zhouyik's picture
Upload folder using huggingface_hub
032e687 verified
# Copyright (c) OpenMMLab. All rights reserved.
import math
import os.path as osp
import warnings
from collections import OrderedDict
from typing import List, Optional
import torch
import torch.nn as nn
from accelerate import init_empty_weights
from mmengine import print_log
from mmengine.config import Config, ConfigDict
from mmengine.model import BaseModel
from peft import get_peft_model, prepare_model_for_kbit_training
from transformers import (AddedToken, AutoConfig, CLIPImageProcessor,
CLIPVisionModel, LlamaForCausalLM,
LlamaTokenizerFast, LlavaConfig,
LlavaForConditionalGeneration, LlavaProcessor)
from transformers.integrations import is_deepspeed_zero3_enabled
from transformers import PreTrainedModel
from xtuner.utils import IGNORE_INDEX, IMAGE_TOKEN_INDEX
from xtuner.registry import BUILDER
from xtuner.utils import DEFAULT_IMAGE_TOKEN
from xtuner.model.modules import ProjectorConfig, ProjectorModel, dispatch_modules
from xtuner.model.modules.dispatch import SUPPORT_FLASH1, SUPPORT_FLASH2
from xtuner.model.utils import (LoadWoInit, find_all_linear_names,
get_peft_model_state_dict, guess_load_checkpoint,
make_inputs_require_grad, traverse_dict)
def convert_state_dict_to_hf(state_dict, mapping):
new_state_dict = {}
for key, value in state_dict.items():
if key.endswith('.inv_freq'):
continue
for key_to_modify, new_key in mapping.items():
if key_to_modify in key:
key = key.replace(key_to_modify, new_key)
new_state_dict[key] = value
return new_state_dict
class LLaVAModel(BaseModel):
def __init__(self,
llm,
visual_encoder,
freeze_llm=False,
freeze_visual_encoder=False,
visual_select_layer=-2,
pretrained_pth=None,
projector_depth=2,
llm_lora=None,
visual_encoder_lora=None,
use_activation_checkpointing=True,
max_position_embeddings=None):
super().__init__()
self.freeze_llm = freeze_llm
self.freeze_visual_encoder = freeze_visual_encoder
with LoadWoInit():
if isinstance(llm, dict):
llm = self._dispatch_lm_model_cfg(llm, max_position_embeddings)
self.llm = self._build_from_cfg_or_module(llm)
self.visual_encoder = self._build_from_cfg_or_module(
visual_encoder)
self.llm.config.use_cache = False
dispatch_modules(self.llm)
self.projector_depth = projector_depth
projector_config = ProjectorConfig(
visual_hidden_size=self.visual_encoder.config.hidden_size,
llm_hidden_size=self.llm.config.hidden_size,
depth=self.projector_depth)
self.projector = ProjectorModel(projector_config).to(
self.visual_encoder.dtype)
if self.freeze_llm:
self.llm.requires_grad_(False)
if self.freeze_visual_encoder:
self.visual_encoder.requires_grad_(False)
if use_activation_checkpointing:
# For backward compatibility
if hasattr(self.llm, 'enable_input_require_grads'):
self.llm.enable_input_require_grads()
else:
self.llm.get_input_embeddings().register_forward_hook(
make_inputs_require_grad)
if hasattr(self.visual_encoder, 'enable_input_require_grads'):
self.visual_encoder.enable_input_require_grads()
else:
self.visual_encoder.get_input_embeddings(
