zhouyik's picture
Upload folder using huggingface_hub
032e687 verified
import copy
import io
import json
import os
import random
import warnings
import logging
from typing import Any
from copy import deepcopy
from distinctipy import distinctipy
import numpy as np
from PIL import Image, ImageDraw
import cv2
import torch
from torch.utils.data import Dataset
import torchvision.transforms as T
import torch.nn.functional as F
from torchvision.transforms.functional import InterpolationMode
from datasets import Dataset as HFDataset
from datasets import DatasetDict, load_from_disk
from transformers import AutoConfig, AutoTokenizer
from pycocotools import mask
from mmengine import print_log
from mmengine.config import Config, ConfigDict
from xtuner.registry import BUILDER
from xtuner.dataset.huggingface import process_hf_dataset, build_origin_dataset
from xtuner.utils import DEFAULT_IMAGE_TOKEN
from xtuner.utils import IGNORE_INDEX
IGNORE_TOKEN_ID = IGNORE_INDEX
from .process_functions import (vcr_decode_mask_fn, preprocess_llava, contour_rendering)
from .utils import (VPT_CONTEXT_TOKEN, RGB_NAME)
from transformers.processing_utils import ProcessingKwargs
from transformers.image_utils import get_image_size, to_numpy_array
from transformers.processing_utils import _validate_images_text_input_order
class LlavaProcessorKwargs(ProcessingKwargs, total=False):
# see processing_utils.ProcessingKwargs documentation for usage.
_defaults = {
"text_kwargs": {
"padding": False,
},
"image_kwargs": {},
"video_kwargs": {},
}
class LlavaDataset(Dataset):
def __init__(self,
data_path=None,
image_folder=None,
dataset_map_fn=None,
annotation_load_fn=None,
repeat_time=1,
lazy_load=True,
llava_processor=None,
ot_image_processor=None,
):
super().__init__()
self.dataset_map_fn = dataset_map_fn
self.annotation_load_fn = annotation_load_fn
self.lazy_load = lazy_load
self.ot_image_processor = ot_image_processor
self.llava_processor = llava_processor
self._add_special_tokens()
json_data, hf_json_data = self.annotation_load_fn(data_path, repeat_time, image_folder=image_folder)
if json_data is not None:
self.json_data = json_data
hf_json_data = DatasetDict({'train': HFDataset.from_list(hf_json_data)})
if self.lazy_load:
self.text_data = build_origin_dataset(hf_json_data, 'train')
else:
raise NotImplementedError
self.image_folder = image_folder
self._max_refetch = 1000
self.tcs_loader = None
def _add_special_tokens(self):
special_tokens = [VPT_CONTEXT_TOKEN,]
num_new_tokens = self.llava_processor.tokenizer.add_tokens(special_tokens, special_tokens=True)
@property
def modality_length(self):
length_list = []
for data_dict in self.text_data:
if self.lazy_load:
cur_len = 100
else:
cur_len = len(data_dict['input_ids'])
if data_dict.get('image', None) is None:
cur_len = -cur_len
length_list.append(cur_len)
return length_list
def _rand_another(self):
return np.random.randint(0, len(self.text_data))
def __len__(self):
return len(self.text_data)
def __getitem__(self, index) -> Any:
for _ in range(self._max_refetch + 1):
data = self.prepare_data(index)
# Broken images may cause the returned data to be None
if data is None:
index = self._rand_another()
continue
return data
def prepare_data(self, index):
if hasattr(self, 'json_data'):
data_dict = copy.deepcopy(self.json_data[index])
data_dict.update(self.text_data[index])
else:
data_dict = copy.deepcopy(self.text_data[index])
if self.lazy_load:
result = self.dataset_map_fn(data_dict)
if result is None:
return None
data_dict.update(result)
