|
import copy |
|
import io |
|
import json |
|
import os |
|
import random |
|
import warnings |
|
import logging |
|
from typing import Any |
|
from copy import deepcopy |
|
from distinctipy import distinctipy |
|
|
|
import numpy as np |
|
from PIL import Image, ImageDraw |
|
import cv2 |
|
import torch |
|
from torch.utils.data import Dataset |
|
import torchvision.transforms as T |
|
import torch.nn.functional as F |
|
from torchvision.transforms.functional import InterpolationMode |
|
from datasets import Dataset as HFDataset |
|
from datasets import DatasetDict, load_from_disk |
|
from transformers import AutoConfig, AutoTokenizer |
|
from pycocotools import mask |
|
|
|
from mmengine import print_log |
|
from mmengine.config import Config, ConfigDict |
|
|
|
from xtuner.registry import BUILDER |
|
from xtuner.dataset.huggingface import process_hf_dataset, build_origin_dataset |
|
from xtuner.utils import DEFAULT_IMAGE_TOKEN |
|
from xtuner.utils import IGNORE_INDEX |
|
IGNORE_TOKEN_ID = IGNORE_INDEX |
|
|
|
from .process_functions import (vcr_decode_mask_fn, preprocess_llava, contour_rendering) |
|
from .utils import (VPT_CONTEXT_TOKEN, RGB_NAME) |
|
from transformers.processing_utils import ProcessingKwargs |
|
from transformers.image_utils import get_image_size, to_numpy_array |
|
from transformers.processing_utils import _validate_images_text_input_order |
|
|
|
|
|
class LlavaProcessorKwargs(ProcessingKwargs, total=False): |
|
|
|
_defaults = { |
|
"text_kwargs": { |
|
"padding": False, |
|
}, |
|
"image_kwargs": {}, |
|
"video_kwargs": {}, |
|
} |
|
|
|
class LlavaDataset(Dataset): |
|
def __init__(self, |
|
data_path=None, |
|
image_folder=None, |
|
dataset_map_fn=None, |
|
annotation_load_fn=None, |
|
repeat_time=1, |
|
lazy_load=True, |
|
llava_processor=None, |
|
ot_image_processor=None, |
|
): |
|
super().__init__() |
|
|
|
self.dataset_map_fn = dataset_map_fn |
|
self.annotation_load_fn = annotation_load_fn |
|
self.lazy_load = lazy_load |
|
self.ot_image_processor = ot_image_processor |
|
self.llava_processor = llava_processor |
|
|
|
self._add_special_tokens() |
|
|
|
json_data, hf_json_data = self.annotation_load_fn(data_path, repeat_time, image_folder=image_folder) |
|
|
|
if json_data is not None: |
|
self.json_data = json_data |
|
hf_json_data = DatasetDict({'train': HFDataset.from_list(hf_json_data)}) |
|
if self.lazy_load: |
|
self.text_data = build_origin_dataset(hf_json_data, 'train') |
|
else: |
|
raise NotImplementedError |
|
|
|
self.image_folder = image_folder |
|
self._max_refetch = 1000 |
|
self.tcs_loader = None |
|
|
|
def _add_special_tokens(self): |
|
special_tokens = [VPT_CONTEXT_TOKEN,] |
|
num_new_tokens = self.llava_processor.tokenizer.add_tokens(special_tokens, special_tokens=True) |
|
|
|
@property |
|
def modality_length(self): |
|
length_list = [] |
|
for data_dict in self.text_data: |
|
if self.lazy_load: |
|
cur_len = 100 |
|
else: |
|
cur_len = len(data_dict['input_ids']) |
|
if data_dict.get('image', None) is None: |
|
cur_len = -cur_len |
|
length_list.append(cur_len) |
|
return length_list |
|
|
|
def _rand_another(self): |
|
return np.random.randint(0, len(self.text_data)) |
|
|
|
def __len__(self): |
|
return len(self.text_data) |
|
|
|
def __getitem__(self, index) -> Any: |
|
for _ in range(self._max_refetch + 1): |
|
data = self.prepare_data(index) |
|
|
|
if data is None: |
|
index = self._rand_another() |
|
continue |
|
return data |
|
|
|
def prepare_data(self, index): |
|
