|
import copy |
|
import random |
|
import glob |
|
import json |
|
import logging |
|
import os |
|
from typing import Literal |
|
|
|
import torch |
|
|
|
from mmengine import print_log |
|
from mmengine.config import Config, ConfigDict |
|
from PIL import Image |
|
from torch.utils.data import Dataset |
|
import numpy as np |
|
import torch.nn.functional as F |
|
import torchvision.transforms as T |
|
from torchvision.transforms.functional import InterpolationMode |
|
from pycocotools.coco import COCO |
|
from pycocotools import mask as mask_utils |
|
|
|
from xtuner.registry import BUILDER |
|
from xtuner.utils import IGNORE_INDEX |
|
from xtuner.dataset.utils import encode_fn |
|
from xtuner.dataset.map_fns import llava_map_fn |
|
|
|
from projects.glamm.datasets.utils.utils import expand2square |
|
|
|
from projects.glamm.datasets.utils.utils import SEG_QUESTIONS, ANSWER_LIST |
|
from projects.glamm.utils import DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN |
|
|
|
from .utils import dynamic_preprocess |
|
|
|
|
|
class InfinityMMDataset(Dataset): |
|
os.environ['TOKENIZERS_PARALLELISM'] = 'true' |
|
IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>' |
|
IMG_START_TOKEN = '<img>' |
|
IMG_END_TOKEN = '</img>' |
|
|
|
IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
IMAGENET_STD = (0.229, 0.224, 0.225) |
|
|
|
def __init__(self, |
|
tokenizer, |
|
data_path, |
|
prompt_template, |
|
special_tokens=None, |
|
max_length=8192, |
|
offline_save_path='./work_dirs/infinityMM.json', |
|
): |
|
self.offline_save_path = offline_save_path |
|
self.tokenizer = BUILDER.build(tokenizer) |
|
if special_tokens is not None: |
|
self.tokenizer.add_tokens(special_tokens, special_tokens=True) |
|
self._system = '' |
|
|
|
self.template = prompt_template |
|
self.max_length = max_length |
|
|
|
self.min_dynamic_patch = 1 |
|
self.max_dynamic_patch = 12 |
|
self.downsample_ratio = 0.5 |
|
self.image_size = 448 |
|
self.use_thumbnail = True |
|
patch_size = 14 |
|
self.patch_token = int( |
|
(self.image_size // patch_size) ** 2 * (self.downsample_ratio ** 2)) |
|
|
|
self.transformer = T.Compose([ |
|
T.Lambda(lambda img: img.convert('RGB') |
|
if img.mode != 'RGB' else img), |
|
T.Resize((self.image_size, self.image_size), |
|
interpolation=InterpolationMode.BICUBIC), |
|
T.ToTensor(), |
|
T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD) |
|
]) |
|
|
|
self.data = self._load_annotations(data_path) |
|
self._max_refetch = 1000 |
|
|
|
def _load_annotations(self, data_path): |
|
if os.path.exists(self.offline_save_path): |
|
with open(self.offline_save_path, 'r') as f: |
|
ret = json.load(f) |
|
print(f"Load InfinityMM file list from {self.offline_save_path}, {len(ret)} items !!!") |
|
return ret |
|
sub_folders = [] |
|
for sub_folder in os.listdir(data_path): |
|
if '.' not in sub_folder: |
|
|
|
if "LVIS_111k" in sub_folder: |
|
|
|
subsub_folders = os.listdir(os.path.join(data_path, sub_folder)) |
|
for subsub_folder in subsub_folders: |
|
sub_folders.append(os.path.join(data_path, sub_folder, subsub_folder)) |
|
else: |
|
sub_folders.append(os.path.join(data_path, sub_folder)) |
|
|
|
all_jsons = [] |
|
for sub_folder in sub_folders: |
|
print(f"Processing {sub_folder} !!!") |
|
_files = os.listdir(sub_folder) |
|
_num = 0 |
|
for _file in _files: |