if 'image' in data_dict and data_dict['image'] is not None and len(data_dict['image']) != 0:
if type(data_dict['image']) == list:
ret = self.multi_modal_multi_image_get_item(data_dict)
else:
ret = self.multi_modal_get_item(data_dict)
elif 'video' in data_dict and data_dict['video'] is not None and data_dict['video'] != '':
ret = self.video_get_item(data_dict)
else:
ret = self.pure_text_get_item(data_dict)
return ret
else:
raise NotImplementedError
def load_image(self, image_path):
# Load the image using tcs_loader if available, otherwise use PIL
if self.tcs_loader is not None and 's3://' in image_path:
return self.tcs_loader(image_path)
return Image.open(image_path).convert('RGB')
def decode_mask(self, object_masks, ori_height, ori_width):
binary_masks = []
for object_mask in object_masks:
if isinstance(object_mask, dict):
if isinstance(object_mask["counts"], list):
# convert to compressed RLE
object_mask = mask.frPyObjects(object_mask, ori_height, ori_width)
m = mask.decode(object_mask)
m = m.astype(np.uint8).squeeze()
elif object_mask:
rles = mask.frPyObjects(object_mask, ori_height, ori_width)
rle = mask.merge(rles)
m = mask.decode(rle).astype(np.uint8).squeeze()
else:
m = np.zeros((ori_height, ori_width), dtype=np.uint8)
binary_masks.append(m)
if len(binary_masks) == 0:
binary_masks.append(np.zeros((ori_height, ori_width), dtype=np.uint8))
masks = np.stack(binary_masks, axis=0)
return masks
def prepare_inputs(self, images, text, **kwargs):
output_kwargs = self.llava_processor._merge_kwargs(
LlavaProcessorKwargs,
tokenizer_init_kwargs=self.llava_processor.tokenizer.init_kwargs,
**kwargs,
)
images, text = _validate_images_text_input_order(images, text)
for i in range(len(text)):
if text[i][-len('ASSISTANT:'):] == 'ASSISTANT:':
text[i] = text[i][:-len('ASSISTANT:')]
elif text[i][-len('ASSISTANT: '):] == 'ASSISTANT: ':
text[i] = text[i][:-len('ASSISTANT: ')]
if 'Image-1:' in text[i]:
text[i] = text[i].replace('Image-1:', '<Image-1>\n')
if 'Image-2:' in text[i]:
text[i] = text[i].replace('Image-2:', '<Image-2>\n')
if isinstance(text, str):
text = [text]
elif not isinstance(text, list) and not isinstance(text[0], str):
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
if images is not None:
image_inputs = self.llava_processor.image_processor(images, **output_kwargs["images_kwargs"])
else:
image_inputs = {}
patch_size = 14
vision_feature_select_strategy = "default"
prompt_strings = text
if image_inputs.get("pixel_values") is not None:
if patch_size is not None and vision_feature_select_strategy is not None:
# Replace the image token with the expanded image token sequence
pixel_values = image_inputs["pixel_values"]
height, width = get_image_size(to_numpy_array(pixel_values[0]))
num_image_tokens = (height // patch_size) * (width // patch_size) + 1
if vision_feature_select_strategy == "default":
num_image_tokens -= 1
prompt_strings = []
for sample in text:
sample = sample.replace(self.llava_processor.image_token, self.llava_processor.image_token * num_image_tokens)
prompt_strings.append(sample)
else:
print(
"Expanding inputs for image tokens in LLaVa should be done in processing. "
"Please add `patch_size` and `vision_feature_select_strategy` to the model's processing config or set directly "
"with `processor.patch_size = {{patch_size}}` and processor.vision_feature_select_strategy = {{vision_feature_select_strategy}}`. "
"Using processors without these attributes in the config is deprecated and will throw an error in v4.50."
