|
import logging |
|
import os |
|
import torch |
|
from datasets import Dataset as HFDataset |
|
from datasets import DatasetDict |
|
from mmengine import print_log |
|
import mmengine |
|
from PIL import Image |
|
import numpy as np |
|
from mmengine.dist import master_only |
|
|
|
from xtuner.registry import BUILDER |
|
from xtuner.dataset.huggingface import build_origin_dataset |
|
import copy |
|
|
|
from vlm.datasets.evaluation.base_eval_dataset import BaseEvalDataset |
|
from .encode_fn import video_lisa_encode_multi_conv_fn |
|
import json |
|
import torchvision.transforms as T |
|
from torchvision.transforms.functional import InterpolationMode |
|
|
|
SEG_QUESTIONS = [ |
|
"Can you segment the {class_name} in this image?", |
|
"Please segment {class_name} in this image.", |
|
"What is {class_name} in this image? Please respond with segmentation mask.", |
|
"What is {class_name} in this image? Please output segmentation mask.", |
|
|
|
"Can you segment the {class_name} in this image", |
|
"Please segment {class_name} in this image", |
|
"What is {class_name} in this image? Please respond with segmentation mask", |
|
"What is {class_name} in this image? Please output segmentation mask", |
|
|
|
"Could you provide a segmentation mask for the {class_name} in this image?", |
|
"Please identify and segment the {class_name} in this image.", |
|
"Where is the {class_name} in this picture? Please respond with a segmentation mask.", |
|
"Can you highlight the {class_name} in this image with a segmentation mask?", |
|
|
|
"Could you provide a segmentation mask for the {class_name} in this image", |
|
"Please identify and segment the {class_name} in this image", |
|
"Where is the {class_name} in this picture? Please respond with a segmentation mask", |
|
"Can you highlight the {class_name} in this image with a segmentation mask", |
|
] |
|
|
|
ANSWER_LIST = [ |
|
"It is [SEG].", |
|
"Sure, [SEG].", |
|
"Sure, it is [SEG].", |
|
"Sure, the segmentation result is [SEG].", |
|
"[SEG].", |
|
] |
|
|
|
|
|
def multi_template_fn(conversations, template_map): |
|
for conv in conversations: |
|
for i, single_turn_conversation in enumerate(conv): |
|
input = single_turn_conversation.get('input', '') |
|
if input is None: |
|
input = '' |
|
input_text = template_map.INSTRUCTION.format(input=input, round=i + 1) |
|
system = single_turn_conversation.get('system', '') |
|
if system != '' and system is not None: |
|
system = template_map.SYSTEM.format(system=system) |
|
input_text = system + input_text |
|
single_turn_conversation['input'] = input_text |
|
|
|
if template_map.get('SUFFIX', None): |
|
output_text = single_turn_conversation.get('output', '') |
|
output_text += template_map.SUFFIX |
|
single_turn_conversation['output'] = output_text |
|
|
|
|
|
single_turn_conversation['need_eos_token'] = \ |
|
not template_map.get('SUFFIX_AS_EOS', False) |
|
single_turn_conversation['sep'] = template_map.get('SEP', '') |
|
|
|
|
|
class VideoReVOSEvalDataset(BaseEvalDataset): |
|
IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
IMAGENET_STD = (0.229, 0.224, 0.225) |
|
IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>' |
|
IMG_START_TOKEN = '<img>' |
|
IMG_END_TOKEN = '</img>' |
|
|
|
FAST_IMG_CONTEXT_TOKEN = '<FAST_IMG_CONTEXT>' |
|
FAST_IMG_START_TOKEN = '<fast_img>' |
|
FAST_IMG_END_TOKEN = '</fast_img>' |
|
|
|
METAINFO: dict = dict(name='revos') |
|
|
|
def __init__(self, |
|
image_folder, |
|
expression_file, |
|
mask_file, |
|
extra_image_processor=None, |
|
tokenizer=None, |
|
offline_processed_text_folder=None, |
|
template_map_fn=None, |
|
max_length=2048, |
|
lazy=True, |
|
special_tokens=None, |
|
|
|
num_frames=5, |
|
|
|
eval_name=None, |
|
