DenseLabelDev / projects /mllm_labeling /visualization_v3.py
zhouyik's picture
Upload folder using huggingface_hub
032e687 verified
import copy
import json
import os
import numpy as np
import cv2
import pycocotools.mask as maskUtils
import random
def get_video_frames(video_path):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("Error: Cannot open video file.")
return
frames = []
frame_id = 0
while True:
ret, frame = cap.read()
if not ret:
break
frames.append(frame)
frame_id += 1
cap.release()
return frames
def images_to_video(frames, video_name, fps=6):
height, width, layers = frames[0].shape
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
video = cv2.VideoWriter(video_name, fourcc, fps, (width, height))
for frame in frames:
video.write(frame)
# cv2.destroyAllWindows()
video.release()
return
def decode_masklet(masklet):
masks = []
for _rle in masklet:
mask = maskUtils.decode(_rle)
# print('mask_shape: ', mask.shape)
masks.append(mask)
# print(len(masks))
return masks
def draw_mask(image, mask):
obj_mask = mask * 255
obj_mask = np.stack([obj_mask * 1, obj_mask * 0, obj_mask * 0], axis=2)
obj_mask = obj_mask * 0.5 + copy.deepcopy(image) * 0.5
obj_mask = obj_mask.astype(np.uint8)
return obj_mask
def add_mask2images(frames, masklets):
show_videos = []
for i_frames, (frame, masks) in enumerate(zip(frames, masklets)):
if i_frames == 0:
n_obj = masks.shape[-1]
for i_obj in range(n_obj):
show_videos.append([])
n_obj = masks.shape[-1]
for i_obj in range(n_obj):
show_videos[i_obj].append(draw_mask(copy.deepcopy(frame), masks[:, :, i_obj]))
return show_videos
video_folder = '/mnt/bn/xiangtai-training-data-video/dataset/segmentation_datasets/sam_v_full'
video_save_path = './whole_pesudo_cap_visualization_v3/demo.mp4'
caption_json_path = './whole_pesudo_cap_v3/stpe5_changeStyle/'
cap_json_files = os.listdir(caption_json_path)
cap_json_paths = [os.path.join(caption_json_path, item) for item in cap_json_files]
caption_jsons = []
for cap_json_path in cap_json_paths:
with open(cap_json_path, 'r') as f:
caption_jsons.extend(json.load(f))
video_obj_cap_dict = {}
for cap_item in caption_jsons:
video_id = cap_item['video_id']
obj_id = cap_item['obj_id']
if video_id not in video_obj_cap_dict.keys():
video_obj_cap_dict[video_id] = {}
video_obj_cap_dict[video_id].update({obj_id: cap_item})
video_ids = list(video_obj_cap_dict.keys())
random.shuffle(video_ids)
# for video_id in video_obj_cap_dict.keys():
for video_id in video_ids:
sub_folder = video_id[:7]
video_anno_file = f'{video_folder}/{sub_folder}/sav_train/{sub_folder}/{video_id}_manual.json'
video_path = f'{video_folder}/{sub_folder}/sav_train/{sub_folder}/{video_id}.mp4'
with open(video_anno_file, 'r') as f:
data = json.load(f)
frames = get_video_frames(video_path)
masklents = decode_masklet(data['masklet'])
frames = frames[::4]
assert len(frames) == len(masklents)
show_videos = add_mask2images(frames, masklents)
for i, show_video in enumerate(show_videos):
print(i, '---', video_obj_cap_dict[video_id].keys())
# i = f"{i}"
if i not in video_obj_cap_dict[video_id].keys():
continue
# captions = video_obj_cap_dict[video_id][i]['ori_captions']
# final_caption = video_obj_cap_dict[video_id][i]['crop_caption']
# category = video_obj_cap_dict[video_id][i]['crop_category']
final_caption = video_obj_cap_dict[video_id][i]['final_caption']
print('\n\n', final_caption, '\n\n')
with open(video_save_path.replace('demo.mp4', f'{video_id}_obj{i}.txt'), 'w', encoding='utf-8') as file:
file.write(final_caption)
video_save_path_ = video_save_path.replace('demo.mp4', f'{video_id}_obj{i}.mp4')
images_to_video(show_video, video_save_path_)