)
text = prompt_strings
batch_input_ids, batch_labels = [], []
for i in range(len(text)):
assistant_prefix = 'ASSISTANT: '
num_turns = text[i].count(assistant_prefix)
if num_turns == 0:
assistant_prefix = 'ASSISTANT:'
num_turns = text[i].count(assistant_prefix)
if num_turns == 0:
return None
left_text = text[i]
input_ids, labels = [], []
try:
ok = False
for turn_idx in range(num_turns):
if ok:
break
input_text, left_text = left_text.split(assistant_prefix, 1)
input_text = input_text + assistant_prefix
if turn_idx == num_turns-1:
output_text = left_text.strip()
else:
try:
output_text, left_text = left_text.split('USER: ', 1)
output_text = output_text.strip()
left_text = 'USER: ' + left_text
except:
if turn_idx == 0:
return None
output_text = left_text.strip()
ok = True
input_encode = self.llava_processor.tokenizer.encode(input_text)
input_ids += input_encode
labels += [IGNORE_INDEX] * len(input_encode)
output_encode = self.llava_processor.tokenizer.encode(output_text, add_special_tokens=False)
input_ids += output_encode
labels += copy.deepcopy(output_encode)
# print(f"turn#{turn_idx+1} input_text: ", input_text)
# print(f"turn#{turn_idx+1} output_text: ", output_text)
# exit(0)
except:
return None
if len(input_ids) > self.llava_processor.tokenizer.model_max_length:
input_ids = input_ids[:self.llava_processor.tokenizer.model_max_length]
labels = labels[:self.llava_processor.tokenizer.model_max_length]
print(
f"Warning: input_ids length({len(input_ids)})"
f"is longer than max_length, cut to {self.llava_processor.tokenizer.model_max_length}"
)
batch_input_ids.append(input_ids)
batch_labels.append(labels)
input_ids = torch.tensor(batch_input_ids, dtype=torch.long)
labels = torch.tensor(batch_labels, dtype=torch.long)
attention_mask = input_ids.ne(self.llava_processor.tokenizer.pad_token_id)
ret = {
'input_ids': input_ids,
'labels': labels,
'attention_mask': attention_mask,
'pixel_values': image_inputs['pixel_values'],
}
return ret, output_kwargs
def _convert_masks_to_pil_images(self, regions):
ori_height, ori_width = regions.shape[-2:]
num_pseudo_images = regions.shape[0] // 3
if regions.shape[0] % 3 != 0:
num_pseudo_images += 1
pseudo_images = []
for img_idx in range(num_pseudo_images):
start_idx = img_idx * 3
end_idx = start_idx + 3
if end_idx > regions.shape[0]:
end_idx = regions.shape[0]
img_array = np.zeros(shape=(ori_height, ori_width, 3), dtype=np.uint8)
num_regions = end_idx - start_idx
img_array[:, :, :num_regions] = np.stack(
[regions[idx, :, :] for idx in range(start_idx, end_idx)], axis=-1
) * 255
pseudo_images.append(Image.fromarray(img_array))
return pseudo_images
def multi_modal_get_item(self, data_item):
# Ensure the first conversation contains an image placeholder
if DEFAULT_IMAGE_TOKEN not in data_item['conversations'][0]['value']:
data_item['conversations'][0]['value'] = DEFAULT_IMAGE_TOKEN + '\n' + data_item['conversations'][0]['value']
# Merge the image path
image_path = os.path.join(self.image_folder, data_item['image'])
# Load the image using tcs_loader if available, otherwise use PIL
try:
image = self.load_image(image_path)
except Exception as e:
print(f'Error: {e}', flush=True)
print_log(f'Error: {e}', logger='current')
return None
if image is None:
return None
ori_width, ori_height = image.size
if ori_width < 10 or ori_height < 10:
return None
# process and get masks/points/bbox
merged_visual_prompts = cv2.imread(image_path)
if merged_visual_prompts is None:
merged_visual_prompts = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
