|
import os |
|
import json |
|
import cv2 |
|
import random |
|
from typing import List |
|
import pycocotools.mask as mask_util |
|
import numpy as np |
|
import torch |
|
from transformers import AutoModel, AutoTokenizer |
|
import torchvision.transforms as T |
|
from decord import VideoReader, cpu |
|
from PIL import Image |
|
from torchvision.transforms.functional import InterpolationMode |
|
import torch.nn.functional as F |
|
from transformers import CLIPImageProcessor |
|
from third_parts.segment_anything import build_sam_vit_h, SamPredictor, SamAutomaticMaskGenerator |
|
|
|
IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
IMAGENET_STD = (0.229, 0.224, 0.225) |
|
VPT_CONTEXT_TOKEN = '<VPT_CONTEXT>' |
|
|
|
def build_transform(input_size): |
|
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD |
|
transform = T.Compose([ |
|
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), |
|
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), |
|
T.ToTensor(), |
|
T.Normalize(mean=MEAN, std=STD) |
|
]) |
|
return transform |
|
|
|
|
|
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): |
|
best_ratio_diff = float('inf') |
|
best_ratio = (1, 1) |
|
area = width * height |
|
for ratio in target_ratios: |
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
if ratio_diff < best_ratio_diff: |
|
best_ratio_diff = ratio_diff |
|
best_ratio = ratio |
|
elif ratio_diff == best_ratio_diff: |
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: |
|
best_ratio = ratio |
|
return best_ratio |
|
|
|
|
|
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False): |
|
orig_width, orig_height = image.size |
|
aspect_ratio = orig_width / orig_height |
|
|
|
|
|
target_ratios = set( |
|
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if |
|
i * j <= max_num and i * j >= min_num) |
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
|
|
target_aspect_ratio = find_closest_aspect_ratio( |
|
aspect_ratio, target_ratios, orig_width, orig_height, image_size) |
|
|
|
|
|
target_width = image_size * target_aspect_ratio[0] |
|
target_height = image_size * target_aspect_ratio[1] |
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
|
|
resized_img = image.resize((target_width, target_height)) |
|
processed_images = [] |
|
for i in range(blocks): |
|
box = ( |
|
(i % (target_width // image_size)) * image_size, |
|
(i // (target_width // image_size)) * image_size, |
|
((i % (target_width // image_size)) + 1) * image_size, |
|
((i // (target_width // image_size)) + 1) * image_size |
|
) |
|
|
|
split_img = resized_img.crop(box) |
|
processed_images.append(split_img) |
|
assert len(processed_images) == blocks |
|
if use_thumbnail and len(processed_images) != 1: |
|
thumbnail_img = image.resize((image_size, image_size)) |
|
processed_images.append(thumbnail_img) |
|
return processed_images |
|
|
|
|
|
def load_image(image_file, input_size=448, max_num=6, upscale=False): |
|
if isinstance(image_file, str): |
|
image = Image.open(image_file).convert('RGB') |
|
else: |
|
image = image_file.convert('RGB') |
|
|
|
if upscale: |
|
image = image.resize((image.width * 2, image.height * 2), Image.BILINEAR) |
|
transform = build_transform(input_size=input_size) |
|
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) |
|
pixel_values = [transform(image) for image in images] |
|
pixel_values = torch.stack(pixel_values) |
