|
import argparse |
|
import math |
|
import os |
|
import torch |
|
import tqdm |
|
from pycocotools import mask as mask_utils |
|
|
|
from transformers import (AutoModel, AutoModelForCausalLM, AutoTokenizer, |
|
BitsAndBytesConfig, CLIPImageProcessor, |
|
CLIPVisionModel, GenerationConfig) |
|
|
|
from utils import _init_dist_pytorch, get_dist_info, collect_results_cpu |
|
from PIL import Image |
|
import re |
|
import json |
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='GCG') |
|
parser.add_argument('model_path', help='hf model path.') |
|
parser.add_argument( |
|
'--split', |
|
default='val', |
|
help='Specify a split') |
|
parser.add_argument( |
|
'--save_dir', |
|
default='./gcg_pred/', |
|
help='save path') |
|
parser.add_argument( |
|
'--launcher', |
|
choices=['none', 'pytorch', 'slurm', 'mpi'], |
|
default='none', |
|
help='job launcher') |
|
parser.add_argument('--local_rank', '--local-rank', type=int, default=0) |
|
args = parser.parse_args() |
|
if 'LOCAL_RANK' not in os.environ: |
|
os.environ['LOCAL_RANK'] = str(args.local_rank) |
|
return args |
|
|
|
IMAGE_FOLDER = './data/glamm_data/images/grandf/val_test/' |
|
|
|
|
|
class GCGInferenceDataset: |
|
def __init__(self, |
|
image_folder, |
|
save_dir=None, |
|
): |
|
self.image_folder = image_folder |
|
|
|
self.images = os.listdir(image_folder) |
|
|
|
if save_dir is not None: |
|
|
|
self.save_dir = save_dir |
|
exsits_files = os.listdir(self.save_dir) |
|
exsits_files = [_file[:-5] for _file in exsits_files] |
|
_images = [] |
|
for i, item in enumerate(self.images): |
|
if item[:-4] not in exsits_files: |
|
_images.append(item) |
|
self.images = _images |
|
|
|
def __len__(self): |
|
return len(self.images) |
|
|
|
def get_questions(self): |
|
question = "Could you please give me a brief description of the image? Please respond with interleaved \ |
|
segmentation masks for the corresponding parts of the answer." |
|
return question |
|
|
|
def __getitem__(self, index): |
|
data_dict = {} |
|
questions = self.get_questions() |
|
image_file = self.images[index] |
|
data_dict['image_file'] = image_file |
|
|
|
image_file = os.path.join(self.image_folder, image_file) |
|
image = Image.open(image_file).convert('RGB') |
|
|
|
data_dict['image'] = image |
|
data_dict['text'] = "<image>\n" + questions |
|
|
|
data_dict['img_id'] = image_file |
|
return data_dict |
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
if args.launcher != 'none': |
|
_init_dist_pytorch('nccl') |
|
rank, world_size = get_dist_info() |
|
torch.cuda.set_device(rank) |
|
else: |
|
rank = 0 |
|
world_size = 1 |
|
|
|
|
|
model = AutoModel.from_pretrained( |
|
args.model_path, |
|
torch_dtype=torch.bfloat16, |
|
low_cpu_mem_usage=True, |
|
use_flash_attn=True, |
|
trust_remote_code=True, |
|
).eval().cuda() |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
args.model_path, |
|
trust_remote_code=True, |
|
) |
|
|
|
if not os.path.exists(args.save_dir): |
|
os.mkdir(args.save_dir) |
|
|
|
dataset = GCGInferenceDataset( |
|
image_folder=IMAGE_FOLDER, |
|
save_dir=args.save_dir, |
|
) |
|
|
|
results = [] |
|
n_samples = len(dataset) |
|
per_rank_samples = math.ceil(n_samples / world_size) + 1 |
|
per_rank_ids = range(per_rank_samples * rank, |
|