).register_forward_hook(make_inputs_require_grad)
self.projector.enable_input_require_grads()
# enable gradient (activation) checkpointing for memory efficiency
self.gradient_checkpointing_enable()
self.use_llm_lora = llm_lora is not None
self.use_visual_encoder_lora = visual_encoder_lora is not None
if self.use_llm_lora:
self._prepare_llm_for_lora(llm_lora, use_activation_checkpointing)
if self.use_visual_encoder_lora:
self._prepare_visual_encoder_for_lora(
visual_encoder_lora, use_activation_checkpointing)
if pretrained_pth is not None:
pretrained_state_dict = guess_load_checkpoint(pretrained_pth)
self.load_state_dict(pretrained_state_dict, strict=False)
print_log(f'Load pretrained weight from {pretrained_pth}',
'current')
self.visual_select_layer = visual_select_layer
self._is_init = True
self.is_first_iter = True
def _parse_lora_config(self, lora_config):
if isinstance(lora_config, dict) or isinstance(
lora_config, Config) or isinstance(lora_config, ConfigDict):
lora_config = BUILDER.build(lora_config)
return lora_config
def _prepare_llm_for_lora(self,
lora_config,
use_activation_checkpointing=True):
lora_config = self._parse_lora_config(lora_config)
self.llm = prepare_model_for_kbit_training(
self.llm, use_activation_checkpointing)
if lora_config.target_modules is None:
modules = find_all_linear_names(self.llm)
lora_config.target_modules = modules
self.llm = get_peft_model(self.llm, lora_config)
def _prepare_visual_encoder_for_lora(self,
lora_config,
use_activation_checkpointing=True):
lora_config = self._parse_lora_config(lora_config)
if lora_config.target_modules is None:
modules = find_all_linear_names(self.visual_encoder)
lora_config.target_modules = modules
self.visual_encoder = get_peft_model(self.visual_encoder, lora_config)
def gradient_checkpointing_enable(self):
self.activation_checkpointing_enable()
def activation_checkpointing_enable(self):
self.llm.gradient_checkpointing_enable()
self.visual_encoder.gradient_checkpointing_enable()
self.projector.gradient_checkpointing_enable()
def gradient_checkpointing_disable(self):
self.activation_checkpointing_disable()
def activation_checkpointing_disable(self):
self.llm.gradient_checkpointing_disable()
self.visual_encoder.gradient_checkpointing_disable()
self.projector.gradient_checkpointing_disable()
def init_weights(self):
pass
def state_dict(self, *args, **kwargs):
state_dict = super().state_dict(*args, **kwargs)
to_return = OrderedDict()
# Step 1. visual_encoder
if self.use_visual_encoder_lora:
to_return.update(
get_peft_model_state_dict(
self.visual_encoder, state_dict=state_dict))
elif not self.freeze_visual_encoder:
to_return.update({
k: v
for k, v in state_dict.items() if 'visual_encoder.' in k
})
# Step 2. LLM
if self.use_llm_lora:
to_return.update(
get_peft_model_state_dict(self.llm, state_dict=state_dict))
elif not self.freeze_llm:
to_return.update(
{k: v
for k, v in state_dict.items() if 'llm.' in k})
# Step 3. Projector
to_return.update(
{k: v
for k, v in state_dict.items() if 'projector.' in k})
return to_return
