|
import copy |
|
import io |
|
import json |
|
import os |
|
import random |
|
import warnings |
|
import logging |
|
from typing import Any |
|
from copy import deepcopy |
|
from distinctipy import distinctipy |
|
import tqdm |
|
import time |
|
|
|
import numpy as np |
|
from PIL import Image, ImageDraw |
|
import cv2 |
|
import torch |
|
from torch.utils.data import Dataset |
|
import torchvision.transforms as tvT |
|
from torchvision.transforms.functional import InterpolationMode |
|
from datasets import Dataset as HFDataset |
|
from datasets import DatasetDict, load_from_disk |
|
from transformers import AutoConfig, AutoTokenizer |
|
from pycocotools import mask |
|
|
|
from mmdet.datasets.api_wrappers import COCO |
|
|
|
from .utils import detection_utils as utils |
|
from .utils.detectron2.data2 import transforms as T |
|
from .utils.augmentation import build_pseudo_augmentation |
|
from .utils import (expand2square, expand2square_mask) |
|
from .process_functions import dynamic_preprocess |
|
|
|
|
|
_EXIF_ORIENT = 274 |
|
|
|
def _apply_exif_orientation(image): |
|
""" |
|
Applies the exif orientation correctly. |
|
|
|
This code exists per the bug: |
|
https://github.com/python-pillow/Pillow/issues/3973 |
|
with the function `ImageOps.exif_transpose`. The Pillow source raises errors with |
|
various methods, especially `tobytes` |
|
|
|
Function based on: |
|
https://github.com/wkentaro/labelme/blob/v4.5.4/labelme/utils/image.py#L59 |
|
https://github.com/python-pillow/Pillow/blob/7.1.2/src/PIL/ImageOps.py#L527 |
|
|
|
Args: |
|
image (PIL.Image): a PIL image |
|
|
|
Returns: |
|
(PIL.Image): the PIL image with exif orientation applied, if applicable |
|
""" |
|
if not hasattr(image, "getexif"): |
|
return image |
|
|
|
try: |
|
exif = image.getexif() |
|
except Exception: |
|
exif = None |
|
|
|
if exif is None: |
|
return image |
|
|
|
orientation = exif.get(_EXIF_ORIENT) |
|
|
|
method = { |
|
2: Image.FLIP_LEFT_RIGHT, |
|
3: Image.ROTATE_180, |
|
4: Image.FLIP_TOP_BOTTOM, |
|
5: Image.TRANSPOSE, |
|
6: Image.ROTATE_270, |
|
7: Image.TRANSVERSE, |
|
8: Image.ROTATE_90, |
|
}.get(orientation) |
|
|
|
if method is not None: |
|
return image.transpose(method) |
|
return image |
|
|
|
|
|
|
|
class SA1BPseudoVideoDataset(Dataset): |
|
IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
IMAGENET_STD = (0.229, 0.224, 0.225) |
|
|
|
def __init__(self, |
|
model_path, |
|
data_path=None, |
|
image_folder=None, |
|
dynamic_image_size=False, |
|
pad_image_to_square=False, |
|
num_dynamic_patch=None, |
|
repeat_time=1, |
|
ot_image_processor=None, |
|
tokenizer=None, |
|
vfm_name="RADIO", |
|
): |
|
super().__init__() |
|
|
|
self.dynamic_image_size = dynamic_image_size |
|
self.pad_image_to_square = pad_image_to_square |
|
self.ot_image_processor = ot_image_processor |
|
if vfm_name in ["DINOv2", "ConvNext"]: |
|
self.ot_image_processor.do_center_crop=False |
|
self.ot_image_processor.do_resize=False |
|
|
|
self.cfg = AutoConfig.from_pretrained(model_path, trust_remote_code=True) |
|
if num_dynamic_patch is not None and len(num_dynamic_patch) == 2: |
|
self.min_dynamic_patch = num_dynamic_patch[0] |
|
self.max_dynamic_patch = num_dynamic_patch[1] |
|
else: |
|
self.min_dynamic_patch = self.cfg.min_dynamic_patch |
|
self.max_dynamic_patch = self.cfg.max_dynamic_patch |
|
self.image_size = self.cfg.force_image_size |
|
self.use_thumbnail = self.cfg.use_thumbnail |
|
|
|
with open(data_path, 'r') as f: |
|
data_list = json.load(f)['images'] |
|
|
|
left_data_list = [] |
|
for item in data_list: |
|
if item['file_name'].startswith('sa_0000'): |
|
continue |
|
left_data_list.append(item) |
|
self.data = left_data_list |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if vfm_name == "DINOv2": |
|
augs = build_pseudo_augmentation(True, force_image_size=512) |
|
elif vfm_name in ["RADIO", "ConvNext"]: |
|
augs = build_pseudo_augmentation(True, force_image_size=1024) |
|
else: |
|
raise NotImplementedError |
|
self.augmentations = T.AugmentationList(augs) |
|
|
|
self.transform = tvT.Compose([ |