|
if '.json' in _file: |
|
_json_path = os.path.join(sub_folder, _file) |
|
_num += 1 |
|
all_jsons.append(os.path.join(sub_folder, _file)) |
|
print(f"Finished {sub_folder} has {_num} items.") |
|
|
|
with open(self.offline_save_path, 'w') as f: |
|
json.dump(all_jsons, f) |
|
|
|
return all_jsons |
|
|
|
def __getitem__(self, index): |
|
for _ in range(self._max_refetch + 1): |
|
data = self.prepare_data(index) |
|
|
|
if data is None: |
|
index = self._rand_another() |
|
continue |
|
return data |
|
|
|
def __len__(self): |
|
return len(self.data) |
|
|
|
@property |
|
def modality_length(self): |
|
self.group_length = [] |
|
for data_dict in self.data: |
|
self.group_length.append(100) |
|
return self.group_length |
|
|
|
@property |
|
def length(self): |
|
group_length = np.array(self.group_length) |
|
group_length = np.abs(group_length).tolist() |
|
return group_length |
|
|
|
def prepare_data(self, index): |
|
data_path = self.data[index] |
|
|
|
with open(data_path, 'r') as f: |
|
data_dict = json.load(f) |
|
if 'image' in data_dict.keys(): |
|
data_dict['image'] = data_path.replace('.json', '.jpg') |
|
|
|
if data_dict is None: |
|
return None |
|
|
|
out_data_dict = {} |
|
|
|
if data_dict.get('image', None) is not None: |
|
image_file = data_dict['image'] |
|
try: |
|
image = Image.open(image_file).convert('RGB') |
|
except Exception as e: |
|
print(f'Error: {e}', flush=True) |
|
print_log(f'Error: {e}', logger='current') |
|
return None |
|
|
|
images = dynamic_preprocess(image, self.min_dynamic_patch, |
|
self.max_dynamic_patch, |
|
self.image_size, self.use_thumbnail) |
|
pixel_values = [self.transformer(image) for image in images] |
|
pixel_values = torch.stack(pixel_values) |
|
out_data_dict['pixel_values'] = pixel_values |
|
|
|
num_image_tokens = pixel_values.shape[0] * self.patch_token |
|
image_token_str = f'{self.IMG_START_TOKEN}' \ |
|
f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \ |
|
f'{self.IMG_END_TOKEN}' |
|
token_dict = self.get_inputid_labels( |
|
data_dict['conversations'], image_token_str) |
|
out_data_dict.update(token_dict) |
|
else: |
|
token_dict = self.get_inputid_labels( |
|
data_dict['conversations'], None) |
|
out_data_dict.update(token_dict) |
|
out_data_dict['pixel_values'] = torch.zeros( |
|
1, 3, self.image_size, self.image_size) |
|
return out_data_dict |
|
|
|
def _rand_another(self) -> int: |
|
return np.random.randint(0, len(self.data)) |
|
|
|
def get_inputid_labels(self, conversations, image_token_str) -> dict: |
|
input = '' |
|
out_conversation = [] |
|
while conversations and conversations[0]['from'] == 'gpt': |
|
|
|
conversations = conversations[1:] |
|
for i, msg in enumerate(conversations): |
|
if msg['from'] == 'human': |
|
|
|
|
|
if '<image>' in msg['value']: |
|
msg['value'] = msg['value'].replace('<image>\n', '').replace('<image>', '') |
|
if i == 0: |
|
msg['value'] = "<image>\n" + msg['value'] |
|
|
|
if image_token_str is None and '<image>' in msg['value']: |
|
msg['value'] = msg['value'].replace('<image>', '') |
|
if '<image>' in msg['value']: |
|
msg['value'] = msg['value'].replace('<image>', image_token_str).strip() |
|
input += msg['value'].strip() |
|
elif msg['from'] == 'gpt': |
|
out_conversation.append({ |
|
'input': input, |
|
'output': msg['value'].strip() |
|
}) |
|