@staticmethod
def _prepare_for_long_context_training(cfg, llm_cfg,
max_position_embeddings):
orig_rope_scaling = getattr(llm_cfg, 'rope_scaling', None)
if orig_rope_scaling is None:
orig_rope_scaling = {'factor': 1}
orig_rope_scaling_factor = orig_rope_scaling[
'factor'] if 'factor' in orig_rope_scaling.keys() else 1
orig_ctx_len = getattr(llm_cfg, 'max_position_embeddings', None)
if orig_ctx_len:
orig_ctx_len *= orig_rope_scaling_factor
if max_position_embeddings > orig_ctx_len:
scaling_factor = float(
math.ceil(max_position_embeddings / orig_ctx_len))
llm_cfg.rope_scaling = {
'type': 'linear',
'factor': scaling_factor
}
# hardcode for internlm2
llm_cfg.attn_implementation = 'flash_attention_2'
cfg.config = llm_cfg
return cfg, llm_cfg
@staticmethod
def _prepare_for_flash_attn(cfg, llm_cfg):
cls_name = type(llm_cfg).__name__
SUPPORT_SDPA_ATTN = ('LlamaConfig', 'GemmaConfig', 'MistralConfig',
'MixtralConfig', 'Qwen2Config', 'Qwen2MoeConfig',
'Starcoder2Config', 'Starcoder2Config',
'Phi3Config')
SUPPORT_FLASH_ATTN2 = ('InternLM2Config', 'LlamaConfig', 'GemmaConfig',
'MistralConfig', 'MixtralConfig', 'Qwen2Config',
'Qwen2MoeConfig', 'Starcoder2Config',
'Starcoder2Config', 'Phi3Config')
torch_dtype = torch.bfloat16 if (
torch.cuda.is_available() and torch.cuda.is_bf16_supported()) \
else torch.float16
if getattr(cfg, 'attn_implementation', None) is not None:
# Flash Attention 2.0 only supports torch.float16 and
# torch.bfloat16 dtypes
if cfg.attn_implementation == 'flash_attention_2':
cfg.torch_dtype = torch_dtype
elif SUPPORT_FLASH2 and cls_name in SUPPORT_FLASH_ATTN2:
cfg.torch_dtype = torch_dtype
cfg.attn_implementation = 'flash_attention_2'
elif SUPPORT_FLASH1 and cls_name in SUPPORT_SDPA_ATTN:
cfg.attn_implementation = 'sdpa'
return cfg, llm_cfg
@staticmethod
def _prepare_for_qlora_zero3(cfg):
if (not is_deepspeed_zero3_enabled()) or (not hasattr(
cfg, 'quantization_config')):
return cfg
torch_dtype = torch.bfloat16 if (
torch.cuda.is_available() and torch.cuda.is_bf16_supported()) \
else torch.float16
cfg.torch_dtype = torch_dtype
quantization_config = cfg.quantization_config
quantization_config.bnb_4bit_compute_dtype = torch_dtype
quantization_config.bnb_4bit_quant_storage = torch_dtype
return cfg
def _dispatch_lm_model_cfg(self, cfg, max_position_embeddings=None):
cfg = self._prepare_for_qlora_zero3(cfg)
pretrained_model_name_or_path = cfg.pretrained_model_name_or_path
llm_cfg = AutoConfig.from_pretrained(
pretrained_model_name_or_path, trust_remote_code=True)
cfg, llm_cfg = self._prepare_for_flash_attn(cfg, llm_cfg)
if max_position_embeddings is not None:
cfg, llm_cfg = self._prepare_for_long_context_training(
cfg, llm_cfg, max_position_embeddings)
return cfg
def _build_from_cfg_or_module(self, cfg_or_mod):
if isinstance(cfg_or_mod, nn.Module):
return cfg_or_mod
elif isinstance(cfg_or_mod, dict):
traverse_dict(cfg_or_mod)
return BUILDER.build(cfg_or_mod)
else:
raise NotImplementedError
def forward(self, data, data_samples=None, mode='loss'):
if self.is_first_iter:
# hardcode for qlora DeepSpeed ZeRO3, put buffers and QuantState to
# device
# Only required in `LLaVAModel` .
# We do not need this in `SupervisedFinetune` .
self.to(data['input_ids'].device)
self.is_first_iter = False
if 'pixel_values' in data:
visual_outputs = self.visual_encoder(
data['pixel_values'].to(self.visual_encoder.dtype),
output_hidden_states=True)
pixel_values = self.projector(
visual_outputs.hidden_states[self.visual_select_layer][:, 1:])
data['pixel_values'] = pixel_values
data = prepare_inputs_labels_for_multimodal(llm=self.llm, **data)
if mode == 'loss':
return self.compute_loss(data, data_samples)
elif mode == 'predict':
return self.predict(data, data_samples)
elif mode == 'tensor':
return self._forward(data, data_samples)
else:
raise NotImplementedError
def _forward(self, data, data_samples=None):
outputs = self.llm(**data)
return outputs
def predict(self, data, data_samples=None):
outputs = self.llm(**data)
logits_dict = [{'logits': logits} for logits in outputs.logits]
return logits_dict
def compute_loss(self, data, data_samples=None):
outputs = self.llm(**data)
loss_dict = {'loss': outputs.loss}
return loss_dict
def __getattr__(self, name: str):
try:
return super().__getattr__(name)
except AttributeError:
return getattr(self.llm, name)
def to_hf(self,
cfg,
save_dir,
fp32=False,
save_pretrained_kwargs={},
save_format='xtuner',
**kwargs):
if save_format == 'xtuner':
self.to_xtuner_llava(cfg, save_dir, fp32, save_pretrained_kwargs)
elif save_format == 'huggingface':
self.to_huggingface_llava(cfg, save_dir, fp32,
save_pretrained_kwargs)
elif save_format == 'official':
self.to_official_llava(cfg, save_dir, fp32, save_pretrained_kwargs)
else:
raise NotImplementedError
def to_xtuner_llava(self,
cfg,
save_dir,
fp32=False,
save_pretrained_kwargs={}):
# LLM
self.llm.config.use_cache = True
if not fp32:
print_log('Convert LLM to float16', 'current')
self.llm.half()
if self.use_llm_lora:
llm_path = osp.join(save_dir, 'llm_adapter')
print_log(f'Saving LLM adapter to {llm_path}', 'current')
self.llm.save_pretrained(llm_path, **save_pretrained_kwargs)
elif not self.freeze_llm:
llm_path = save_dir
print_log(f'Saving LLM tokenizer to {llm_path}', 'current')
tokenizer = BUILDER.build(cfg.tokenizer)
tokenizer.save_pretrained(llm_path, **save_pretrained_kwargs)
print_log(f'Saving LLM to {llm_path}', 'current')
self.llm.save_pretrained(llm_path, **save_pretrained_kwargs)
self.llm.config.use_cache = False
# Visual Encoder
if self.use_visual_encoder_lora:
visual_encoder_path = osp.join(save_dir, 'visual_encoder_adapter')
print_log(
f'Saving visual_encoder adapter to {visual_encoder_path}',
'current')
self.visual_encoder.save_pretrained(visual_encoder_path,
**save_pretrained_kwargs)
elif not self.freeze_visual_encoder:
visual_encoder_path = osp.join(save_dir, 'visual_encoder')
print_log(
'Saving visual_encoder image_processor to'
f'{visual_encoder_path}', 'current')
image_processor = BUILDER.build(cfg.image_processor)
image_processor.save_pretrained(visual_encoder_path,
**save_pretrained_kwargs)
print_log(f'Saving visual_encoder to {visual_encoder_path}',
'current')
self.visual_encoder.save_pretrained(visual_encoder_path,
**save_pretrained_kwargs)
# Projector
projector_path = osp.join(save_dir, 'projector')
print_log(f'Saving projector to {projector_path}', 'current')
self.projector.save_pretrained(projector_path,
**save_pretrained_kwargs)
def to_huggingface_llava(self,
cfg,
save_dir,
fp32=False,
save_pretrained_kwargs={}):
LLM_MAPPING = {
'model': 'language_model.model',
'lm_head': 'language_model.lm_head',
}
VIT_MAPPING = {
'vision_model': 'vision_tower.vision_model',
}
PROJECTOR_MAPPING = {
'model.0': 'multi_modal_projector.linear_1',
'model.2': 'multi_modal_projector.linear_2',
}
assert getattr(self.llm, 'hf_quantizer', None) is None, \
'This conversion format does not support quantized LLM.'