use_fast=False, |
|
fast_pool_size=2, |
|
): |
|
super().__init__() |
|
assert lazy is True |
|
self.tokenizer = BUILDER.build(tokenizer) |
|
assert offline_processed_text_folder or (expression_file and tokenizer) |
|
self.lazy = lazy |
|
|
|
self.max_length = max_length |
|
|
|
self.template_map = template_map_fn['template'] |
|
|
|
if offline_processed_text_folder and expression_file: |
|
print_log( |
|
'Both `offline_processed_text_folder` and ' |
|
'`data_path` are set, and we load dataset from' |
|
'`offline_processed_text_folder` ' |
|
f'({offline_processed_text_folder})', |
|
logger='current', |
|
level=logging.WARNING) |
|
|
|
if offline_processed_text_folder is not None: |
|
raise NotImplementedError |
|
else: |
|
vid2metaid, metas, mask_dict = self.json_file_preprocess(expression_file, mask_file) |
|
self.vid2metaid = vid2metaid |
|
self.videos = list(self.vid2metaid.keys()) |
|
self.mask_dict = mask_dict |
|
self.json_datas = metas |
|
json_datas = metas |
|
self.text_data = json_datas |
|
|
|
|
|
|
|
|
|
|
|
|
|
self.image_folder = image_folder |
|
if extra_image_processor is not None: |
|
self.extra_image_processor = BUILDER.build(extra_image_processor) |
|
self.down_ratio = 1 |
|
self.repeats = 1 |
|
|
|
self._system = '' |
|
|
|
self.downsample_ratio = 0.5 |
|
self.image_size = 448 |
|
patch_size = 14 |
|
self.patch_token = int((self.image_size // patch_size) ** 2 * (self.downsample_ratio ** 2)) |
|
|
|
self.transformer = T.Compose([ |
|
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), |
|
T.Resize((self.image_size, self.image_size), interpolation=InterpolationMode.BICUBIC), |
|
T.ToTensor(), |
|
T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD) |
|
]) |
|
|
|
if special_tokens is not None: |
|
self.tokenizer.add_tokens(special_tokens, special_tokens=True) |
|
|
|
|
|
self.num_frames = num_frames |
|
|
|
self.use_fast = use_fast |
|
self.fast_pool_size = fast_pool_size |
|
|
|
|
|
if eval_name is None: |
|
eval_name = 'results' |
|
self.eval_name = eval_name |
|
|
|
def __len__(self): |
|
return len(self.vid2metaid) * self.repeats |
|
|
|
@property |
|
def modality_length(self): |
|
length_list = [] |
|
for data_dict in self.vid2metaid: |
|
cur_len = 10000 |
|
length_list.append(cur_len) |
|
return length_list |
|
|
|
def real_len(self): |
|
return len(self.vid2metaid) |
|
|
|
def json_file_preprocess(self, expression_file, mask_file): |
|
|
|
with open(expression_file, 'r') as f: |
|
expression_datas = json.load(f)['videos'] |
|
|
|
metas = [] |
|
anno_count = 0 |
|
vid2metaid = {} |
|
for vid_name in expression_datas: |
|
vid_express_data = expression_datas[vid_name] |
|
|
|
vid_frames = sorted(vid_express_data['frames']) |
|
vid_len = len(vid_frames) |
|
|
|
exp_id_list = sorted(list(vid_express_data['expressions'].keys())) |
|
for exp_id in exp_id_list: |
|
exp_dict = vid_express_data['expressions'][exp_id] |
|
meta = {} |
|
meta['video'] = vid_name |
|
meta['exp'] = exp_dict['exp'] |
|
meta['mask_anno_id'] = exp_dict['anno_id'] |
|
|
|
if 'obj_id' in exp_dict.keys(): |
|
meta['obj_id'] = exp_dict['obj_id'] |
|
else: |
|
meta['obj_id'] = [0, ] |
|
meta['anno_id'] = [str(anno_count), ] |
|
anno_count += 1 |
|
meta['frames'] = vid_frames |
|
meta['exp_id'] = exp_id |
|
|
|
meta['length'] = vid_len |
|
metas.append(meta) |
|
if vid_name not in vid2metaid.keys(): |
|
vid2metaid[vid_name] = [] |
|
vid2metaid[vid_name].append(len(metas) - 1) |
|
|
|
|
|
with open(mask_file, 'rb') as f: |
|
mask_dict = json.load(f) |
|
|
|
return vid2metaid, metas, mask_dict |
|
|
|
def create_img_to_refs_mapping(self, refs_train): |
|
img2refs = {} |
|
for ref in refs_train: |
|
img2refs[ref["image_id"]] = img2refs.get(ref["image_id"], []) + [ref, ] |