input = '' |
|
else: |
|
raise NotImplementedError |
|
|
|
input_ids, labels = [], [] |
|
for i, single_turn_conversation in enumerate(out_conversation): |
|
input = single_turn_conversation.get('input', '') |
|
if input is None: |
|
input = '' |
|
input_text = self.template.INSTRUCTION.format( |
|
input=input, round=i + 1) |
|
|
|
if i == 0: |
|
if self._system != '' and self._system is not None: |
|
system = self.template.SYSTEM.format(system=self._system) |
|
input_text = system + input_text |
|
input_encode = self.tokenizer.encode( |
|
input_text, add_special_tokens=True) |
|
else: |
|
input_encode = self.tokenizer.encode( |
|
input_text, add_special_tokens=False) |
|
input_ids += input_encode |
|
labels += [IGNORE_INDEX] * len(input_encode) |
|
|
|
output_text = single_turn_conversation.get('output', '') |
|
if self.template.get('SUFFIX', None): |
|
output_text += self.template.SUFFIX |
|
output_encode = self.tokenizer.encode( |
|
output_text, add_special_tokens=False) |
|
input_ids += output_encode |
|
labels += copy.deepcopy(output_encode) |
|
|
|
if len(input_ids) > self.max_length: |
|
input_ids = input_ids[:self.max_length] |
|
labels = labels[:self.max_length] |
|
print_log( |
|
f'Warning: input_ids length({len(input_ids)}) ' |
|
f'is longer than max_length, cut to {self.max_length}', |
|
logger='current') |
|
return {'input_ids': input_ids, 'labels': labels} |
|
|
|
|
|
class LLaVADataset(Dataset): |
|
os.environ['TOKENIZERS_PARALLELISM'] = 'true' |
|
IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>' |
|
IMG_START_TOKEN = '<img>' |
|
IMG_END_TOKEN = '</img>' |
|
|
|
IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
IMAGENET_STD = (0.229, 0.224, 0.225) |
|
|
|
def __init__(self, |
|
tokenizer, |
|
data_path, |
|
prompt_template, |
|
special_tokens=None, |
|
image_folder=None, |
|
max_length=8192, |
|
arch_type: Literal['intern_vl', 'qwen'] = 'intern_vl', |
|
preprocessor=None, |
|
skip_pure_text=False, |
|
): |
|
|
|
self.tokenizer = BUILDER.build(tokenizer) |
|
if special_tokens is not None: |
|
self.tokenizer.add_tokens(special_tokens, special_tokens=True) |
|
|
|
self.image_folder = image_folder |
|
self.template = prompt_template |
|
self.max_length = max_length |
|
|
|
self._system = '' |
|
|
|
self.arch_type = arch_type |
|
self.min_dynamic_patch = 1 |
|
self.max_dynamic_patch = 12 |
|
self.downsample_ratio = 0.5 |
|
if self.arch_type == 'llava': |
|
self.downsample_ratio = 1 |
|
self.image_size = 448 |
|
if self.arch_type == 'llava': |
|
self.image_size = 336 |
|
self.use_thumbnail = True |
|
patch_size = 14 |
|
self.patch_token = int( |
|
(self.image_size // patch_size)**2 * (self.downsample_ratio**2)) |
|
|
|
|
|
if self.arch_type == 'qwen': |
|
self.IMG_CONTEXT_TOKEN = '<|image_pad|>' |
|
self.IMG_START_TOKEN = '<|vision_start|>' |
|
self.IMG_END_TOKEN = '<|vision_end|>' |
|
elif self.arch_type == 'llava': |
|
self.IMG_CONTEXT_TOKEN = '<image>' |
|
self.IMG_START_TOKEN = '' |
|
self.IMG_END_TOKEN = '' |
|
|
|
if preprocessor is None: |
|
self.transformer = T.Compose([ |
|
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), |
|
T.Resize((self.image_size, self.image_size), interpolation=InterpolationMode.BICUBIC), |
|
T.ToTensor(), |
|
T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD) |
|
]) |
|
self.preprocessor = None |
|