# get state_dict
llm = self.llm
if self.use_llm_lora:
llm = self.llm.merge_and_unload()
llm.config.use_cache = True
if not fp32:
print_log('Convert LLM to float16', 'current')
llm.half()
assert isinstance(llm, LlamaForCausalLM), \
'This conversion format only supports LlamaForCausalLM.'
llm_state_dict = llm.state_dict()
llm_state_dict = convert_state_dict_to_hf(llm_state_dict, LLM_MAPPING)
need_visual_encoder = (not self.freeze_visual_encoder
or self.use_visual_encoder_lora)
visual_encoder = self.visual_encoder
if self.use_visual_encoder_lora:
visual_encoder = self.visual_encoder.merge_and_unload()
assert isinstance(visual_encoder, CLIPVisionModel),\
'This conversion format only supports CLIPVisionModel.'
if need_visual_encoder:
visual_encoder_state_dict = visual_encoder.state_dict()
visual_encoder_state_dict = convert_state_dict_to_hf(
visual_encoder_state_dict, VIT_MAPPING)
else:
visual_encoder_state_dict = {}
projector_state_dict = self.projector.state_dict()
projector_state_dict = convert_state_dict_to_hf(
projector_state_dict, PROJECTOR_MAPPING)
state_dict = {
**projector_state_dict,
**llm_state_dict,
**visual_encoder_state_dict
}
# init model
text_config = llm.config
vision_config = visual_encoder.config
config = LlavaConfig(
text_config=text_config,
vision_config=vision_config,
attn_implementation='eager')
with init_empty_weights():
with warnings.catch_warnings():
warnings.filterwarnings(
'ignore', message='.*non-meta.*', category=UserWarning)
model = LlavaForConditionalGeneration(config)
model.load_state_dict(state_dict, strict=True, assign=True)
# processor
cfg.tokenizer.type = LlamaTokenizerFast.from_pretrained
tokenizer = BUILDER.build(cfg.tokenizer)
tokenizer.add_tokens(
AddedToken(DEFAULT_IMAGE_TOKEN, special=True, normalized=False),
special_tokens=True)
tokenizer.add_special_tokens({'pad_token': '<pad>'})
image_processor = BUILDER.build(cfg.image_processor)
assert isinstance(image_processor, CLIPImageProcessor),\
'This conversion format only supports CLIPImageProcessor.'
processor = LlavaProcessor(
tokenizer=tokenizer, image_processor=image_processor)
# Pad to 64 for performance reasons
pad_shape = 64
pre_expansion_embeddings = \
model.language_model.model.embed_tokens.weight.data
mu = torch.mean(pre_expansion_embeddings, dim=0).float()
n = pre_expansion_embeddings.size()[0]
sigma = ((pre_expansion_embeddings - mu).T
@ (pre_expansion_embeddings - mu)) / n
dist = torch.distributions.multivariate_normal.MultivariateNormal(
mu, covariance_matrix=1e-5 * sigma)
# We add an image token so we need to resize the model
ori_vocab_size = config.text_config.vocab_size
tokenizer_vocab_size = tokenizer.encode('<pad>')[-1]
added_token = tokenizer_vocab_size - ori_vocab_size
if added_token > 0:
model.resize_token_embeddings(ori_vocab_size + added_token,
pad_shape)
model.language_model.model.embed_tokens.weight.data[
ori_vocab_size:] = torch.stack(
tuple(
dist.sample()
for _ in range(model.language_model.model.embed_tokens.
weight.data[ori_vocab_size:].shape[0])),
dim=0,
)
model.language_model.lm_head.weight.data[
ori_vocab_size:] = torch.stack(
tuple(dist.sample()
for _ in range(model.language_model.lm_head.weight.
