 - left_padded)
loose_box_x1 = int(loose_box_x1 + right_padded)
loose_box_x0 = loose_box_x0 if loose_box_x0 > 0 else 0
loose_box_x1 = loose_box_x1 if loose_box_x1 < ori_width else ori_width
if loose_box_h < 256:
padded_length_h = 256 - loose_box_h
top_padded = padded_length_h // 2
bottom_padded = padded_length_h - top_padded
if loose_box_y0 - top_padded < 0:
bottom_padded = bottom_padded + top_padded - loose_box_y0
top_padded = loose_box_y0
if loose_box_y1 + bottom_padded > ori_height:
top_padded = top_padded + loose_box_y1 + bottom_padded - ori_height
bottom_padded = ori_height - loose_box_y1
loose_box_y0 = int(loose_box_y0 - top_padded)
loose_box_y1 = int(loose_box_y1 + bottom_padded)
loose_box_y0 = loose_box_y0 if loose_box_y0 > 0 else 0
loose_box_y1 = loose_box_y1 if loose_box_y1 < ori_height else ori_height
loose_box_w = loose_box_x1 - loose_box_x0
loose_box_h = loose_box_y1 - loose_box_y0
if loose_box_w > loose_box_h:
padded_length_h = loose_box_w - loose_box_h
top_padded = padded_length_h // 2
bottom_padded = padded_length_h - top_padded
if loose_box_y0 - top_padded < 0:
bottom_padded = bottom_padded + top_padded - loose_box_y0
top_padded = loose_box_y0
if loose_box_y1 + bottom_padded > ori_height:
top_padded = top_padded + loose_box_y1 + bottom_padded - ori_height
bottom_padded = ori_height - loose_box_y1
loose_box_y0 = int(loose_box_y0 - top_padded)
loose_box_y1 = int(loose_box_y1 + bottom_padded)
loose_box_y0 = loose_box_y0 if loose_box_y0 > 0 else 0
loose_box_y1 = loose_box_y1 if loose_box_y1 < ori_height else ori_height
elif loose_box_h > loose_box_w:
padded_length_w = loose_box_h - loose_box_w
left_padded = padded_length_w // 2
right_padded = padded_length_w - left_padded
if loose_box_x0 - left_padded < 0:
right_padded = right_padded + left_padded - loose_box_x0
left_padded = loose_box_x0
if loose_box_x1 + right_padded > ori_width:
left_padded = left_padded + loose_box_x1 + right_padded - ori_width
right_padded = ori_width - loose_box_x1
loose_box_x0 = int(loose_box_x0 - left_padded)
loose_box_x1 = int(loose_box_x1 + right_padded)
loose_box_x0 = loose_box_x0 if loose_box_x0 > 0 else 0
loose_box_x1 = loose_box_x1 if loose_box_x1 < ori_width else ori_width
loose_box_w = loose_box_x1 - loose_box_x0
loose_box_h = loose_box_y1 - loose_box_y0
image_patch = ori_image[loose_box_y0:loose_box_y1, loose_box_x0:loose_box_x1, :]
ori_image_patch_h, ori_image_patch_w = image_patch.shape[:2]
root_mask_patch = root_mask[:, loose_box_y0:loose_box_y1, loose_box_x0:loose_box_x1]
# resize the long side to 1024
if loose_box_w > loose_box_h:
target_w = 1024
target_h = int(loose_box_h / loose_box_w * target_w)
else:
target_h = 1024
target_w = int(loose_box_w / loose_box_h * target_h)
image_patch = cv2.resize(image_patch, dsize=(target_w, target_h), interpolation=cv2.INTER_LINEAR)
root_mask_patch = torch.nn.functional.interpolate(root_mask_patch[None].to(torch.float32), size=(target_h, target_w), mode="bilinear")
root_mask_patch = (root_mask_patch[0] > 0.5).to(torch.int8)
sam_predictor.set_image(image_patch)
# sample points and prompt SAM
root_bbox_patch = torchvision.ops.masks_to_boxes(root_mask_patch)
x0, y0, x1, y1 = root_bbox_patch[0].numpy().tolist()
ret_points = sample_points([x0, y0, x1 - x0, y1 - y0], root_mask_patch[0], min_points=3, max_points=16, dense_max_points=32)
ret_points_list = [list(point) for point in ret_points]
point_coords = torch.tensor(ret_points_list, device=sam_predictor.device).unsqueeze(1)
point_labels = torch.ones(size=(point_coords.shape[0], 1), dtype=torch.int, device=sam_predictor.device)
#TODO, sam automatically prediction
generated_annos = sam_auto_mask_generator.generate(image_patch)
auto_sam_masks, auto_iou_scores = [], []
for object_anno in generated_annos:
object_mask = object_anno["segmentation"]
if isinstance(object_mask["counts"], list):