if hasattr(self, 'json_data'): |
|
data_dict = copy.deepcopy(self.json_data[index]) |
|
data_dict.update(self.text_data[index]) |
|
else: |
|
data_dict = copy.deepcopy(self.text_data[index]) |
|
|
|
if self.lazy_load: |
|
result = self.dataset_map_fn(data_dict) |
|
if result is None: |
|
return None |
|
data_dict.update(result) |
|
|
|
if 'image' in data_dict and data_dict['image'] is not None and len(data_dict['image']) != 0: |
|
if type(data_dict['image']) == list: |
|
ret = self.multi_modal_multi_image_get_item(data_dict) |
|
else: |
|
ret = self.multi_modal_get_item(data_dict) |
|
elif 'video' in data_dict and data_dict['video'] is not None and data_dict['video'] != '': |
|
ret = self.video_get_item(data_dict) |
|
else: |
|
ret = self.pure_text_get_item(data_dict) |
|
return ret |
|
else: |
|
raise NotImplementedError |
|
|
|
def load_image(self, image_path): |
|
|
|
if self.tcs_loader is not None and 's3://' in image_path: |
|
return self.tcs_loader(image_path) |
|
return Image.open(image_path).convert('RGB') |
|
|
|
def decode_mask(self, object_masks, ori_height, ori_width): |
|
binary_masks = [] |
|
for object_mask in object_masks: |
|
if isinstance(object_mask, dict): |
|
if isinstance(object_mask["counts"], list): |
|
|
|
object_mask = mask.frPyObjects(object_mask, ori_height, ori_width) |
|
m = mask.decode(object_mask) |
|
m = m.astype(np.uint8).squeeze() |
|
elif object_mask: |
|
rles = mask.frPyObjects(object_mask, ori_height, ori_width) |
|
rle = mask.merge(rles) |
|
m = mask.decode(rle).astype(np.uint8).squeeze() |
|
else: |
|
m = np.zeros((ori_height, ori_width), dtype=np.uint8) |
|
binary_masks.append(m) |
|
if len(binary_masks) == 0: |
|
binary_masks.append(np.zeros((ori_height, ori_width), dtype=np.uint8)) |
|
masks = np.stack(binary_masks, axis=0) |
|
return masks |
|
|
|
def prepare_inputs(self, images, text, **kwargs): |
|
output_kwargs = self.llava_processor._merge_kwargs( |
|
LlavaProcessorKwargs, |
|
tokenizer_init_kwargs=self.llava_processor.tokenizer.init_kwargs, |
|
**kwargs, |
|
) |
|
|
|
images, text = _validate_images_text_input_order(images, text) |
|
|
|
for i in range(len(text)): |
|
if text[i][-len('ASSISTANT:'):] == 'ASSISTANT:': |
|
text[i] = text[i][:-len('ASSISTANT:')] |
|
elif text[i][-len('ASSISTANT: '):] == 'ASSISTANT: ': |
|
text[i] = text[i][:-len('ASSISTANT: ')] |
|
|
|
if 'Image-1:' in text[i]: |
|
text[i] = text[i].replace('Image-1:', '<Image-1>\n') |
|
if 'Image-2:' in text[i]: |
|
text[i] = text[i].replace('Image-2:', '<Image-2>\n') |
|
|
|
if isinstance(text, str): |
|
text = [text] |
|
elif not isinstance(text, list) and not isinstance(text[0], str): |
|
raise ValueError("Invalid input text. Please provide a string, or a list of strings") |
|
|
|
if images is not None: |
|
image_inputs = self.llava_processor.image_processor(images, **output_kwargs["images_kwargs"]) |
|
else: |
|
image_inputs = {} |
|
|
|
patch_size = 14 |
|
vision_feature_select_strategy = "default" |
|
|
|
prompt_strings = text |
|
if image_inputs.get("pixel_values") is not None: |
|
if patch_size is not None and vision_feature_select_strategy is not None: |
|
|
|
pixel_values = image_inputs["pixel_values"] |
|
height, width = get_image_size(to_numpy_array(pixel_values[0])) |
|
num_image_tokens = (height // patch_size) * (width // patch_size) + 1 |
|
if vision_feature_select_strategy == "default": |
|
num_image_tokens -= 1 |
|
|
|
prompt_strings = [] |
|
for sample in text: |
|