|
tvT.Lambda(lambda img: img.convert('RGB') |
|
if img.mode != 'RGB' else img), |
|
tvT.Resize((self.image_size, self.image_size)), |
|
tvT.ToTensor(), |
|
tvT.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD) |
|
]) |
|
|
|
self.image_folder = image_folder |
|
self._max_refetch = 100 |
|
|
|
def parse_data_info(self, img_info: dict): |
|
data_info = {} |
|
data_info["image"] = img_info["file_name"] |
|
data_info["img_id"] = img_info["image_id"] |
|
data_info["height"] = img_info["height"] |
|
data_info["width"] = img_info["width"] |
|
|
|
anno_file = os.path.join(self.image_folder, img_info["file_name"].replace('.jpg', '.json')) |
|
with open(anno_file, 'r') as f: |
|
json_data = json.load(f) |
|
|
|
instances = [] |
|
for i, ann in enumerate(json_data['annotations']): |
|
instance = {} |
|
|
|
x1, y1, w, h = ann["bbox"] |
|
inter_w = max(0, min(x1 + w, img_info["width"]) - max(x1, 0)) |
|
inter_h = max(0, min(y1 + h, img_info["height"]) - max(y1, 0)) |
|
if inter_w * inter_h == 0: |
|
continue |
|
if ann["area"] <= 0 or w < 1 or h < 1: |
|
continue |
|
bbox = [x1, y1, x1 + w, y1 + h] |
|
|
|
if ann.get("iscrowd", False): |
|
instance["ignore_flag"] = 1 |
|
else: |
|
instance["ignore_flag"] = 0 |
|
instance["bbox"] = bbox |
|
|
|
if ann.get("segmentation", None): |
|
instance["segmentation"] = ann["segmentation"] |
|
|
|
if "instance_id" in ann: |
|
instance["instance_id"] = ann["instance_id"] |
|
else: |
|
instance["instance_id"] = i+1 |
|
instances.append(instance) |
|
data_info["annotations"] = instances |
|
return data_info |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@property |
|
def modality_length(self): |
|
length_list = [] |
|
for data_dict in self.data: |
|
cur_len = 100 |
|
length_list.append(cur_len) |
|
return length_list |
|
|
|
def _rand_another(self): |
|
return np.random.randint(0, len(self.data)) |
|
|
|
def __len__(self): |
|
return len(self.data) |
|
|
|
def __getitem__(self, index) -> Any: |
|
for _ in range(self._max_refetch + 1): |
|
data = self.prepare_data(index) |
|
if data is None: |
|
index = self._rand_another() |
|
continue |
|
return data |
|
|
|
def decode_mask(self, object_masks, ori_height, ori_width): |
|
binary_masks = [] |
|
for object_mask in object_masks: |
|
if isinstance(object_mask, dict): |
|
if isinstance(object_mask["counts"], list): |
|
|
|
object_mask = mask.frPyObjects(object_mask, ori_height, ori_width) |
|
m = mask.decode(object_mask) |
|
m = m.astype(np.uint8).squeeze() |
|
elif object_mask: |
|
rles = mask.frPyObjects(object_mask, ori_height, ori_width) |
|
rle = mask.merge(rles) |
|
m = mask.decode(rle).astype(np.uint8).squeeze() |
|
else: |
|
m = np.zeros((ori_height, ori_width), dtype=np.uint8) |
|
binary_masks.append(m) |
|
if len(binary_masks) == 0: |
|
binary_masks.append(np.zeros((ori_height, ori_width), dtype=np.uint8)) |
|
masks = np.stack(binary_masks, axis=0) |
|
if self.pad_image_to_square: |
|
masks = expand2square_mask(masks) |
|
|
|
return masks |
|
|
|
def prepare_data(self, index): |
|
data_dict = copy.deepcopy(self.parse_data_info(self.data[index])) |
|
|
|
img_annos = data_dict.pop('annotations', None) |
|
image_path = os.path.join(self.image_folder, data_dict['image']) |
|
|
|
original_image = utils.read_image(image_path, "RGB") |
|
|
|
sampling_frame_num = 2 |
|
|
|
image_list = [] |
|
annotations_list = [] |
|
for _ in range(sampling_frame_num): |
|
utils.check_image_size(data_dict, original_image) |
|
|
|
aug_input = T.AugInput(original_image) |
|
transforms = self.augmentations(aug_input) |
|
image = aug_input.image |
|
|
|
image_shape = image.shape[:2] |
|
image_list.append(Image.fromarray(image)) |
|
|
|
_img_annos = [] |
|
for anno in img_annos: |
|
_anno = {} |
|
for k, v in anno.items(): |
|
_anno[k] = copy.deepcopy(v) |
|
_img_annos.append(_anno) |
|
|
|
annos = [ |
|
utils.transform_instance_annotations(obj, transforms, image_shape) |
|
for obj in _img_annos |
|
if obj.get("iscrowd", 0) == 0 |
|
] |
|
annotations_list.append(annos) |
|
|
|
|
|
sampled_frame_indices = [0, 1] |
|
|
|
|
|
|
|
|
|
|
|