else: |
|
self.transformer = None |
|
self.preprocessor = BUILDER.build(preprocessor) |
|
|
|
self.data = self._load_annotations(data_path, image_folder) |
|
self._max_refetch = 1000 |
|
|
|
self.skip_pure_text = skip_pure_text |
|
|
|
def _load_annotations(self, data_path, image_folder=None): |
|
data = json.load(open(data_path)) |
|
return data |
|
|
|
def __getitem__(self, index): |
|
for _ in range(self._max_refetch + 1): |
|
data = self.prepare_data(index) |
|
|
|
if data is None: |
|
index = self._rand_another() |
|
continue |
|
return data |
|
|
|
def __len__(self): |
|
return len(self.data) |
|
|
|
@property |
|
def modality_length(self): |
|
self.group_length = [] |
|
for data_dict in self.data: |
|
self.group_length.append(100) |
|
return self.group_length |
|
|
|
@property |
|
def length(self): |
|
group_length = np.array(self.group_length) |
|
group_length = np.abs(group_length).tolist() |
|
return group_length |
|
|
|
def prepare_data(self, index): |
|
data_dict: dict = self.data[index] |
|
|
|
if data_dict is None: |
|
return None |
|
|
|
out_data_dict = {} |
|
|
|
if self.skip_pure_text and data_dict.get('image', None) is None: |
|
return None |
|
|
|
if data_dict.get('image', None) is not None: |
|
image_file = os.path.join(self.image_folder, data_dict['image']) |
|
try: |
|
image = Image.open(image_file).convert('RGB') |
|
except Exception as e: |
|
print(f'Error: {e}', flush=True) |
|
print_log(f'Error: {e}', logger='current') |
|
return None |
|
if self.preprocessor is not None: |
|
|
|
|
|
|
|
images = [image] |
|
if self.arch_type == 'qwen': |
|
_data_dict = self.preprocessor(images, do_resize=True) |
|
_data_dict['pixel_values'] = torch.tensor(_data_dict['pixel_values'], dtype=torch.float) |
|
_data_dict['image_grid_thw'] = torch.tensor(_data_dict['image_grid_thw'], dtype=torch.int) |
|
num_image_tokens = int(_data_dict['image_grid_thw'][0].prod() * (self.downsample_ratio ** 2)) |
|
elif self.arch_type == 'llava': |
|
_data_dict = self.preprocessor(images, do_resize=True, size=(self.image_size, self.image_size)) |
|
_data_dict['pixel_values'] = np.stack(_data_dict['pixel_values'], axis=0) |
|
_data_dict['pixel_values'] = torch.tensor(_data_dict['pixel_values'], dtype=torch.float) |
|
num_image_tokens = _data_dict['pixel_values'].shape[0] * self.patch_token |
|
else: |
|
raise NotImplementedError |
|
out_data_dict.update(_data_dict) |
|
else: |
|
images = dynamic_preprocess(image, self.min_dynamic_patch, |
|
self.max_dynamic_patch, |
|
self.image_size, self.use_thumbnail) |
|
pixel_values = [self.transformer(image) for image in images] |
|
pixel_values = torch.stack(pixel_values) |
|
out_data_dict['pixel_values'] = pixel_values |
|
|
|
num_image_tokens = pixel_values.shape[0] * self.patch_token |
|
image_token_str = f'{self.IMG_START_TOKEN}' \ |
|
f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \ |
|
f'{self.IMG_END_TOKEN}' |
|
token_dict = self.get_inputid_labels( |
|
data_dict['conversations'], image_token_str) |
|
out_data_dict.update(token_dict) |
|
else: |
|
token_dict = self.get_inputid_labels( |
|
data_dict['conversations'], None) |
|
out_data_dict.update(token_dict) |
|
out_data_dict['pixel_values'] = torch.zeros( |
|
1, 3, self.image_size, self.image_size) |
|
return out_data_dict |
|
|
|
def _rand_another(self) -> int: |
|