sample = sample.replace(self.llava_processor.image_token, self.llava_processor.image_token * num_image_tokens) |
|
prompt_strings.append(sample) |
|
else: |
|
print( |
|
"Expanding inputs for image tokens in LLaVa should be done in processing. " |
|
"Please add `patch_size` and `vision_feature_select_strategy` to the model's processing config or set directly " |
|
"with `processor.patch_size = {{patch_size}}` and processor.vision_feature_select_strategy = {{vision_feature_select_strategy}}`. " |
|
"Using processors without these attributes in the config is deprecated and will throw an error in v4.50." |
|
) |
|
|
|
text = prompt_strings |
|
|
|
batch_input_ids, batch_labels = [], [] |
|
for i in range(len(text)): |
|
assistant_prefix = 'ASSISTANT: ' |
|
num_turns = text[i].count(assistant_prefix) |
|
if num_turns == 0: |
|
assistant_prefix = 'ASSISTANT:' |
|
num_turns = text[i].count(assistant_prefix) |
|
if num_turns == 0: |
|
return None |
|
|
|
left_text = text[i] |
|
input_ids, labels = [], [] |
|
try: |
|
ok = False |
|
for turn_idx in range(num_turns): |
|
if ok: |
|
break |
|
input_text, left_text = left_text.split(assistant_prefix, 1) |
|
input_text = input_text + assistant_prefix |
|
|
|
if turn_idx == num_turns-1: |
|
output_text = left_text.strip() |
|
else: |
|
try: |
|
output_text, left_text = left_text.split('USER: ', 1) |
|
output_text = output_text.strip() |
|
left_text = 'USER: ' + left_text |
|
except: |
|
if turn_idx == 0: |
|
return None |
|
output_text = left_text.strip() |
|
ok = True |
|
|
|
|
|
input_encode = self.llava_processor.tokenizer.encode(input_text) |
|
input_ids += input_encode |
|
labels += [IGNORE_INDEX] * len(input_encode) |
|
|
|
output_encode = self.llava_processor.tokenizer.encode(output_text, add_special_tokens=False) |
|
input_ids += output_encode |
|
labels += copy.deepcopy(output_encode) |
|
|
|
|
|
|
|
except: |
|
return None |
|
|
|
if len(input_ids) > self.llava_processor.tokenizer.model_max_length: |
|
input_ids = input_ids[:self.llava_processor.tokenizer.model_max_length] |
|
labels = labels[:self.llava_processor.tokenizer.model_max_length] |
|
print( |
|
f"Warning: input_ids length({len(input_ids)})" |
|
f"is longer than max_length, cut to {self.llava_processor.tokenizer.model_max_length}" |
|
) |
|
batch_input_ids.append(input_ids) |
|
batch_labels.append(labels) |
|
input_ids = torch.tensor(batch_input_ids, dtype=torch.long) |
|
labels = torch.tensor(batch_labels, dtype=torch.long) |
|
attention_mask = input_ids.ne(self.llava_processor.tokenizer.pad_token_id) |
|
ret = { |
|
'input_ids': input_ids, |
|
'labels': labels, |
|
'attention_mask': attention_mask, |
|
'pixel_values': image_inputs['pixel_values'], |
|
} |
|
return ret, output_kwargs |
|
|
|
def _convert_masks_to_pil_images(self, regions): |
|
ori_height, ori_width = regions.shape[-2:] |
|
num_pseudo_images = regions.shape[0] // 3 |
|
if regions.shape[0] % 3 != 0: |
|
num_pseudo_images += 1 |
|
pseudo_images = [] |
|
for img_idx in range(num_pseudo_images): |
|
start_idx = img_idx * 3 |
|
end_idx = start_idx + 3 |
|
if end_idx > regions.shape[0]: |
|
end_idx = regions.shape[0] |
|
|
|
img_array = np.zeros(shape=(ori_height, ori_width, 3), dtype=np.uint8) |
|
num_regions = end_idx - start_idx |
|
img_array[:, :, :num_regions] = np.stack( |
|
[regions[idx, :, :] for idx in range(start_idx, end_idx)], axis=-1 |
|
) * 255 |
|
pseudo_images.append(Image.fromarray(img_array)) |
|
|
|
return pseudo_images |
|
|
|
def multi_modal_get_item(self, data_item): |
|
|
|
