|
import argparse |
|
import re |
|
import math |
|
import os |
|
import torch |
|
import tqdm |
|
from pycocotools import mask as _mask |
|
import numpy as np |
|
from PIL import Image |
|
from pycocotools.coco import COCO |
|
|
|
from transformers import (AutoModel, AutoModelForCausalLM, AutoTokenizer, |
|
BitsAndBytesConfig, CLIPImageProcessor, |
|
CLIPVisionModel, GenerationConfig) |
|
import json |
|
|
|
from utils import _init_dist_pytorch, get_dist_info, get_rank, collect_results_cpu |
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='RefCocog region caption') |
|
parser.add_argument('model_path', help='hf model path.') |
|
parser.add_argument( |
|
'--output-path', |
|
default='./region_cap_pred.json', |
|
help='save path of the prediction') |
|
parser.add_argument( |
|
'--launcher', |
|
choices=['none', 'pytorch', 'slurm', 'mpi'], |
|
default='none', |
|
help='job launcher') |
|
parser.add_argument('--local_rank', '--local-rank', type=int, default=0) |
|
args = parser.parse_args() |
|
if 'LOCAL_RANK' not in os.environ: |
|
os.environ['LOCAL_RANK'] = str(args.local_rank) |
|
return args |
|
|
|
class RegionCapInferenceDataset: |
|
def __init__(self, |
|
image_folder, |
|
annotation_file=None, |
|
): |
|
self.image_folder = image_folder |
|
self.coco = COCO(annotation_file) |
|
self.image_dict = self.coco.imgs |
|
self.ann_dict = self.coco.anns |
|
self.image_dict_keys = list(self.image_dict.keys()) |
|
|
|
def __len__(self): |
|
return len(self.image_dict_keys) |
|
|
|
def decode_mask(self, annotation, image_info): |
|
flag = False |
|
masks = [] |
|
|
|
for ann_id in range(1): |
|
|
|
ann = {"segmentation": annotation} |
|
|
|
if len(ann["segmentation"]) == 0: |
|
m = np.zeros((image_info["height"], image_info["width"])).astype( |
|
np.uint8 |
|
) |
|
masks.append(m) |
|
continue |
|
|
|
if type(ann["segmentation"][0]) == list: |
|
rle = _mask.frPyObjects( |
|
ann["segmentation"], image_info["height"], image_info["width"] |
|
) |
|
else: |
|
rle = ann["segmentation"] |
|
for i in range(len(rle)): |
|
if not isinstance(rle[i]["counts"], bytes): |
|
rle[i]["counts"] = rle[i]["counts"].encode() |
|
m = _mask.decode(rle) |
|
m = np.sum(m, axis=2) |
|
m = m.astype(np.uint8) |
|
masks.append(m) |
|
masks = np.stack(masks, axis=0) |
|
|
|
return masks |
|
|
|
def get_questions(self): |
|
|
|
question = "<image>\nPlease give me a short description of the region in the picture marked by region1." |
|
return question |
|
|
|
def __getitem__(self, index): |
|
|
|
data_dict = {} |
|
|
|
image_id = self.image_dict_keys[index] |
|
image_file = self.image_dict[image_id]['file_name'] |
|
|
|
questions = self.get_questions() |
|
|
|
data_dict['image_file'] = image_file |
|
image_file = os.path.join(self.image_folder, image_file) |
|
image = Image.open(image_file).convert('RGB') |
|
|
|
masks = self.ann_dict[image_id]['segmentation'] |
|
image_info = self.image_dict[image_id] |
|
masks = self.decode_mask(masks, image_info) |
|
|
|
data_dict['image'] = image |
|
data_dict['text'] = questions |
|
data_dict['img_id'] = image_id |
|
data_dict['mask_prompts'] = [masks] |
|
|
|
return data_dict |
|
|
|
|
|
ANNOTATION_FILE = './data/region_caption/refcocog/finetune_refcocog_val_with_mask.json' |
|
IMAGE_FOLDER = './data/glamm_data/images/coco2014/train2014/' |
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
if args.launcher != 'none': |
|
_init_dist_pytorch('nccl') |
|
rank, world_size = get_dist_info() |
|
torch.cuda.set_device(rank) |
|
else: |
|
rank = 0 |
|
world_size = 1 |
|
|
|
|
|
model = AutoModel.from_pretrained( |
|
args.model_path, |
|
torch_dtype=torch.bfloat16, |
|
low_cpu_mem_usage=True, |
|
use_flash_attn=True, |
|
trust_remote_code=True, |
|
).eval().cuda() |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
args.model_path, |
|
trust_remote_code=True, |
|
) |
|
|
|
dataset = RegionCapInferenceDataset( |
|
image_folder=IMAGE_FOLDER, |
|
annotation_file=ANNOTATION_FILE, |
|
) |
|
|
|
results = [] |
|
n_samples = len(dataset) |
|
per_rank_samples = math.ceil(n_samples / world_size) + 1 |
|
per_rank_ids = range(per_rank_samples * rank, |
|
min(n_samples, per_rank_samples * (rank + 1))) |
|
for idx in tqdm.tqdm(per_rank_ids): |
|
data_batch = dataset[idx] |
|
result_dict = {'image_id': data_batch['img_id'], 'image_file': data_batch['image_file']} |
|
del data_batch['img_id'], data_batch['image_file'] |
|
|
|
prediction = model.predict_forward(**data_batch, tokenizer=tokenizer)['prediction'] |
|
|
|
text_output = prediction.replace("<s>", "").replace("\n", "") \ |
|
.replace("region1", '').replace("Region1", '').replace("The region marked by", "").replace("The region marked as", "").replace("The region marked", "") \ |
|
.replace("is", "").replace("shows", "").replace(':', '').replace(" ", " ").replace(" ", " ") |
|
text_output = text_output.split("ASSISTANT: ")[-1] |
|
cleaned_str = re.sub(r'<.*?>', '', text_output) |
|
cleaned_str = cleaned_str.replace('[SEG]', '') |
|
cleaned_str = ' '.join(cleaned_str.split()).strip("'") |
|
cleaned_str = cleaned_str.strip() |
|
|
|
result_dict["caption"] = cleaned_str |
|
result_dict["prediction"] = cleaned_str |
|
results.append(result_dict) |
|
|
|
tmpdir = './dist_test_temp_regioncap_' + args.model_path.replace('/', '').replace('.', '') |
|
results = collect_results_cpu(results, len(dataset), tmpdir=tmpdir) |
|
if get_rank() == 0: |
|
with open(args.output_path, 'w') as json_file: |
|
json.dump(results, json_file, indent=2) |
|
|
|
if __name__ == '__main__': |
|
main() |
|
|