data[ori_vocab_size:].shape[0])),
dim=0,
)
model.config.image_token_index = tokenizer.encode(
DEFAULT_IMAGE_TOKEN)[-1]
model.config.pad_token_id = tokenizer.encode('<pad>')[-1]
# save
print_log(f'Saving to {save_dir}', 'current')
model.save_pretrained(save_dir, **save_pretrained_kwargs)
processor.save_pretrained(save_dir, **save_pretrained_kwargs)
def to_official_llava(self,
cfg,
save_dir,
fp32=False,
save_pretrained_kwargs={}):
VIT_MAPPING = {
'vision_model': 'model.vision_tower.vision_tower.vision_model',
}
PROJECTOR_MAPPING = {
'model.0': 'model.mm_projector.0',
'model.2': 'model.mm_projector.2',
}
try:
from llava.model import LlavaConfig, LlavaLlamaForCausalLM
except ImportError:
raise ImportError(
'Please install llava with '
'`pip install git+https://github.com/haotian-liu/LLaVA.git '
'--no-deps`.')
assert getattr(self.llm, 'hf_quantizer', None) is None, \
'This conversion format does not support quantized LLM.'
# get state_dict
llm = self.llm
if self.use_llm_lora:
llm = self.llm.merge_and_unload()
llm.config.use_cache = True
if not fp32:
print_log('Convert LLM to float16', 'current')
llm.half()
assert isinstance(llm, LlamaForCausalLM), \
'This conversion format only supports LlamaForCausalLM.'
llm_state_dict = llm.state_dict()
need_visual_encoder = (not self.freeze_visual_encoder
or self.use_visual_encoder_lora)
visual_encoder = self.visual_encoder
if self.use_visual_encoder_lora:
visual_encoder = self.visual_encoder.merge_and_unload()
assert isinstance(visual_encoder, CLIPVisionModel),\
'This conversion format only supports CLIPVisionModel.'
if need_visual_encoder:
visual_encoder_state_dict = visual_encoder.state_dict()
visual_encoder_state_dict = convert_state_dict_to_hf(
visual_encoder_state_dict, VIT_MAPPING)
else:
visual_encoder_state_dict = {}
projector_state_dict = self.projector.state_dict()
projector_state_dict = convert_state_dict_to_hf(
projector_state_dict, PROJECTOR_MAPPING)
state_dict = {
**projector_state_dict,
**llm_state_dict,
**visual_encoder_state_dict
}
# init model
tokenizer = BUILDER.build(cfg.tokenizer)
image_processor = BUILDER.build(cfg.image_processor)
assert isinstance(image_processor, CLIPImageProcessor),\
'This conversion format only supports CLIPImageProcessor.'
llava_config_dict = llm.config.__dict__.copy()
llava_config_dict.update(
dict(
image_aspect_ratio='pad',
mm_hidden_size=visual_encoder.config.hidden_size,
mm_projector_type=f'mlp{self.projector_depth}x_gelu',
mm_use_im_patch_token=False,
mm_use_im_start_end=False,
mm_vision_select_feature='patch',
mm_vision_select_layer=self.visual_select_layer,
mm_vision_tower=visual_encoder.config.name_or_path,
unfreeze_mm_vision_tower=need_visual_encoder,
model_type='llava',
use_cache=True,
use_mm_proj=True))
llava_config = LlavaConfig(**llava_config_dict)
with init_empty_weights():
with warnings.catch_warnings():
warnings.filterwarnings(
'ignore', message='.*non-meta.*', category=UserWarning)
model = LlavaLlamaForCausalLM(llava_config)
model.load_state_dict(state_dict, strict=True, assign=True)
# save
print_log(f'Saving to {save_dir}', 'current')
model.save_pretrained(save_dir, **save_pretrained_kwargs)
image_processor.save_pretrained(save_dir, **save_pretrained_kwargs)
tokenizer.save_pretrained(save_dir, **save_pretrained_kwargs)
# Modified from https://github.com/haotian-liu/LLaVA/blob/82fc5e0e5f4393a4c26851fa32c69ab37ea3b146/llava/model/llava_arch.py#L99 # noqa: E501
def prepare_inputs_labels_for_multimodal(
llm: PreTrainedModel,
input_ids: torch.LongTensor = None,
position_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None):