if DEFAULT_IMAGE_TOKEN not in data_item['conversations'][0]['value']: |
|
data_item['conversations'][0]['value'] = DEFAULT_IMAGE_TOKEN + '\n' + data_item['conversations'][0]['value'] |
|
|
|
|
|
image_path = os.path.join(self.image_folder, data_item['image']) |
|
|
|
|
|
try: |
|
image = self.load_image(image_path) |
|
except Exception as e: |
|
print(f'Error: {e}', flush=True) |
|
print_log(f'Error: {e}', logger='current') |
|
return None |
|
if image is None: |
|
return None |
|
ori_width, ori_height = image.size |
|
if ori_width < 10 or ori_height < 10: |
|
return None |
|
|
|
|
|
merged_visual_prompts = cv2.imread(image_path) |
|
if merged_visual_prompts is None: |
|
merged_visual_prompts = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR) |
|
regions = np.zeros(shape=(1, ori_height, ori_width), dtype=np.uint8) |
|
has_visual_prompts = False |
|
if 'annotation' in data_item and data_item['annotation'] is not None and len(data_item['annotation']) > 0: |
|
annotations = data_item['annotation'] |
|
sampled_inds = data_item.get('sampled_inds', list(range(len(annotations)))) |
|
if self.annotation_load_fn.__name__ == 'RegionShortConversationVCRDataset_load_fn': |
|
bboxes = [annotations[idx]['bbox'] for idx in sampled_inds] |
|
segms = [annotations[idx]['segmentation'] for idx in sampled_inds] |
|
regions = vcr_decode_mask_fn(bboxes, segms, ori_height, ori_width) |
|
regions = (regions > 0.0).astype(np.uint8) |
|
elif self.annotation_load_fn.__name__ == 'MDPVBoxOCRDataset_load_fn': |
|
bboxes = [annotations[idx]['bbox'] for idx in sampled_inds] |
|
regions = np.zeros(shape=(len(bboxes), ori_height, ori_width), dtype=np.uint8) |
|
for bidx, bbox in enumerate(bboxes): |
|
x0, y0, x1, y1 = bbox |
|
regions[bidx, y0:y1, x0:x1] = 1 |
|
else: |
|
segms = [annotations[idx]['segmentation'] for idx in sampled_inds] |
|
regions = self.decode_mask(segms, ori_height=ori_height, ori_width=ori_width) |
|
try: |
|
contour_rendering(merged_visual_prompts, regions) |
|
except Exception as e: |
|
pass |
|
has_visual_prompts = True |
|
merged_visual_prompts = Image.fromarray(cv2.cvtColor(merged_visual_prompts, cv2.COLOR_BGR2RGB)) |
|
|
|
|
|
if has_visual_prompts: |
|
region_ids = [[region_id+1 for region_id in range(regions.shape[0])],] |
|
object_tokens_str = "" |
|
for fidx, object_ids_fidx in enumerate(region_ids): |
|
object_tokens_str = object_tokens_str + f"Regions in the image: " |
|
for object_id in object_ids_fidx: |
|
object_tokens_str = object_tokens_str + f"<region-{object_id}>{VPT_CONTEXT_TOKEN}, " |
|
object_tokens_str = object_tokens_str[:-1] + ".\n" |
|
else: |
|
region_ids = [[1]] |
|
object_tokens_str = "" |
|
|
|
templated_conversation = preprocess_llava(deepcopy(data_item['conversations']), object_tokens_str, num_images=1) |
|
if templated_conversation is None: |
|
return None |
|
|
|
text_prompt = self.llava_processor.apply_chat_template(templated_conversation, add_generation_prompt=True) |
|
inputs, output_kwargs = self.prepare_inputs(text=[text_prompt], images=[image], padding=True, return_tensors="pt") |
|
|
|
input_ids = inputs["input_ids"] |
|
labels = inputs["labels"] |
|
attention_mask = inputs["attention_mask"] |
|
pixel_values = inputs["pixel_values"] |
|
|
|
regions_img = self._convert_masks_to_pil_images(regions) |
|
regions_input = self.llava_processor.image_processor(regions_img, do_rescale=False, do_normalize=False, **output_kwargs["images_kwargs"]) |
|
resized_visual_prompts = (regions_input['pixel_values'] > 125).to(torch.long) |
|