|
return img2refs |
|
|
|
def dataset_map_fn(self, data_dict): |
|
images = [] |
|
|
|
len_frames = len(data_dict[0]['frames']) |
|
for objet_info in data_dict: |
|
assert len_frames == len(objet_info['frames']) |
|
selected_frame_indexes = range(len_frames) |
|
|
|
for selected_frame_index in selected_frame_indexes: |
|
frame_id = data_dict[0]['frames'][selected_frame_index] |
|
images.append(os.path.join(data_dict[0]['video'], frame_id + '.jpg')) |
|
num_frames = len(images) if len(images) < self.num_frames else self.num_frames |
|
num_fast_frames = len(images) |
|
|
|
|
|
expressions = [object_info['exp'] for object_info in data_dict] |
|
|
|
text_dict = self.prepare_text(num_frames, expressions, num_image_tokens=self.patch_token, |
|
num_fast_frames=num_fast_frames) |
|
ret = {'images': images, 'video_masks': None, 'conversation': text_dict['conversation']} |
|
|
|
return ret |
|
|
|
def prepare_text(self, n_frames, expressions, num_image_tokens=256, num_fast_frames=0): |
|
|
|
if self.use_fast: |
|
fast_frame_token_str = f'{self.FAST_IMG_START_TOKEN}' \ |
|
f'{self.FAST_IMG_CONTEXT_TOKEN * num_fast_frames * self.fast_pool_size * self.fast_pool_size}' \ |
|
f'{self.FAST_IMG_END_TOKEN}' + '\n' |
|
else: |
|
fast_frame_token_str = '' |
|
|
|
frame_token_str = f'{self.IMG_START_TOKEN}' \ |
|
f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \ |
|
f'{self.IMG_END_TOKEN}' |
|
|
|
questions = [] |
|
for i, exp in enumerate(expressions): |
|
|
|
if '?' in exp: |
|
questions.append(exp) |
|
else: |
|
exp = exp.replace('.', '').strip() |
|
|
|
|
|
question_template = SEG_QUESTIONS[0] |
|
questions.append(question_template.format(class_name=exp.lower())) |
|
|
|
eval_conversation_list = [] |
|
for i, question in enumerate(questions): |
|
qa_list = [] |
|
frame_tokens = frame_token_str + '\n' |
|
frame_tokens = frame_tokens * n_frames |
|
frame_tokens = frame_tokens.strip() |
|
qa_list.append( |
|
{'from': 'human', 'value': fast_frame_token_str + frame_tokens + question} |
|
) |
|
qa_list.append( |
|
{'from': 'gpt', 'value': ''} |
|
) |
|
assert len(qa_list) == 2 |
|
|
|
input = '' |
|
conversation = [] |
|
for msg in qa_list: |
|
if msg['from'] == 'human': |
|
input += msg['value'] |
|
elif msg['from'] == 'gpt': |
|
if msg['value'] == '': |
|
conversation.append({'input': input,}) |
|
else: |
|
conversation.append({'input': input, 'output': msg['value']}) |
|
input = '' |
|
else: |
|
raise NotImplementedError |
|
|
|
|
|
conversation[0].update({'system': self._system}) |
|
eval_conversation_list.append(conversation) |
|
return {'conversation': eval_conversation_list} |
|
|
|
def __getitem__(self, index): |
|
index = index % self.real_len() |
|
selected_video_objects = self.vid2metaid[self.videos[index]] |
|
video_objects_infos = [copy.deepcopy(self.text_data[idx]) for idx in selected_video_objects] |
|
|
|
selected_objects = video_objects_infos |
|
text_prompts = [copy.deepcopy(item['exp']) for item in selected_objects] |
|
|
|
data_dict = self.dataset_map_fn(selected_objects) |
|
multi_template_fn(data_dict['conversation'], self.template_map) |
|
result = video_lisa_encode_multi_conv_fn(data_dict, input_ids_with_output=False, tokenizer=self.tokenizer, max_length=self.max_length) |
|
data_dict.update(result) |
|
|
|
assert 'images' in data_dict.keys() |
|
pixel_values = [] |
|
if self.use_fast: |
|
fast_pixel_values = [] |
|
extra_pixel_values = [] |
|
if data_dict.get('images', None) is not None: |
|
frames_files = data_dict['images'] |
|
frames_files = [os.path.join(self.image_folder, frame_file) for frame_file in frames_files] |
|
|
|
ori_width, ori_height = None, None |
|
for frame_idx, frame_path in enumerate(frames_files): |
|