min(n_samples, per_rank_samples * (rank + 1))) |
|
for idx in tqdm.tqdm(per_rank_ids): |
|
data_batch = dataset[idx] |
|
prediction = {'img_id': data_batch['img_id'], 'image_file': data_batch['image_file']} |
|
del data_batch['img_id'], data_batch['image_file'] |
|
|
|
w, h = data_batch['image'].size |
|
|
|
pred_dict = model.predict_forward(**data_batch, tokenizer=tokenizer) |
|
if 'prediction_masks' not in pred_dict.keys() or pred_dict['prediction_masks'] is None or len(pred_dict['prediction_masks']) == 0: |
|
print("No SEG !!!") |
|
prediction['prediction_masks'] = torch.zeros((0, h, w), dtype=torch.bool) |
|
else: |
|
prediction['prediction_masks'] = torch.stack(pred_dict['prediction_masks'], dim=0)[:, 0] |
|
process_and_save_output( |
|
args.save_dir, |
|
prediction['image_file'], |
|
pred_dict['prediction'], |
|
prediction['prediction_masks'] |
|
) |
|
results.append(pred_dict['prediction']) |
|
|
|
results = collect_results_cpu(results, len(dataset), tmpdir='./gcg_eval_tmp') |
|
|
|
|
|
def process_and_save_output(output_dir, image_name, text_output, pred_masks): |
|
if not os.path.exists(output_dir): |
|
os.mkdir(output_dir) |
|
|
|
text_output = text_output.replace("<s>", "").replace("\n", "").replace(" ", " ") |
|
text_output = text_output.split("ASSISTANT: ")[-1] |
|
|
|
cleaned_str = re.sub(r'<.*?>', '', text_output) |
|
|
|
pattern = re.compile(r'<p>(.*?)<\/p>') |
|
phrases = pattern.findall(text_output) |
|
phrases = [p.strip() for p in phrases] |
|
|
|
|
|
cleaned_str = cleaned_str.replace('[SEG]', '') |
|
|
|
|
|
cleaned_str = ' '.join(cleaned_str.split()).strip("'") |
|
cleaned_str = cleaned_str.strip() |
|
|
|
|
|
pred_masks_tensor = pred_masks.cpu() |
|
uncompressed_mask_rles = mask_to_rle_pytorch(pred_masks_tensor) |
|
rle_masks = [] |
|
for m in uncompressed_mask_rles: |
|
rle_masks.append(coco_encode_rle(m)) |
|
|
|
|
|
|
|
result_dict = { |
|
"image_id": image_name[:-4], |
|
"caption": cleaned_str, |
|
"phrases": phrases, |
|
"pred_masks": rle_masks |
|
} |
|
|
|
|
|
|
|
|
|
output_path = f"{output_dir}/{image_name[:-4]}.json" |
|
|
|
with open(output_path, 'w') as f: |
|
json.dump(result_dict, f) |
|
|
|
return |
|
|
|
def mask_to_rle_pytorch(tensor: torch.Tensor): |
|
""" |
|
Encodes masks to an uncompressed RLE, in the format expected by |
|
pycoco tools. |
|
""" |
|
|
|
b, h, w = tensor.shape |
|
tensor = tensor.permute(0, 2, 1).flatten(1) |
|
|
|
|
|
diff = tensor[:, 1:] ^ tensor[:, :-1] |
|
change_indices = diff.nonzero() |
|
|
|
|
|
out = [] |
|
for i in range(b): |
|
cur_idxs = change_indices[change_indices[:, 0] == i, 1] |
|
cur_idxs = torch.cat( |
|
[torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device), cur_idxs + 1, |
|
torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device), ] |
|
) |
|
btw_idxs = cur_idxs[1:] - cur_idxs[:-1] |
|
counts = [] if tensor[i, 0] == 0 else [0] |
|
counts.extend(btw_idxs.detach().cpu().tolist()) |
|
out.append({"size": [h, w], "counts": counts}) |
|
|
|
return out |
|
|
|
def coco_encode_rle(uncompressed_rle): |
|
h, w = uncompressed_rle["size"] |
|
rle = mask_utils.frPyObjects(uncompressed_rle, h, w) |
|
rle["counts"] = rle["counts"].decode("utf-8") |
|
|
|
return rle |
|
|
|
if __name__ == '__main__': |
|
main() |
|
|