regions = np.zeros(shape=(1, ori_height, ori_width), dtype=np.uint8)
has_visual_prompts = False
if 'annotation' in data_item and data_item['annotation'] is not None and len(data_item['annotation']) > 0:
annotations = data_item['annotation']
sampled_inds = data_item.get('sampled_inds', list(range(len(annotations))))
if self.annotation_load_fn.__name__ == 'RegionShortConversationVCRDataset_load_fn':
bboxes = [annotations[idx]['bbox'] for idx in sampled_inds]
segms = [annotations[idx]['segmentation'] for idx in sampled_inds]
regions = vcr_decode_mask_fn(bboxes, segms, ori_height, ori_width)
regions = (regions > 0.0).astype(np.uint8)
elif self.annotation_load_fn.__name__ == 'MDPVBoxOCRDataset_load_fn':
bboxes = [annotations[idx]['bbox'] for idx in sampled_inds]
regions = np.zeros(shape=(len(bboxes), ori_height, ori_width), dtype=np.uint8)
for bidx, bbox in enumerate(bboxes):
x0, y0, x1, y1 = bbox
regions[bidx, y0:y1, x0:x1] = 1
else:
segms = [annotations[idx]['segmentation'] for idx in sampled_inds]
regions = self.decode_mask(segms, ori_height=ori_height, ori_width=ori_width) # n, h, w
try:
contour_rendering(merged_visual_prompts, regions)
except Exception as e:
pass
has_visual_prompts = True
merged_visual_prompts = Image.fromarray(cv2.cvtColor(merged_visual_prompts, cv2.COLOR_BGR2RGB))
# Preprocess the conversations and generate the return dictionary
if has_visual_prompts:
region_ids = [[region_id+1 for region_id in range(regions.shape[0])],]
object_tokens_str = ""
for fidx, object_ids_fidx in enumerate(region_ids):
object_tokens_str = object_tokens_str + f"Regions in the image: "
for object_id in object_ids_fidx:
object_tokens_str = object_tokens_str + f"<region-{object_id}>{VPT_CONTEXT_TOKEN}, "
object_tokens_str = object_tokens_str[:-1] + ".\n"
else:
region_ids = [[1]]
object_tokens_str = ""
templated_conversation = preprocess_llava(deepcopy(data_item['conversations']), object_tokens_str, num_images=1)
if templated_conversation is None:
return None
text_prompt = self.llava_processor.apply_chat_template(templated_conversation, add_generation_prompt=True)
inputs, output_kwargs = self.prepare_inputs(text=[text_prompt], images=[image], padding=True, return_tensors="pt")
input_ids = inputs["input_ids"]
labels = inputs["labels"]
attention_mask = inputs["attention_mask"]
pixel_values = inputs["pixel_values"]
regions_img = self._convert_masks_to_pil_images(regions)
regions_input = self.llava_processor.image_processor(regions_img, do_rescale=False, do_normalize=False, **output_kwargs["images_kwargs"])
resized_visual_prompts = (regions_input['pixel_values'] > 125).to(torch.long)
if resized_visual_prompts.shape[-3:] != pixel_values.shape[-3:]:
print("the shape of resized_visual_prompts don't match with that of pixel_values")
return None
resized_visual_prompts = resized_visual_prompts.flatten(0, 1)[:regions.shape[0]]
inputs_vp = self.llava_processor(text=[text_prompt], images=merged_visual_prompts, padding=True, return_tensors="pt")
merged_visual_prompts = inputs_vp.pixel_values
# print("input_ids: ", input_ids.shape)
# print("labels: ", labels.shape)
# print("attention_mask: ", attention_mask.shape)
# print("pixel_values: ", pixel_values.shape)
# print("resized_visual_prompt: ", resized_visual_prompts.shape)
# print("ori regions.shape: ", regions.shape)
# print("merged_visual_prompts: ", merged_visual_prompts.shape)
# exit(0)
# input_ids: torch.Size([1, 1176])
# labels: torch.Size([1, 1176])
# attention_mask: torch.Size([1, 1176])
# pixel_values: torch.Size([1, 3, 336, 336])
# resized_visual_prompt: torch.Size([1, 336, 336])
# ori regions.shape: (1, 532, 640)
# merged_visual_prompts: torch.Size([1, 3, 336, 336])
image = self.load_image(image_path)