object_mask = mask_util.frPyObjects(object_mask, object_mask["size"][0], object_mask["size"][1])
mask = mask_util.decode(object_mask)
mask = mask.astype(np.uint8).squeeze()
auto_sam_masks.append(torch.from_numpy(mask))
auto_iou_scores.append(object_anno['predicted_iou'])
auto_sam_masks = torch.stack(auto_sam_masks)
auto_iou_scores = torch.as_tensor(auto_iou_scores)
part_masks, part_masks_score, _ = sam_predictor.predict_torch(
point_coords=point_coords,
point_labels=point_labels,
boxes=None,
multimask_output=True,
)
batch_size, num_masks_per_input = part_masks.shape[:2]
print(part_masks.device)
# first round filter, by iou score
part_masks_area = mask_area(part_masks.flatten(0, 1), chunk_size=50, chunk_mode=True)
part_masks_area = part_masks_area.reshape(batch_size, num_masks_per_input)
part_masks_idx = torch.argmin(part_masks_area, dim=1)
part_masks = torch.gather(part_masks, dim=1, index=part_masks_idx)
print(part_masks.shape)
part_masks_score = torch.gather(part_masks_score, dim=1, index=part_masks_idx)
part_masks = part_masks[part_masks_score > 0.9]
print(part_masks.shape)
auto_sam_masks = auto_sam_masks[auto_iou_scores > 0.9]
part_masks = torch.cat([part_masks, auto_sam_masks], dim=0)
part_masks_score = torch.cat([part_masks_score[part_masks_score > 0.9], auto_iou_scores[auto_iou_scores > 0.9]], dim=0)
# sort by score, from high to low
sorted_indices = sorted(range(len(part_masks)), key=lambda k: part_masks_score[k], reverse=True)
sorted_part_masks = torch.stack([part_masks[idx] for idx in sorted_indices], dim=0)
# nms
downsampled_part_masks = torch.nn.functional.interpolate(sorted_part_masks[None], size=(target_h//4, target_w//4), mode="bilinear")
downsampled_part_masks = (downsampled_part_masks[0] > 0.5).to(sorted_part_masks.dtype).to("cuda")
intersection, union = mask_iou(downsampled_part_masks, chunk_size=50, chunk_mode=True)
mask_iou_matrix = intersection / union
num_instances = len(mask_iou_matrix)
keep = [True] * num_instances
for ins_i in range(num_instances):
if not keep[ins_i]:
continue
for ins_j in range(ins_i, num_instances):
if ins_j == ins_i:
continue
if mask_iou_matrix[ins_i, ins_j] > 0.8:
keep[ins_j] = False
# roc
downsampled_root_mask_patch = torch.nn.functional.interpolate(root_mask_patch[None].to(torch.float32), size=(target_h//4, target_w//4), mode="bilinear")
downsampled_root_mask_patch = (downsampled_root_mask_patch[0] > 0.5).to(root_mask_patch.dtype).to("cuda")
intersection, union = mask_iou_v2(downsampled_root_mask_patch, downsampled_part_masks, chunk_size=50, chunk_mode="bilinear")
downsampled_part_masks_area = mask_area(downsampled_part_masks, chunk_mode=True, chunk_size=50)
mask_iou = intersection[0] / union[0]
mask_roc = intersection[0] / downsampled_part_masks_area
maybe_is_part = (mask_iou < 0.8) & (mask_roc > 0.95) & torch.as_tensor(keep)
if not torch.any(maybe_is_part):
continue
left_part_masks = sorted_part_masks[maybe_is_part]
left_part_masks = torch.nn.functional.interpolate(left_part_masks[None].to(torch.float32), size=(ori_image_patch_h, ori_image_patch_w), mode="bilinear")
left_part_masks = (left_part_masks[0] > 0.5).to(root_mask.dtype).to(root_mask.device)
full_size_part_masks = torch.zeros_like(root_mask).repeat(left_part_masks.shape[0], 1, 1)
full_size_part_masks[:, loose_box_y0:loose_box_y1, loose_box_x0:loose_box_x1] = left_part_masks
full_size_part_masks = full_size_part_masks.cpu().numpy()
save_json_results = []
for part_idx, mask in enumerate(full_size_part_masks):
rle = mask_util.encode(np.array(mask[:, :, None], order="F", dtype="uint8"))[0]
rle["counts"] = rle["counts"].decode("utf-8")
save_json_results.append({
"root_id": root_ins_id,
"part_id": part_idx+1,
"segmentation": rle,
})
with open(os.path.join(save_path, file_name+'.json'), 'w') as f:
json.dump(save_json_results, f)