images = [image_list[sampled_frame_indices[0]], image_list[sampled_frame_indices[1]]] |
|
annotations = [annotations_list[sampled_frame_indices[0]], annotations_list[sampled_frame_indices[1]]] |
|
|
|
|
|
visual_prompts_list = [] |
|
region_ids_list = [] |
|
for fid, annotations_i in enumerate(annotations): |
|
segms = [annotations_i[idx]['segmentation'] for idx in range(len(annotations_i))] |
|
instance_ids = [annotations_i[idx]['instance_id'] for idx in range(len(annotations_i))] |
|
|
|
if isinstance(segms[0], np.ndarray): |
|
ori_width, ori_height = images[fid].size |
|
regions = np.stack(segms, axis=0) |
|
assert regions.shape[1] == ori_height, f"regions.shape[1]: {regions.shape[1]}, ori_height: {ori_height}" |
|
assert regions.shape[2] == ori_width, f"regions.shape[2]: {regions.shape[2]}, ori_width: {ori_width}" |
|
else: |
|
ori_width, ori_height = images[fid].size |
|
regions = self.decode_mask(segms, ori_height=ori_height, ori_width=ori_width) |
|
visual_prompts_list.append(regions) |
|
region_ids_list.append(instance_ids) |
|
|
|
merged_visual_prompts = [image.copy() for image in images] |
|
|
|
if self.dynamic_image_size: |
|
num_patches_list, images_list, merged_regions_list, crop_regions_list, num_vprompts_list = [], [], [], [], [] |
|
for image, visual_prompts, merged_visual_prompt in zip(images, visual_prompts_list, merged_visual_prompts): |
|
try: |
|
_images, regions, merged_regions = dynamic_preprocess( |
|
image, visual_prompts, merged_visual_prompt, min_num=self.min_dynamic_patch, max_num=self.max_dynamic_patch, |
|
image_size=self.image_size, use_thumbnail=self.use_thumbnail |
|
) |
|
except Exception as e: |
|
return None |
|
images_list.extend(_images) |
|
merged_regions_list.extend(merged_regions) |
|
crop_regions_list.extend(regions) |
|
num_patches_list.append(len(_images)) |
|
num_vprompts_list.append(len(regions)) |
|
else: |
|
raise NotImplementedError |
|
|
|
pixel_values = [self.transform(image) for image in images_list] |
|
pixel_values = torch.stack(pixel_values) |
|
|
|
merged_visual_prompts = [self.transform(merged_region) for merged_region in merged_regions_list] |
|
merged_visual_prompts = torch.stack(merged_visual_prompts) |
|
|
|
transformed_visual_prompts = [] |
|
for region in crop_regions_list: |
|
transformed_regions = [] |
|
for _region in region: |
|
resized_region = cv2.resize( |
|
_region[:, :, np.newaxis], dsize=(self.image_size, self.image_size), |
|
interpolation=cv2.INTER_NEAREST_EXACT) |
|
transformed_regions.append(torch.from_numpy(resized_region).squeeze(-1)) |
|
transformed_visual_prompts.append(torch.stack(transformed_regions)) |
|
try: |
|
visual_prompts = torch.stack(transformed_visual_prompts, dim=0) |
|
except: |
|
print("num regions: ", len(crop_regions_list)) |
|
print("transformed_visual_prompts.shape: ", [ele.shape for ele in transformed_visual_prompts]) |
|
print("pixel_values.shape: ", pixel_values.shape) |
|
exit(0) |
|
assert merged_visual_prompts.shape[:2] == pixel_values.shape[:2] |
|
|
|
|
|
ot_pixel_values = [self.ot_image_processor(images=image, return_tensors='pt').pixel_values for image in images] |
|
ot_pixel_values = torch.cat(ot_pixel_values) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ot_visual_prompts = torch.from_numpy(np.concatenate(visual_prompts_list, axis=0)).\ |
|
to(ot_pixel_values.dtype).to(ot_pixel_values.device) |
|
assert ot_pixel_values.shape[-2:] == ot_visual_prompts.shape[-2:], f"ot_pixel_values.shape: {ot_pixel_values.shape[-2:]}, ot_visual_prompts.shape: {ot_visual_prompts.shape[-2:]}" |
|
|
|
ret = dict( |
|
input_ids=[1, 1, 1], |
|
labels=[1, 1, 1], |
|
attention_mask=[1, 1, 1], |
|
pixel_values=pixel_values, |
|
merged_visual_prompts=merged_visual_prompts, |
|
num_patches=num_patches_list, |
|
visual_prompts=visual_prompts.flatten(0, 1), |
|
num_vprompts=num_vprompts_list, |
|
num_images=len(num_vprompts_list), |
|
ot_pixel_values=ot_pixel_values, |
|
ot_visual_prompts=ot_visual_prompts, |
|
region_ids=region_ids_list, |
|
) |
|
|
|
return ret |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|