frame_image = Image.open(frame_path).convert('RGB') |
|
if ori_height is None: |
|
ori_width, ori_height = frame_image.size |
|
else: |
|
assert ori_width == frame_image.size[0] |
|
assert ori_height == frame_image.size[1] |
|
|
|
if self.extra_image_processor is not None: |
|
g_image = np.array(frame_image) |
|
g_image = self.extra_image_processor.apply_image(g_image) |
|
g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous() |
|
extra_pixel_values.append(g_pixel_values) |
|
if self.use_fast: |
|
frame_image = self.transformer(frame_image) |
|
fast_pixel_values.append(frame_image) |
|
if frame_idx < self.num_frames: |
|
pixel_values.append(frame_image) |
|
else: |
|
if frame_idx < self.num_frames: |
|
frame_image = self.transformer(frame_image) |
|
pixel_values.append(frame_image) |
|
|
|
pixel_values = torch.stack(pixel_values, dim=0) |
|
data_dict['pixel_values'] = pixel_values |
|
if self.use_fast: |
|
fast_pixel_values = torch.stack(fast_pixel_values, dim=0) |
|
data_dict['fast_pixel_values'] = fast_pixel_values |
|
if self.extra_image_processor is not None: |
|
data_dict['g_pixel_values'] = extra_pixel_values |
|
else: |
|
data_dict['pixel_values'] = torch.zeros(0, 3, self.image_size, self.image_size) |
|
ori_width, ori_height = None, None |
|
|
|
data_dict['type'] = 'video' |
|
data_dict['video_id'] = index |
|
data_dict['text_prompts'] = text_prompts |
|
data_dict['image_folder'] = self.image_folder |
|
data_dict['ori_height'] = ori_height |
|
data_dict['ori_width'] = ori_width |
|
data_dict['id'] = index |
|
|
|
return data_dict |
|
|
|
@master_only |
|
def evaluate(self, results, work_dir): |
|
final_results = {} |
|
for idx, item in enumerate(results): |
|
_id = item['id'] |
|
|
|
vid_id = self.videos[_id] |
|
selected_video_objects = self.vid2metaid[vid_id] |
|
video_objects_infos = [copy.deepcopy(self.text_data[idx]) for idx in selected_video_objects] |
|
text_prompts = [copy.deepcopy(item['exp']) for item in video_objects_infos] |
|
exp_ids = [copy.deepcopy(item['exp_id']) for item in video_objects_infos] |
|
final_results[vid_id] = {} |
|
assert len(text_prompts) == len(item['prediction_masks']), f"{len(text_prompts)}-----{len(item['prediction_masks'])}" |
|
for idt, text in enumerate(text_prompts): |
|
exp_id = exp_ids[idt] |
|
final_results[vid_id][exp_id] = { |
|
'exp': text, |
|
'prediction_masks': item['prediction_masks'][idt], |
|
} |
|
|
|
mmengine.dump(final_results, os.path.join(work_dir, f'{self.eval_name}.json')) |
|
return {"Dummy": 0} |
|
|
|
|
|
class DAVISEval(VideoReVOSEvalDataset): |
|
def json_file_preprocess(self, expression_file, mask_file): |
|
|
|
with open(expression_file, 'r') as f: |
|
expression_datas = json.load(f)['videos'] |
|
|
|
metas = [] |
|
anno_count = 0 |
|
vid2metaid = {} |
|
for vid_name in expression_datas: |
|
vid_express_data = expression_datas[vid_name] |
|
|
|
vid_frames = sorted(vid_express_data['frames']) |
|
vid_len = len(vid_frames) |
|
|
|
exp_id_list = sorted(list(vid_express_data['expressions'].keys())) |
|
for exp_id in exp_id_list: |
|
exp_dict = vid_express_data['expressions'][exp_id] |
|
meta = {} |
|
meta['video'] = vid_name |
|
meta['exp'] = exp_dict['exp'] |
|
meta['mask_anno_id'] = [str(anno_count), ] |
|
|
|
if 'obj_id' in exp_dict.keys(): |
|
meta['obj_id'] = exp_dict['obj_id'] |
|
else: |
|
meta['obj_id'] = [0, ] |
|
meta['anno_id'] = [str(anno_count), ] |
|
anno_count += 1 |
|
meta['frames'] = vid_frames |
|
meta['exp_id'] = exp_id |
|
|
|
meta['length'] = vid_len |
|
metas.append(meta) |
|
if vid_name not in vid2metaid.keys(): |
|
vid2metaid[vid_name] = [] |
|
vid2metaid[vid_name].append(len(metas) - 1) |
|
|
|
mask_dict = mmengine.load(mask_file) |
|
return vid2metaid, metas, mask_dict |
|
|