if resized_visual_prompts.shape[-3:] != pixel_values.shape[-3:]: |
|
print("the shape of resized_visual_prompts don't match with that of pixel_values") |
|
return None |
|
resized_visual_prompts = resized_visual_prompts.flatten(0, 1)[:regions.shape[0]] |
|
|
|
inputs_vp = self.llava_processor(text=[text_prompt], images=merged_visual_prompts, padding=True, return_tensors="pt") |
|
merged_visual_prompts = inputs_vp.pixel_values |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
image = self.load_image(image_path) |
|
w, h = image.size |
|
if w > h: |
|
target_size = (1024, int(h/w*1024)) |
|
else: |
|
target_size = (int(w/h*1024), 1024) |
|
resized_image = image.resize(target_size) |
|
cur_w, cur_h = resized_image.size |
|
padded_image = np.zeros(shape=(1024, 1024, 3), dtype=np.uint8) * 255 |
|
padded_image[:cur_h, :cur_w, :] = np.array(resized_image) |
|
ot_pixel_values = self.ot_image_processor(images=padded_image, return_tensors='pt').pixel_values |
|
|
|
ot_visual_prompts = torch.tensor(regions).\ |
|
to(ot_pixel_values.dtype).to(ot_pixel_values.device) |
|
h, w = ot_visual_prompts.shape[-2:] |
|
if h > w: |
|
target_size = (1024, int(w/h*1024)) |
|
else: |
|
target_size = (int(h/w*1024), 1024) |
|
resized_ot_visual_prompts = F.interpolate(ot_visual_prompts.unsqueeze(1), size=target_size, mode="bilinear").squeeze(1) |
|
resized_padded_ot_visual_prompts = resized_ot_visual_prompts.new_zeros((resized_ot_visual_prompts.shape[0], 1024, 1024)) |
|
resized_padded_ot_visual_prompts[:, :target_size[0], :target_size[1]] = resized_ot_visual_prompts |
|
|
|
patch_size = 14 |
|
num_image_tokens = (pixel_values.shape[-1] // patch_size) ** 2 |
|
|
|
ret = dict( |
|
input_ids=input_ids[0], |
|
labels=labels[0], |
|
attention_mask=attention_mask[0], |
|
pixel_values=merged_visual_prompts, |
|
merged_visual_prompts=pixel_values, |
|
image_flags=torch.tensor([1]*num_image_tokens, dtype=torch.long), |
|
visual_prompts=resized_visual_prompts, |
|
num_vprompts=[resized_visual_prompts.shape[0],], |
|
vprompt_flags=[[1 for _ in range(resized_visual_prompts.shape[0])]] if has_visual_prompts else [[0 for _ in range(resized_visual_prompts.shape[0])]], |
|
num_images=1, |
|
ot_pixel_values=ot_pixel_values, |
|
ot_visual_prompts=resized_padded_ot_visual_prompts, |
|
region_ids=region_ids, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return ret |
|
|
|
def multi_modal_multi_image_get_item(self, data_item): |
|
image_name_list = data_item['image'] |
|
|
|
image_path_list = [os.path.join(self.image_folder, image_name) for image_name in image_name_list] |
|
images = [self.load_image(image_path) for image_path in image_path_list] |
|
if any([item is None for item in images]): |
|
return None |
|
merged_visual_prompts = [cv2.imread(image_path) for image_path in image_path_list] |
|
for idx, item in enumerate(merged_visual_prompts): |
|
if item is not None: |
|
continue |
|
merged_visual_prompts[idx] = cv2.cvtColor(np.asarray(image_path_list[idx]), cv2.COLOR_RGB2BGR) |
|
|
|
|
|
gt_region_id = -1 |
|
visual_prompts_list, object_ids = [], [] |
|
if 'pos_annotations' in data_item and data_item['pos_annotations'] is not None and len(data_item['pos_annotations']) > 0: |
|
pos_annotations = data_item['pos_annotations'] |
|
neg_annotations = data_item['neg_annotations'] |
|
|
|
name_rgb = random.choice(RGB_NAME) |
|
color_name, color = [], [] |
|
for k, v in name_rgb.items(): |
|
color_name.append(str(k)) |
|
color.append(v) |
|
color = color[0] |
|
color_name = color_name[0] |