w, h = image.size
if w > h:
target_size = (1024, int(h/w*1024))
else:
target_size = (int(w/h*1024), 1024)
resized_image = image.resize(target_size)
cur_w, cur_h = resized_image.size
padded_image = np.zeros(shape=(1024, 1024, 3), dtype=np.uint8) * 255
padded_image[:cur_h, :cur_w, :] = np.array(resized_image)
ot_pixel_values = self.ot_image_processor(images=padded_image, return_tensors='pt').pixel_values
ot_visual_prompts = torch.tensor(regions).\
to(ot_pixel_values.dtype).to(ot_pixel_values.device) # num_prompts, h, w
h, w = ot_visual_prompts.shape[-2:]
if h > w:
target_size = (1024, int(w/h*1024))
else:
target_size = (int(h/w*1024), 1024)
resized_ot_visual_prompts = F.interpolate(ot_visual_prompts.unsqueeze(1), size=target_size, mode="bilinear").squeeze(1)
resized_padded_ot_visual_prompts = resized_ot_visual_prompts.new_zeros((resized_ot_visual_prompts.shape[0], 1024, 1024))
resized_padded_ot_visual_prompts[:, :target_size[0], :target_size[1]] = resized_ot_visual_prompts
patch_size = 14
num_image_tokens = (pixel_values.shape[-1] // patch_size) ** 2
ret = dict(
input_ids=input_ids[0],
labels=labels[0],
attention_mask=attention_mask[0],
pixel_values=merged_visual_prompts,
merged_visual_prompts=pixel_values,
image_flags=torch.tensor([1]*num_image_tokens, dtype=torch.long),
visual_prompts=resized_visual_prompts,
num_vprompts=[resized_visual_prompts.shape[0],],
vprompt_flags=[[1 for _ in range(resized_visual_prompts.shape[0])]] if has_visual_prompts else [[0 for _ in range(resized_visual_prompts.shape[0])]],
num_images=1,
ot_pixel_values=ot_pixel_values,
ot_visual_prompts=resized_padded_ot_visual_prompts,
region_ids=region_ids,
)
# print('input_ids: ', ret['input_ids'].shape)
# print('pixel_values: ', ret['pixel_values'].shape)
# print('merged_visual_prompts: ', ret['merged_visual_prompts'].shape)
# print('image_flags.shape: ', ret['image_flags'].shape)
# print('num_patches: ', ret['num_patches'])
# print('visual_prompts: ', ret['visual_prompts'].shape)
# print('num_vprompts: ', ret['num_vprompts'])
# print('vprompt_flags: ', ret['vprompt_flags'])
# print('ot_pixel_values: ', ret['ot_pixel_values'].shape)
# print('ot_visual_prompts: ', ret['ot_visual_prompts'].shape)
# exit(0)
return ret
def multi_modal_multi_image_get_item(self, data_item):
image_name_list = data_item['image']
image_path_list = [os.path.join(self.image_folder, image_name) for image_name in image_name_list]
images = [self.load_image(image_path) for image_path in image_path_list]
if any([item is None for item in images]):
return None
merged_visual_prompts = [cv2.imread(image_path) for image_path in image_path_list]
for idx, item in enumerate(merged_visual_prompts):
if item is not None:
continue
merged_visual_prompts[idx] = cv2.cvtColor(np.asarray(image_path_list[idx]), cv2.COLOR_RGB2BGR)
# image_name = image_path_list[0][-8:-4]
gt_region_id = -1
visual_prompts_list, object_ids = [], []
if 'pos_annotations' in data_item and data_item['pos_annotations'] is not None and len(data_item['pos_annotations']) > 0:
pos_annotations = data_item['pos_annotations']
neg_annotations = data_item['neg_annotations']
name_rgb = random.choice(RGB_NAME)
color_name, color = [], []
for k, v in name_rgb.items():
color_name.append(str(k))
color.append(v)
