DenseLabelDev / projects /f_llm /datasets /llava_processors.py
zhouyik's picture
Upload folder using huggingface_hub
032e687 verified
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.image_processing_utils import BatchFeature, get_size_dict
from transformers.image_transforms import (
convert_to_rgb,
get_resize_output_image_size,
resize,
to_channel_dimension_format,
)
from transformers.image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
validate_kwargs,
validate_preprocess_arguments,
)
from transformers.utils import TensorType
from transformers.models.clip.image_processing_clip import logger, CLIPImageProcessor
from mmdet.models.utils import multi_apply
class CustomLlavaImageProcessor(CLIPImageProcessor):
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
resized to keep the input aspect ratio.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
default_to_square = True
if "shortest_edge" in size:
size = size["shortest_edge"]
default_to_square = False
# customization: force the largest edge to size
h, w = get_image_size(image, channel_dim=input_data_format)
if h > w:
size = (size, int(w * size / h))
else:
size = (int(h * size / w), size)
elif "height" in size and "width" in size:
size = (size["height"], size["width"])
else:
raise ValueError(
"Size must contain either 'shortest_edge' or 'height' and 'width'.")
output_size = get_resize_output_image_size(
image,
size=size,
default_to_square=default_to_square,
input_data_format=input_data_format,
)
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def preprocess(
self,
images: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: int = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
):
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size, param_name="size", default_to_square=False)
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(
crop_size, param_name="crop_size", default_to_square=True)
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
validate_kwargs(captured_kwargs=kwargs.keys(),
valid_processor_keys=self._valid_processor_keys)
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_resize=do_resize,
size=size,
resample=resample,
)
if do_convert_rgb:
images = [convert_to_rgb(image) for image in images]
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
image_sizes = [get_image_size(
image, channel_dim=input_data_format) for image in images]
if do_resize:
images = [
self.resize(image=image, size=size, resample=resample,
input_data_format=input_data_format)
for image in images
]
# we do not apppy center crop
# if do_center_crop:
# images = [
# self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
# ]
images, meta_datas = multi_apply(self.pad, images)
if do_rescale:
images = [
self.rescale(image=image, scale=rescale_factor,
input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [
self.normalize(image=image, mean=image_mean,
std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images,
"image_sizes": image_sizes, "meta_datas": meta_datas}
return BatchFeature(data=data, tensor_type=return_tensors)
def pad(self, image):
pad_value = np.array(tuple(int(x * 255)
for x in self.image_mean), dtype=image.dtype)
assert isinstance(image, np.ndarray)
h, w, _ = image.shape
size = max(h, w)
new_image = np.ones((size, size, 3), dtype=image.dtype) * pad_value
pad_height, pad_width = size - h, size - w
before_height, before_width = pad_height // 2, pad_width // 2
after_height, after_width = pad_height - \
before_height, pad_width - before_width
new_image[before_height:size-after_height,
before_width:size-after_width] = image
meta = dict(padding=dict(before_height=before_height, after_height=after_height,
before_width=before_width, after_width=after_width),
image_shape=dict(height=h, width=w),
padded_shape=dict(height=size, width=size))
return new_image, meta