|
color_anno_i = (color[2], color[1], color[0]) |
|
for fidx in range(len(pos_annotations)-1): |
|
ori_width, ori_height = images[fidx].size |
|
regions = self.decode_mask(pos_annotations[fidx], ori_height=ori_height, ori_width=ori_width) |
|
visual_prompts_list.append(regions) |
|
object_ids.append([]) |
|
for region in regions: |
|
contours, hierarchy = cv2.findContours(region, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) |
|
cv2.drawContours(merged_visual_prompts[fidx], contours, -1, color=color_anno_i, thickness=2) |
|
object_ids[fidx].append(1) |
|
ori_width, ori_height = images[-1].size |
|
pos_neg_segms = pos_annotations[-1] + neg_annotations[-1] |
|
regions = self.decode_mask(pos_neg_segms, ori_height=ori_height, ori_width=ori_width) |
|
visual_prompts_list.append(regions) |
|
|
|
random_id = list(range(1, len(regions)+1)) |
|
random.shuffle(random_id) |
|
try: |
|
contour_rendering(merged_visual_prompts[-1], regions, random_id) |
|
object_ids.append([_id for _id in random_id]) |
|
|
|
choice_names = [f"{chr(i)}" for i in range(65,91)] |
|
if len(regions) > len(choice_names) - 1: |
|
valid_num = len(choice_names) - 1 |
|
else: |
|
valid_num = len(regions) |
|
region_ids = random_id[:valid_num] |
|
choice_names = choice_names[:valid_num+1] |
|
gt_region_id = region_ids[0] if not data_item['is_disappear'] else -1 |
|
|
|
region_ids.sort() |
|
multi_choices_str = "" |
|
gt_choice_str = "" |
|
for choice_name, region_id in zip(choice_names[:-1], region_ids): |
|
multi_choices_str = multi_choices_str + f"{choice_name}. {region_id}\n" |
|
if region_id == gt_region_id: |
|
assert gt_choice_str == "" |
|
gt_choice_str = gt_choice_str + f"{choice_name}" |
|
|
|
multi_choices_str = multi_choices_str + f"{choice_names[-1]}. None of the above choices are correct\n" |
|
if gt_choice_str == "" or data_item['is_disappear'] or len(pos_annotations[-1]) == 0: |
|
gt_choice_str = f"{choice_names[-1]}" |
|
|
|
conversations = data_item['conversations'] |
|
for i, conversation in enumerate(conversations): |
|
conversation_value = conversation['value'] |
|
conversation_value = conversation_value.format(color=color_name, choices=multi_choices_str, answer=gt_choice_str) |
|
conversation['value'] = conversation_value |
|
data_item['conversations'] = conversations |
|
except Exception as e: |
|
pass |
|
else: |
|
pass |
|
|
|
merged_visual_prompts = [Image.fromarray(cv2.cvtColor(item, cv2.COLOR_BGR2RGB)) for item in merged_visual_prompts] |
|
|
|
num_vprompts_list = [vp.shape[0] for vp in visual_prompts_list] |
|
|
|
if gt_region_id != object_ids[-1][0] and gt_region_id != -1: |
|
print("query object id doesn't match with the candidate ids.") |
|
return None |
|
region_ids = [[gt_region_id for _ in object_ids[fidx]] |
|
for fidx in range(len(num_vprompts_list)-1)] |
|
object_tokens_str = "" |
|
for fidx, object_ids_fidx in enumerate(region_ids): |
|
object_tokens_str = object_tokens_str + f"Objects in Image-{fidx+1}: " |
|
for object_id in range(1, len(object_ids_fidx)+1): |
|
object_tokens_str = object_tokens_str + f"<query object>{VPT_CONTEXT_TOKEN}, " |
|
object_tokens_str = object_tokens_str[:-2] + ".\n" |
|
sorted_indices = sorted(range(len(object_ids[-1])), key=lambda k: object_ids[-1][k]) |
|
sorted_cand_object_ids = [] |
|
object_tokens_str = object_tokens_str + f"Objects in Image-{len(object_ids)}: " |
|
for sorted_idx in sorted_indices: |
|
object_id = object_ids[-1][sorted_idx] |
|
object_tokens_str = object_tokens_str + f"<object-{object_id}>{VPT_CONTEXT_TOKEN}, " |