if pixel_values is None:
return {
'input_ids': input_ids,
'position_ids': position_ids,
'attention_mask': attention_mask,
'past_key_values': past_key_values,
'inputs_embeds': None,
'labels': labels
}
_labels = labels # (B, N)
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(
0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
# remove the padding using attention_mask -- TODO: double check
input_ids = [
cur_input_ids[cur_attention_mask]
for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)
]
labels = [
cur_labels[cur_attention_mask]
for cur_labels, cur_attention_mask in zip(labels, attention_mask)
]
new_inputs_embeds = []
new_labels = []
cur_image_idx = 0
for batch_idx, cur_input_ids in enumerate(input_ids):
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
if num_images == 0:
cur_pixel_values = pixel_values[cur_image_idx]
cur_inputs_embeds_1 = llm.get_input_embeddings()(cur_input_ids)
cur_inputs_embeds = torch.cat(
[cur_inputs_embeds_1, cur_pixel_values[0:0]], dim=0)
new_inputs_embeds.append(cur_inputs_embeds)
new_labels.append(labels[batch_idx])
cur_image_idx += 1
continue
image_token_indices = [-1] + torch.where(
cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [
cur_input_ids.shape[0]
]
cur_input_ids_noim = []
cur_labels = labels[batch_idx]
cur_labels_noim = []
for i in range(len(image_token_indices) - 1):
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] +
1:image_token_indices[i +
1]])
cur_labels_noim.append(cur_labels[image_token_indices[i] +
1:image_token_indices[i + 1]])
split_sizes = [x.shape[0] for x in cur_labels_noim]
cur_inputs_embeds = llm.get_input_embeddings()(
torch.cat(cur_input_ids_noim))
cur_inputs_embeds_no_im = torch.split(
cur_inputs_embeds, split_sizes, dim=0)
cur_new_inputs_embeds = []
cur_new_labels = []
for i in range(num_images + 1):
cur_new_inputs_embeds.append(cur_inputs_embeds_no_im[i])
cur_new_labels.append(cur_labels_noim[i])
if i < num_images:
cur_pixel_values = pixel_values[cur_image_idx]
cur_image_idx += 1
cur_new_inputs_embeds.append(cur_pixel_values)
cur_new_labels.append(
torch.full((cur_pixel_values.shape[0], ),
IGNORE_INDEX,
device=cur_labels.device,
dtype=cur_labels.dtype))
cur_new_inputs_embeds = torch.cat(cur_new_inputs_embeds)
cur_new_labels = torch.cat(cur_new_labels)
new_inputs_embeds.append(cur_new_inputs_embeds)
new_labels.append(cur_new_labels)
# Combine them
max_len = max(x.shape[0] for x in new_inputs_embeds)
batch_size = len(new_inputs_embeds)
new_inputs_embeds_padded = []
new_labels_padded = torch.full((batch_size, max_len),
IGNORE_INDEX,
dtype=new_labels[0].dtype,
device=new_labels[0].device)
attention_mask = torch.zeros((batch_size, max_len),
dtype=attention_mask.dtype,
device=attention_mask.device)
position_ids = torch.zeros((batch_size, max_len),
dtype=position_ids.dtype,
device=position_ids.device)
for i, (cur_new_embed,
cur_new_labels) in enumerate(zip(new_inputs_embeds, new_labels)):
cur_len = cur_new_embed.shape[0]
new_inputs_embeds_padded.append(
torch.cat((cur_new_embed,
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]),
dtype=cur_new_embed.dtype,
device=cur_new_embed.device)),
dim=0))
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(
0,
cur_len,
dtype=position_ids.dtype,
device=position_ids.device)
new_inputs_embeds = torch.stack(new_inputs_embeds_padded, dim=0)
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
return {
'input_ids': None,
'position_ids': position_ids,
'attention_mask': attention_mask,
'past_key_values': past_key_values,
'inputs_embeds': new_inputs_embeds,
'labels': new_labels
}