|
|
|
import argparse |
|
import json |
|
import math |
|
import os |
|
import os.path as osp |
|
import re |
|
import torch |
|
import tqdm |
|
|
|
from mmengine.dist import (collect_results, get_dist_info, get_rank, init_dist, |
|
master_only) |
|
from mmengine.utils.dl_utils import set_multi_processing |
|
from torch.utils.data import Dataset |
|
from transformers import (AutoModel, AutoModelForCausalLM, AutoTokenizer, |
|
BitsAndBytesConfig, CLIPImageProcessor, |
|
CLIPVisionModel, GenerationConfig) |
|
|
|
from projects.omg_llava.model.utils import prepare_inputs_labels_for_multimodal_with_visual_prompts |
|
from xtuner.tools.utils import get_stop_criteria, is_cn_string |
|
from xtuner.utils import (DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX, |
|
PROMPT_TEMPLATE) |
|
|
|
from xtuner.registry import BUILDER |
|
from xtuner.configs import cfgs_name_path |
|
from xtuner.model.utils import guess_load_checkpoint |
|
from mmengine.config import Config |
|
from mmengine.fileio import PetrelBackend, get_file_backend |
|
from mmengine.config import ConfigDict |
|
|
|
from PIL import Image |
|
import torch.nn.functional as F |
|
from projects.omg_llava.dataset.utils import expand2square, expand2square_mask |
|
from pycocotools import mask |
|
|
|
from pycocotools.coco import COCO |
|
import numpy as np |
|
|
|
def bbox_to_x1y1x2y2(bbox): |
|
x1, y1, w, h = bbox |
|
bbox = [x1, y1, x1 + w, y1 + h] |
|
|
|
return bbox |
|
|
|
def convert_dict2config_dict(input): |
|
input = ConfigDict(**input) |
|
for key in input.keys(): |
|
if isinstance(input[key], dict): |
|
input[key] = convert_dict2config_dict(input[key]) |
|
return input |
|
|
|
TORCH_DTYPE_MAP = dict( |
|
fp16=torch.float16, bf16=torch.bfloat16, fp32=torch.float32, auto='auto') |
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='RefCocoSeg') |
|
parser.add_argument('config', help='config file name or path.') |
|
parser.add_argument('--pth_model', help='pth model file') |
|
parser.add_argument( |
|
'--output-path', type=str, default='./work_dirs/region_cap_pred.json', help='Name for Bot') |
|
parser.add_argument( |
|
'--prompt-template', |
|
choices=PROMPT_TEMPLATE.keys(), |
|
default='internlm2_chat', |
|
help='Specify a prompt template') |
|
parser.add_argument( |
|
'--stop-words', nargs='+', type=str, default=[], help='Stop words') |
|
parser.add_argument( |
|
'--torch-dtype', |
|
default='fp16', |
|
choices=TORCH_DTYPE_MAP.keys(), |
|
help='Override the default `torch.dtype` and load the model under ' |
|
'a specific `dtype`.') |
|
parser.add_argument( |
|
'--bits', |
|
type=int, |
|
choices=[4, 8, None], |
|
default=None, |
|
help='LLM bits') |
|
parser.add_argument( |
|
'--bot-name', type=str, default='BOT', help='Name for Bot') |
|
parser.add_argument( |
|
'--offload-folder', |
|
default=None, |
|
help='The folder in which to offload the model weights (or where the ' |
|
'model weights are already offloaded).') |
|
parser.add_argument( |
|
'--max-new-tokens', |
|
type=int, |
|
default=300, |
|
help='Maximum number of new tokens allowed in generated text') |
|
parser.add_argument( |
|
'--seed', |
|
type=int, |
|
default=0, |
|
help='Random seed for reproducible text generation') |
|
parser.add_argument( |
|
'--launcher', |
|
choices=['none', 'pytorch', 'slurm', 'mpi'], |
|
default='none', |
|
help='job launcher') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
@master_only |
|
def master_print(msg): |
|
print(msg) |
|
|
|
class RegionCap_Inference_Dataset(Dataset): |
|
def __init__(self, |
|
image_folder, |
|
annotation_file=None, |
|
metainfo=None, |
|
): |
|
self.metainfo = metainfo |
|
self.image_folder = image_folder |
|
self.image_h, self.image_w = 1024, 1024 |
|
|
|
self.down_ratio = 1 |
|
|
|
self.coco = COCO(annotation_file) |
|
self.image_dict = self.coco.imgs |
|
self.ann_dict = self.coco.anns |
|
self.image_dict_keys = list(self.image_dict.keys()) |
|
|
|
def __len__(self): |
|
return len(self.image_dict_keys) |
|
|
|
def decode_mask(self, annotation, image_info): |
|
flag = False |
|
masks = [] |
|
|
|
for ann_id in range(1): |
|
|
|
ann = {"segmentation": annotation} |
|
|
|
if len(ann["segmentation"]) == 0: |
|
m = np.zeros((image_info["height"], image_info["width"])).astype( |
|
np.uint8 |
|
) |
|
masks.append(m) |
|
continue |
|
|
|
if type(ann["segmentation"][0]) == list: |
|
rle = mask.frPyObjects( |
|