|
sorted_cand_object_ids.append(object_id) |
|
object_tokens_str = object_tokens_str[:-2] + ".\n" |
|
region_ids = region_ids + [sorted_cand_object_ids, ] |
|
|
|
templated_conversation = preprocess_llava(deepcopy(data_item['conversations']), object_tokens_str, num_images=len(image_path_list)) |
|
if templated_conversation is None: |
|
return None |
|
|
|
text_prompt = self.llava_processor.apply_chat_template(templated_conversation, add_generation_prompt=True) |
|
|
|
inputs, output_kwargs = self.prepare_inputs(text=[text_prompt], images=images, padding=True, return_tensors="pt") |
|
input_ids = inputs["input_ids"] |
|
labels = inputs["labels"] |
|
attention_mask = inputs["attention_mask"] |
|
pixel_values = inputs["pixel_values"] |
|
|
|
concate_regions = np.concatenate(visual_prompts_list, axis=0) |
|
regions_img = self._convert_masks_to_pil_images(concate_regions) |
|
regions_input = self.llava_processor.image_processor(regions_img, do_rescale=False, do_normalize=False, **output_kwargs["images_kwargs"]) |
|
resized_visual_prompts = (regions_input['pixel_values'] > 125).to(torch.long) |
|
if resized_visual_prompts.shape[-3:] != pixel_values.shape[-3:]: |
|
print("the shape of resized_visual_prompts don't match with that of pixel_values") |
|
return None |
|
resized_visual_prompts = resized_visual_prompts.flatten(0, 1)[:sum(num_vprompts_list)] |
|
|
|
inputs_vp = self.llava_processor(text=[text_prompt], images=merged_visual_prompts, padding=True, return_tensors="pt") |
|
merged_visual_prompts = inputs_vp.pixel_values |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ot_pixel_values = [] |
|
for fi, image in enumerate(images): |
|
w, h = image.size |
|
if w > h: |
|
target_size = (1024, int(h/w*1024)) |
|
else: |
|
target_size = (int(w/h*1024), 1024) |
|
resized_image = image.resize(target_size) |
|
cur_w, cur_h = resized_image.size |
|
padded_image = np.ones(shape=(1024, 1024, 3), dtype=np.uint8) * 255 |
|
padded_image[:cur_h, :cur_w, :] = np.array(resized_image) |
|
|
|
ot_pixel_values.append(self.ot_image_processor(images=Image.fromarray(padded_image), return_tensors='pt').pixel_values) |
|
|
|
ot_pixel_values = torch.cat(ot_pixel_values) |
|
|
|
ot_visual_prompts = torch.from_numpy(np.concatenate(visual_prompts_list, axis=0)).\ |
|
to(ot_pixel_values.dtype).to(ot_pixel_values.device) |
|
h, w = ot_visual_prompts.shape[-2:] |
|
if h > w: |
|
target_size = (1024, int(w/h*1024)) |
|
else: |
|
target_size = (int(h/w*1024), 1024) |
|
resized_ot_visual_prompts = F.interpolate(ot_visual_prompts.unsqueeze(1), size=target_size, mode="bilinear").squeeze(1) |
|
resized_padded_ot_visual_prompts = resized_ot_visual_prompts.new_zeros((resized_ot_visual_prompts.shape[0], 1024, 1024)) |
|
resized_padded_ot_visual_prompts[:, :target_size[0], :target_size[1]] = resized_ot_visual_prompts |
|
|
|
total_vprompts = resized_padded_ot_visual_prompts.shape[0] |
|
cand_visual_prompts = resized_padded_ot_visual_prompts[total_vprompts-num_vprompts_list[-1]:] |
|
sorted_cand_visual_prompts = [] |
|
for sorted_idx in sorted_indices: |
|
sorted_cand_visual_prompts.append(cand_visual_prompts[sorted_idx]) |
|
sorted_cand_visual_prompts = torch.stack(sorted_cand_visual_prompts) |
|
resized_padded_ot_visual_prompts = torch.cat( |
|
[resized_padded_ot_visual_prompts[:total_vprompts-num_vprompts_list[-1]], sorted_cand_visual_prompts]) |
|
|
|
roi_version = self.dataset_map_fn.__name__ == "match_reasoning_map_fn_roi" |
|
|
|