color = color[0]
color_name = color_name[0]
color_anno_i = (color[2], color[1], color[0])
for fidx in range(len(pos_annotations)-1):
ori_width, ori_height = images[fidx].size
regions = self.decode_mask(pos_annotations[fidx], ori_height=ori_height, ori_width=ori_width)
visual_prompts_list.append(regions)
object_ids.append([])
for region in regions:
contours, hierarchy = cv2.findContours(region, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(merged_visual_prompts[fidx], contours, -1, color=color_anno_i, thickness=2)
object_ids[fidx].append(1)
ori_width, ori_height = images[-1].size
pos_neg_segms = pos_annotations[-1] + neg_annotations[-1]
regions = self.decode_mask(pos_neg_segms, ori_height=ori_height, ori_width=ori_width)
visual_prompts_list.append(regions)
random_id = list(range(1, len(regions)+1))
random.shuffle(random_id)
try:
contour_rendering(merged_visual_prompts[-1], regions, random_id)
object_ids.append([_id for _id in random_id])
choice_names = [f"{chr(i)}" for i in range(65,91)]
if len(regions) > len(choice_names) - 1:
valid_num = len(choice_names) - 1
else:
valid_num = len(regions)
region_ids = random_id[:valid_num]
choice_names = choice_names[:valid_num+1]
gt_region_id = region_ids[0] if not data_item['is_disappear'] else -1
region_ids.sort()
multi_choices_str = ""
gt_choice_str = ""
for choice_name, region_id in zip(choice_names[:-1], region_ids):
multi_choices_str = multi_choices_str + f"{choice_name}. {region_id}\n"
if region_id == gt_region_id:
assert gt_choice_str == ""
gt_choice_str = gt_choice_str + f"{choice_name}"
multi_choices_str = multi_choices_str + f"{choice_names[-1]}. None of the above choices are correct\n"
if gt_choice_str == "" or data_item['is_disappear'] or len(pos_annotations[-1]) == 0:
gt_choice_str = f"{choice_names[-1]}"
conversations = data_item['conversations']
for i, conversation in enumerate(conversations):
conversation_value = conversation['value']
conversation_value = conversation_value.format(color=color_name, choices=multi_choices_str, answer=gt_choice_str)
conversation['value'] = conversation_value
data_item['conversations'] = conversations
except Exception as e:
pass
else:
pass
merged_visual_prompts = [Image.fromarray(cv2.cvtColor(item, cv2.COLOR_BGR2RGB)) for item in merged_visual_prompts]
num_vprompts_list = [vp.shape[0] for vp in visual_prompts_list]
# Preprocess the conversations and generate the return dictionary
if gt_region_id != object_ids[-1][0] and gt_region_id != -1:
print("query object id doesn't match with the candidate ids.")
return None
region_ids = [[gt_region_id for _ in object_ids[fidx]]
for fidx in range(len(num_vprompts_list)-1)] #+ [object_ids[-1],]
object_tokens_str = ""
for fidx, object_ids_fidx in enumerate(region_ids):
object_tokens_str = object_tokens_str + f"Objects in Image-{fidx+1}: "
for object_id in range(1, len(object_ids_fidx)+1):
object_tokens_str = object_tokens_str + f"<query object>{VPT_CONTEXT_TOKEN}, "
object_tokens_str = object_tokens_str[:-2] + ".\n"
sorted_indices = sorted(range(len(object_ids[-1])), key=lambda k: object_ids[-1][k])
sorted_cand_object_ids = []
object_tokens_str = object_tokens_str + f"Objects in Image-{len(object_ids)}: "
for sorted_idx in sorted_indices:
object_id = object_ids[-1][sorted_idx]
object_tokens_str = object_tokens_str + f"<object-{object_id}>{VPT_CONTEXT_TOKEN}, "
sorted_cand_object_ids.append(object_id)
object_tokens_str = object_tokens_str[:-2] + ".\n"
region_ids = region_ids + [sorted_cand_object_ids, ]