return np.random.randint(0, len(self.data)) |
|
|
|
def get_inputid_labels(self, conversations, image_token_str) -> dict: |
|
input = '' |
|
out_conversation = [] |
|
while conversations and conversations[0]['from'] == 'gpt': |
|
|
|
conversations = conversations[1:] |
|
for msg in conversations: |
|
if msg['from'] == 'human': |
|
if image_token_str is None and '<image>' in msg['value']: |
|
msg['value'] = msg['value'].replace('<image>', '') |
|
if '<image>' in msg['value']: |
|
msg['value'] = msg['value'].replace('<image>', image_token_str).strip() |
|
input += msg['value'].strip() |
|
elif msg['from'] == 'gpt': |
|
out_conversation.append({ |
|
'input': input, |
|
'output': msg['value'].strip() |
|
}) |
|
input = '' |
|
else: |
|
raise NotImplementedError |
|
|
|
input_ids, labels = [], [] |
|
for i, single_turn_conversation in enumerate(out_conversation): |
|
input = single_turn_conversation.get('input', '') |
|
if input is None: |
|
input = '' |
|
input_text = self.template.INSTRUCTION.format( |
|
input=input, round=i + 1) |
|
|
|
if i == 0: |
|
if self._system != '' and self._system is not None: |
|
system = self.template.SYSTEM.format(system=self._system) |
|
input_text = system + input_text |
|
input_encode = self.tokenizer.encode( |
|
input_text, add_special_tokens=True) |
|
else: |
|
input_encode = self.tokenizer.encode( |
|
input_text, add_special_tokens=False) |
|
input_ids += input_encode |
|
labels += [IGNORE_INDEX] * len(input_encode) |
|
|
|
output_text = single_turn_conversation.get('output', '') |
|
if self.template.get('SUFFIX', None): |
|
output_text += self.template.SUFFIX |
|
output_encode = self.tokenizer.encode( |
|
output_text, add_special_tokens=False) |
|
input_ids += output_encode |
|
labels += copy.deepcopy(output_encode) |
|
|
|
if len(input_ids) > self.max_length: |
|
input_ids = input_ids[:self.max_length] |
|
labels = labels[:self.max_length] |
|
print_log( |
|
f'Warning: input_ids length({len(input_ids)}) ' |
|
f'is longer than max_length, cut to {self.max_length}', |
|
logger='current') |
|
return {'input_ids': input_ids, 'labels': labels} |
|
|
|
|
|
if __name__ == '__main__': |
|
from transformers import CLIPImageProcessor, AutoTokenizer |
|
from third_parts.segment_anything.utils.transforms import ResizeLongestSide |
|
pretrained_model = 'MBZUAI/GLaMM-GranD-Pretrained' |
|
llm_name_or_path = 'lmsys/vicuna-7b-v1.5' |
|
|
|
tokenizer = dict( |
|
type=AutoTokenizer.from_pretrained, |
|
pretrained_model_name_or_path=llm_name_or_path) |
|
image_processor = dict( |
|
type=CLIPImageProcessor.from_pretrained, |
|
pretrained_model_name_or_path='openai/clip-vit-large-patch14-336') |
|
extra_image_processor = dict( |
|
type=ResizeLongestSide, |
|
target_length=1024, |
|
) |
|
from xtuner.utils.templates import PROMPT_TEMPLATE |
|
prompt_template = PROMPT_TEMPLATE.vicuna |
|
from xtuner.dataset.map_fns import llava_map_fn, template_map_fn_factory, template_map_fn |
|
from projects.glamm.datasets.collate_fns.glamm_collate_fn import glamm_collate_fn |
|
|
|
dataset = LLaVADataset( |
|
tokenizer=tokenizer, |
|
data_path='data/llava_data/LLaVA-Instruct-150K/llava_instruct_150k.json', |
|
prompt_template=prompt_template, |
|
special_tokens=['[SEG]'], |
|
image_folder='data/coco/train2017/', |
|
) |
|
for i in range(1000): |
|
dataset[i] |
|
|