zhouyik's picture
Upload folder using huggingface_hub
032e687 verified
import argparse
import math
import os
import torch
import tqdm
from pycocotools import mask as mask_utils
from transformers import (AutoModel, AutoModelForCausalLM, AutoTokenizer,
BitsAndBytesConfig, CLIPImageProcessor,
CLIPVisionModel, GenerationConfig)
from utils import _init_dist_pytorch, get_dist_info, collect_results_cpu
from PIL import Image
import re
import json
def parse_args():
parser = argparse.ArgumentParser(description='GCG')
parser.add_argument('model_path', help='hf model path.')
parser.add_argument(
'--split',
default='val',
help='Specify a split')
parser.add_argument(
'--save_dir',
default='./gcg_pred/',
help='save path')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', '--local-rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
IMAGE_FOLDER = './data/glamm_data/images/grandf/val_test/'
class GCGInferenceDataset:
def __init__(self,
image_folder,
save_dir=None,
):
self.image_folder = image_folder
self.images = os.listdir(image_folder)
if save_dir is not None:
# filter evaluated
self.save_dir = save_dir
exsits_files = os.listdir(self.save_dir)
exsits_files = [_file[:-5] for _file in exsits_files]
_images = []
for i, item in enumerate(self.images):
if item[:-4] not in exsits_files:
_images.append(item)
self.images = _images
def __len__(self):
return len(self.images)
def get_questions(self):
question = "Could you please give me a brief description of the image? Please respond with interleaved \
segmentation masks for the corresponding parts of the answer."
return question
def __getitem__(self, index):
data_dict = {}
questions = self.get_questions()
image_file = self.images[index]
data_dict['image_file'] = image_file
image_file = os.path.join(self.image_folder, image_file)
image = Image.open(image_file).convert('RGB')
data_dict['image'] = image
data_dict['text'] = "<image>\n" + questions
data_dict['img_id'] = image_file
return data_dict
def main():
args = parse_args()
if args.launcher != 'none':
_init_dist_pytorch('nccl')
rank, world_size = get_dist_info()
torch.cuda.set_device(rank)
else:
rank = 0
world_size = 1
# build model
model = AutoModel.from_pretrained(
args.model_path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True,
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(
args.model_path,
trust_remote_code=True,
)
if not os.path.exists(args.save_dir):
os.mkdir(args.save_dir)
dataset = GCGInferenceDataset(
image_folder=IMAGE_FOLDER,
save_dir=args.save_dir,
)
results = []
n_samples = len(dataset)
per_rank_samples = math.ceil(n_samples / world_size) + 1
per_rank_ids = range(per_rank_samples * rank,
min(n_samples, per_rank_samples * (rank + 1)))
for idx in tqdm.tqdm(per_rank_ids):
data_batch = dataset[idx]
prediction = {'img_id': data_batch['img_id'], 'image_file': data_batch['image_file']}
del data_batch['img_id'], data_batch['image_file']
w, h = data_batch['image'].size
pred_dict = model.predict_forward(**data_batch, tokenizer=tokenizer)
if 'prediction_masks' not in pred_dict.keys() or pred_dict['prediction_masks'] is None or len(pred_dict['prediction_masks']) == 0:
print("No SEG !!!")
prediction['prediction_masks'] = torch.zeros((0, h, w), dtype=torch.bool)
else:
prediction['prediction_masks'] = torch.stack(pred_dict['prediction_masks'], dim=0)[:, 0]
process_and_save_output(
args.save_dir,
prediction['image_file'],
pred_dict['prediction'],
prediction['prediction_masks']
)
results.append(pred_dict['prediction'])
results = collect_results_cpu(results, len(dataset), tmpdir='./gcg_eval_tmp')
def process_and_save_output(output_dir, image_name, text_output, pred_masks):
if not os.path.exists(output_dir):
os.mkdir(output_dir)
text_output = text_output.replace("<s>", "").replace("\n", "").replace(" ", " ")
text_output = text_output.split("ASSISTANT: ")[-1]
cleaned_str = re.sub(r'<.*?>', '', text_output)
pattern = re.compile(r'<p>(.*?)<\/p>')
phrases = pattern.findall(text_output)
phrases = [p.strip() for p in phrases]
# Remove the [SEG] token
cleaned_str = cleaned_str.replace('[SEG]', '')
# Strip unnecessary spaces
cleaned_str = ' '.join(cleaned_str.split()).strip("'")
cleaned_str = cleaned_str.strip()
# Convert the predicted masks into RLE format
pred_masks_tensor = pred_masks.cpu()
uncompressed_mask_rles = mask_to_rle_pytorch(pred_masks_tensor)
rle_masks = []
for m in uncompressed_mask_rles:
rle_masks.append(coco_encode_rle(m))
# Create results dictionary
# print(f"clean_str: {cleaned_str}")
result_dict = {
"image_id": image_name[:-4],
"caption": cleaned_str,
"phrases": phrases,
"pred_masks": rle_masks
}
# print(cleaned_str)
# print(phrases)
output_path = f"{output_dir}/{image_name[:-4]}.json"
with open(output_path, 'w') as f:
json.dump(result_dict, f)
return
def mask_to_rle_pytorch(tensor: torch.Tensor):
"""
Encodes masks to an uncompressed RLE, in the format expected by
pycoco tools.
"""
# Put in fortran order and flatten h,w
b, h, w = tensor.shape
tensor = tensor.permute(0, 2, 1).flatten(1)
# Compute change indices
diff = tensor[:, 1:] ^ tensor[:, :-1]
change_indices = diff.nonzero()
# Encode run length
out = []
for i in range(b):
cur_idxs = change_indices[change_indices[:, 0] == i, 1]
cur_idxs = torch.cat(
[torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device), cur_idxs + 1,
torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device), ]
)
btw_idxs = cur_idxs[1:] - cur_idxs[:-1]
counts = [] if tensor[i, 0] == 0 else [0]
counts.extend(btw_idxs.detach().cpu().tolist())
out.append({"size": [h, w], "counts": counts})
return out
def coco_encode_rle(uncompressed_rle):
h, w = uncompressed_rle["size"]
rle = mask_utils.frPyObjects(uncompressed_rle, h, w)
rle["counts"] = rle["counts"].decode("utf-8") # Necessary to serialize with json
return rle
if __name__ == '__main__':
main()