templated_conversation = preprocess_llava(deepcopy(data_item['conversations']), object_tokens_str, num_images=len(image_path_list))
if templated_conversation is None:
return None
text_prompt = self.llava_processor.apply_chat_template(templated_conversation, add_generation_prompt=True)
inputs, output_kwargs = self.prepare_inputs(text=[text_prompt], images=images, padding=True, return_tensors="pt")
input_ids = inputs["input_ids"]
labels = inputs["labels"]
attention_mask = inputs["attention_mask"]
pixel_values = inputs["pixel_values"]
concate_regions = np.concatenate(visual_prompts_list, axis=0)
regions_img = self._convert_masks_to_pil_images(concate_regions)
regions_input = self.llava_processor.image_processor(regions_img, do_rescale=False, do_normalize=False, **output_kwargs["images_kwargs"])
resized_visual_prompts = (regions_input['pixel_values'] > 125).to(torch.long)
if resized_visual_prompts.shape[-3:] != pixel_values.shape[-3:]:
print("the shape of resized_visual_prompts don't match with that of pixel_values")
return None
resized_visual_prompts = resized_visual_prompts.flatten(0, 1)[:sum(num_vprompts_list)]
inputs_vp = self.llava_processor(text=[text_prompt], images=merged_visual_prompts, padding=True, return_tensors="pt")
merged_visual_prompts = inputs_vp.pixel_values
# print("input_ids: ", input_ids.shape)
# print("labels: ", labels.shape)
# print("attention_mask: ", attention_mask.shape)
# print("pixel_values: ", pixel_values.shape)
# print("resized_visual_prompt: ", resized_visual_prompts.shape)
# print("num_vprompts_list: ", num_vprompts_list)
# print("merged_visual_prompts: ", merged_visual_prompts.shape)
# exit(0)
# input_ids: torch.Size([1, 1524])
# labels: torch.Size([1, 1524])
# attention_mask: torch.Size([1, 1524])
# pixel_values: torch.Size([2, 3, 336, 336])
# resized_visual_prompt: torch.Size([13, 336, 336])
# num_vprompts_list: [1, 12]
# merged_visual_prompts: torch.Size([2, 3, 336, 336])
ot_pixel_values = []
for fi, image in enumerate(images):
w, h = image.size
if w > h:
target_size = (1024, int(h/w*1024))
else:
target_size = (int(w/h*1024), 1024)
resized_image = image.resize(target_size)
cur_w, cur_h = resized_image.size
padded_image = np.ones(shape=(1024, 1024, 3), dtype=np.uint8) * 255
padded_image[:cur_h, :cur_w, :] = np.array(resized_image)
ot_pixel_values.append(self.ot_image_processor(images=Image.fromarray(padded_image), return_tensors='pt').pixel_values)
# ot_pixel_values = [self.ot_image_processor(images=image, return_tensors='pt').pixel_values for image in images]
ot_pixel_values = torch.cat(ot_pixel_values)
ot_visual_prompts = torch.from_numpy(np.concatenate(visual_prompts_list, axis=0)).\
to(ot_pixel_values.dtype).to(ot_pixel_values.device) # num_prompts, h, w
h, w = ot_visual_prompts.shape[-2:]
if h > w:
target_size = (1024, int(w/h*1024))
else:
target_size = (int(h/w*1024), 1024)
resized_ot_visual_prompts = F.interpolate(ot_visual_prompts.unsqueeze(1), size=target_size, mode="bilinear").squeeze(1)
resized_padded_ot_visual_prompts = resized_ot_visual_prompts.new_zeros((resized_ot_visual_prompts.shape[0], 1024, 1024))
resized_padded_ot_visual_prompts[:, :target_size[0], :target_size[1]] = resized_ot_visual_prompts
total_vprompts = resized_padded_ot_visual_prompts.shape[0]
cand_visual_prompts = resized_padded_ot_visual_prompts[total_vprompts-num_vprompts_list[-1]:]
sorted_cand_visual_prompts = []
for sorted_idx in sorted_indices:
sorted_cand_visual_prompts.append(cand_visual_prompts[sorted_idx])