ann["segmentation"], image_info["height"], image_info["width"] |
|
) |
|
else: |
|
rle = ann["segmentation"] |
|
for i in range(len(rle)): |
|
if not isinstance(rle[i]["counts"], bytes): |
|
rle[i]["counts"] = rle[i]["counts"].encode() |
|
m = mask.decode(rle) |
|
m = np.sum(m, axis=2) |
|
m = m.astype(np.uint8) |
|
masks.append(m) |
|
masks = np.stack(masks, axis=0) |
|
|
|
return masks |
|
|
|
def get_questions(self): |
|
|
|
question = "<image>Please give me a short description of the region in the picture marked by region1." |
|
return question |
|
|
|
def __getitem__(self, index): |
|
|
|
data_dict = {} |
|
|
|
image_id = self.image_dict_keys[index] |
|
image_file = self.image_dict[image_id]['file_name'] |
|
|
|
questions = self.get_questions() |
|
|
|
data_dict['image_file'] = image_file |
|
image_file = os.path.join(self.image_folder, image_file) |
|
image = Image.open(image_file).convert('RGB') |
|
|
|
masks = self.ann_dict[image_id]['segmentation'] |
|
image_info = self.image_dict[image_id] |
|
masks = self.decode_mask(masks, image_info) |
|
|
|
data_dict['pixel_values'] = image |
|
data_dict['ori_image'] = image |
|
data_dict['text_prompts'] = questions |
|
ori_width, ori_height = image.size |
|
data_dict['ori_image_size'] = (ori_width, ori_height) |
|
data_dict['img_id'] = image_id |
|
data_dict['vp'] = True |
|
data_dict['mask_prompts'] = [masks] |
|
|
|
return data_dict |
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
torch.manual_seed(args.seed) |
|
|
|
if args.launcher != 'none': |
|
set_multi_processing(distributed=True) |
|
init_dist(args.launcher) |
|
|
|
rank, world_size = get_dist_info() |
|
torch.cuda.set_device(rank) |
|
else: |
|
rank = 0 |
|
world_size = 1 |
|
|
|
|
|
if not osp.isfile(args.config): |
|
try: |
|
args.config = cfgs_name_path[args.config] |
|
except KeyError: |
|
raise FileNotFoundError(f'Cannot find {args.config}') |
|
|
|
|
|
cfg = Config.fromfile(args.config) |
|
|
|
|
|
|
|
model_name = cfg.model.type if isinstance(cfg.model.type, |
|
str) else cfg.model.type.__name__ |
|
|
|
model = BUILDER.build(cfg.model) |
|
backend = get_file_backend(args.pth_model) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if isinstance(backend, PetrelBackend): |
|
from xtuner.utils.fileio import patch_fileio |
|
with patch_fileio(): |
|
state_dict = guess_load_checkpoint(args.pth_model) |
|
else: |
|
state_dict = guess_load_checkpoint(args.pth_model) |
|
|
|
model.load_state_dict(state_dict, strict=False) |
|
print(f'Load PTH model from {args.pth_model}') |
|
|
|
datasets_configs = cfg.test_dataset |
|
|
|
model.cuda() |
|
|
|
|
|
model.eval() |
|
|
|
dataset = RegionCap_Inference_Dataset( |
|
annotation_file='./data/region_caption/refcocog/finetune_refcocog_val_with_mask.json', |
|
image_folder='./data/glamm_data/images/coco2014/train2014/', |
|
metainfo=datasets_configs[0]['metainfo'], |
|
|
|
) |
|
datasets = [dataset] |
|
|
|
|
|
for i_dataset, dataset in enumerate(datasets): |
|
model.preparing_for_generation(dataset.metainfo) |
|
results = [] |
|
n_samples = len(dataset) |
|
per_rank_samples = math.ceil(n_samples / world_size) |
|
per_rank_ids = range(per_rank_samples * rank, |
|
min(n_samples, per_rank_samples * (rank + 1))) |
|
for idx in tqdm.tqdm(per_rank_ids): |
|
data_batch = dataset[idx] |
|
prediction = {'img_id': data_batch['img_id']} |
|
outputs = model.predict_forward(**data_batch) |
|
prediction.update(outputs) |
|
|
|
|
|
text_output = outputs['prediction'].replace("<s>", "").replace("\n", "") \ |
|
.replace("region1", '').replace("Region1", '') \ |
|
.replace(':', '').replace(" ", " ").replace(" ", " ") |
|
text_output = text_output.split("ASSISTANT: ")[-1] |
|
cleaned_str = re.sub(r'<.*?>', '', text_output) |
|
cleaned_str = cleaned_str.replace('[SEG]', '') |
|
cleaned_str = ' '.join(cleaned_str.split()).strip("'") |
|
cleaned_str = cleaned_str.strip() |
|
|
|
result_dict = {} |
|
result_dict["image_id"] = data_batch['img_id'] |
|
result_dict["caption"] = cleaned_str |
|
result_dict["image_file"] = data_batch['image_file'] |
|
result_dict["prediction"] = cleaned_str |
|
results.append(result_dict) |
|
print(cleaned_str) |
|
|
|
results = collect_results(results, n_samples) |
|
|
|
if get_rank() == 0: |
|
with open(args.output_path, 'w') as json_file: |
|
json.dump(results, json_file, indent=2) |
|
|
|
if __name__ == '__main__': |
|
|
|
main() |
|
|