patch_size = 14 |
|
num_image_tokens = (pixel_values.shape[-1] // patch_size) ** 2 |
|
|
|
ret = dict( |
|
input_ids=input_ids[0], |
|
labels=labels[0], |
|
attention_mask=attention_mask[0], |
|
pixel_values=pixel_values if not roi_version else merged_visual_prompts, |
|
merged_visual_prompts=merged_visual_prompts if not roi_version else pixel_values, |
|
image_flags=torch.tensor([1]*(num_image_tokens * len(num_vprompts_list)), dtype=torch.long), |
|
visual_prompts=resized_visual_prompts, |
|
num_vprompts=num_vprompts_list, |
|
vprompt_flags=[[1 for _ in range(nvp)] for nvp in num_vprompts_list], |
|
num_images=len(num_vprompts_list), |
|
ot_pixel_values=ot_pixel_values, |
|
ot_visual_prompts=resized_padded_ot_visual_prompts, |
|
region_ids=region_ids, |
|
) |
|
|
|
return ret |
|
|
|
def video_get_item(self, data_item): |
|
raise NotImplementedError |
|
|
|
def pure_text_get_item(self, data_item): |
|
ori_height = ori_width = 448 |
|
image = Image.new('RGB', (ori_height, ori_width), (255, 255, 255)) |
|
merged_visual_prompts = np.zeros((ori_height, ori_width, 3), dtype=np.uint8) |
|
merged_visual_prompts = Image.fromarray(merged_visual_prompts) |
|
|
|
regions = np.zeros(shape=(1, ori_height, ori_width), dtype=np.uint8) |
|
has_visual_prompts = False |
|
region_ids = [[1]] |
|
|
|
templated_conversation = preprocess_llava(deepcopy(data_item['conversations']), '', num_images=0) |
|
if templated_conversation is None: |
|
return None |
|
|
|
text_prompt = self.llava_processor.apply_chat_template(templated_conversation, add_generation_prompt=True) |
|
inputs, output_kwargs = self.prepare_inputs(text=[text_prompt], images=[image], padding=True, return_tensors="pt") |
|
|
|
input_ids = inputs["input_ids"] |
|
labels = inputs["labels"] |
|
attention_mask = inputs["attention_mask"] |
|
pixel_values = inputs["pixel_values"] |
|
|
|
regions_img = self._convert_masks_to_pil_images(regions) |
|
regions_input = self.llava_processor.image_processor(regions_img, do_rescale=False, do_normalize=False, **output_kwargs["images_kwargs"]) |
|
resized_visual_prompts = (regions_input['pixel_values'] > 125).to(torch.long) |
|
if resized_visual_prompts.shape[-3:] != pixel_values.shape[-3:]: |
|
print("the shape of resized_visual_prompts don't match with that of pixel_values") |
|
return None |
|
resized_visual_prompts = resized_visual_prompts.flatten(0, 1)[:regions.shape[0]] |
|
|
|
inputs_vp = self.llava_processor(text=[text_prompt], images=merged_visual_prompts, padding=True, return_tensors="pt") |
|
merged_visual_prompts = inputs_vp.pixel_values |
|
|
|
image = Image.new('RGB', (1024, 1024), (255, 255, 255)) |
|
ot_pixel_values = self.ot_image_processor(images=image, return_tensors='pt').pixel_values |
|
ot_visual_prompts = torch.zeros((1, 1024, 1024)).\ |
|
to(ot_pixel_values.dtype).to(ot_pixel_values.device) |
|
|
|
patch_size = 14 |
|
num_image_tokens = (pixel_values.shape[-1] // patch_size) ** 2 |
|
|
|
ret = dict( |
|
input_ids=input_ids[0], |
|
labels=labels[0], |
|
attention_mask=attention_mask[0], |
|
pixel_values=merged_visual_prompts, |
|
merged_visual_prompts=pixel_values, |
|
image_flags=torch.tensor([0] * num_image_tokens, dtype=torch.long), |
|
visual_prompts=resized_visual_prompts, |
|
num_vprompts=[resized_visual_prompts.shape[0], ], |
|
vprompt_flags=[[0 for _ in range(resized_visual_prompts.shape[0])]], |
|
num_images=1, |
|
ot_pixel_values=ot_pixel_values, |
|
ot_visual_prompts=ot_visual_prompts, |
|
region_ids=region_ids, |
|
) |
|
|
|
return ret |