sorted_cand_visual_prompts = torch.stack(sorted_cand_visual_prompts)
resized_padded_ot_visual_prompts = torch.cat(
[resized_padded_ot_visual_prompts[:total_vprompts-num_vprompts_list[-1]], sorted_cand_visual_prompts])
roi_version = self.dataset_map_fn.__name__ == "match_reasoning_map_fn_roi"
patch_size = 14
num_image_tokens = (pixel_values.shape[-1] // patch_size) ** 2
ret = dict(
input_ids=input_ids[0],
labels=labels[0],
attention_mask=attention_mask[0],
pixel_values=pixel_values if not roi_version else merged_visual_prompts,
merged_visual_prompts=merged_visual_prompts if not roi_version else pixel_values,
image_flags=torch.tensor([1]*(num_image_tokens * len(num_vprompts_list)), dtype=torch.long),
visual_prompts=resized_visual_prompts,
num_vprompts=num_vprompts_list,
vprompt_flags=[[1 for _ in range(nvp)] for nvp in num_vprompts_list],
num_images=len(num_vprompts_list),
ot_pixel_values=ot_pixel_values,
ot_visual_prompts=resized_padded_ot_visual_prompts,
region_ids=region_ids,
)
return ret
def video_get_item(self, data_item):
raise NotImplementedError
def pure_text_get_item(self, data_item):
ori_height = ori_width = 448
image = Image.new('RGB', (ori_height, ori_width), (255, 255, 255))
merged_visual_prompts = np.zeros((ori_height, ori_width, 3), dtype=np.uint8)
merged_visual_prompts = Image.fromarray(merged_visual_prompts)
regions = np.zeros(shape=(1, ori_height, ori_width), dtype=np.uint8)
has_visual_prompts = False
region_ids = [[1]]
templated_conversation = preprocess_llava(deepcopy(data_item['conversations']), '', num_images=0)
if templated_conversation is None:
return None
text_prompt = self.llava_processor.apply_chat_template(templated_conversation, add_generation_prompt=True)
inputs, output_kwargs = self.prepare_inputs(text=[text_prompt], images=[image], padding=True, return_tensors="pt")
input_ids = inputs["input_ids"]
labels = inputs["labels"]
attention_mask = inputs["attention_mask"]
pixel_values = inputs["pixel_values"]
regions_img = self._convert_masks_to_pil_images(regions)
regions_input = self.llava_processor.image_processor(regions_img, do_rescale=False, do_normalize=False, **output_kwargs["images_kwargs"])
resized_visual_prompts = (regions_input['pixel_values'] > 125).to(torch.long)
if resized_visual_prompts.shape[-3:] != pixel_values.shape[-3:]:
print("the shape of resized_visual_prompts don't match with that of pixel_values")
return None
resized_visual_prompts = resized_visual_prompts.flatten(0, 1)[:regions.shape[0]]
inputs_vp = self.llava_processor(text=[text_prompt], images=merged_visual_prompts, padding=True, return_tensors="pt")
merged_visual_prompts = inputs_vp.pixel_values
image = Image.new('RGB', (1024, 1024), (255, 255, 255))
ot_pixel_values = self.ot_image_processor(images=image, return_tensors='pt').pixel_values
ot_visual_prompts = torch.zeros((1, 1024, 1024)).\
to(ot_pixel_values.dtype).to(ot_pixel_values.device) # num_prompts, h, w
patch_size = 14
num_image_tokens = (pixel_values.shape[-1] // patch_size) ** 2
ret = dict(
input_ids=input_ids[0],
labels=labels[0],
attention_mask=attention_mask[0],
pixel_values=merged_visual_prompts,
merged_visual_prompts=pixel_values,
image_flags=torch.tensor([0] * num_image_tokens, dtype=torch.long),
visual_prompts=resized_visual_prompts,
num_vprompts=[resized_visual_prompts.shape[0], ],
vprompt_flags=[[0 for _ in range(resized_visual_prompts.shape[0])]],
num_images=1,
ot_pixel_values=ot_pixel_values,
ot_visual_prompts=ot_visual_prompts,
region_ids=region_ids,
)
return ret