|
return pixel_values |
|
|
|
def polygons_to_bitmask(polygons: List[np.ndarray], height: int, width: int) -> np.ndarray: |
|
""" |
|
Args: |
|
polygons (list[ndarray]): each array has shape (Nx2,) |
|
height, width (int) |
|
|
|
Returns: |
|
ndarray: a bool mask of shape (height, width) |
|
""" |
|
if len(polygons) == 0: |
|
|
|
return np.zeros((height, width)).astype(bool) |
|
rles = mask_util.frPyObjects(polygons, height, width) |
|
masks = mask_util.decode(rles) |
|
reduced = np.add.reduce(masks, axis=2) |
|
m = np.where(reduced>=2, 0, reduced) |
|
|
|
return m.astype(bool) |
|
|
|
from distinctipy import distinctipy |
|
def contour_rendering(image, masks, mask_ids=None): |
|
colors = distinctipy.get_colors(len(masks)+1) |
|
font = cv2.FONT_HERSHEY_SIMPLEX |
|
text_thickness = 2 |
|
font_scale_list = [] |
|
label_list = [] |
|
color_list = [] |
|
label_loc_list = [] |
|
for anno_i in range(len(masks)): |
|
mask = masks[anno_i] |
|
contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) |
|
|
|
if colors[anno_i][0] > 0.9 and colors[anno_i][1] > 0.9 and colors[anno_i][2] > 0.9: |
|
color_anno_i = (colors[-1][2] * 255, colors[-1][1] * 255, colors[-1][0] * 255) |
|
else: |
|
color_anno_i = (colors[anno_i][2] * 255, colors[anno_i][1] * 255, colors[anno_i][0] * 255) |
|
|
|
cv2.drawContours(image, contours, -1, color=color_anno_i, thickness=2) |
|
|
|
cnt_area = [] |
|
cnt_centroid = [] |
|
cnt_bbox = [] |
|
for cnt in contours: |
|
cnt_area.append(cv2.contourArea(cnt)) |
|
M = cv2.moments(cnt) |
|
x, y, w, h = cv2.boundingRect(cnt) |
|
if M["m00"] > 0: |
|
cx = int(M["m10"] / M["m00"]) |
|
cy = int(M["m01"] / M["m00"]) |
|
else: |
|
cx, cy = x + w/2, y + h/2 |
|
cnt_centroid.append((cx, cy)) |
|
cnt_bbox.append((w, h)) |
|
select_cnt = 0 |
|
if len(cnt_area) > 1: |
|
select_cnt = np.argmax(np.array(cnt_area)) |
|
select_centroid = cnt_centroid[select_cnt] |
|
visual_prompt_id = anno_i+1 if mask_ids is None else mask_ids[anno_i] |
|
boxW, boxH = cnt_bbox[select_cnt] |
|
if max(boxH, boxW) < 25: |
|
thickness=1 |
|
else: |
|
thickness=text_thickness |
|
|
|
|
|
ok = False |
|
for scale in reversed(range(5, 60, 1)): |
|
textSize = cv2.getTextSize(f"{visual_prompt_id}", font, scale/10, thickness) |
|
textW, textH = textSize[0][0], textSize[0][1] |
|
if textH / boxH > 0.15 or textW / boxW > 0.15: |
|
continue |
|
font_scale_list.append(scale/10) |
|
ok = True |
|
break |
|
if not ok: |
|
font_scale_list.append(0.5) |
|
label_list.append(visual_prompt_id) |
|
color_list.append(color_anno_i) |
|
|
|
(base_w, base_h), bottom = cv2.getTextSize(f"{visual_prompt_id}", font, font_scale_list[-1], thickness) |
|
label_loc_list.append(( |
|
int(select_centroid[0] - base_w/2), |
|
int(select_centroid[1] + (base_h+bottom)/2) |
|
)) |
|
font_scale = min(font_scale_list) |
|
for anno_i in range(len(label_list)): |
|
(base_w, base_h), bottom = cv2.getTextSize(f"{label_list[anno_i]}", font, font_scale, thickness) |
|
cv2.rectangle(image, (label_loc_list[anno_i][0], int(label_loc_list[anno_i][1]-base_h-bottom/2)), |
|
(label_loc_list[anno_i][0]+base_w, int(label_loc_list[anno_i][1]+bottom/2)), |
|
color_list[anno_i], -1, 8) |
|
cv2.putText(image, f"{label_list[anno_i]}", label_loc_list[anno_i], font, font_scale, |
|
(255, 255, 255), thickness) |
|
|
|
return None |
|
|
|
|
|
def main(): |
|
|
|
sam = build_sam_vit_h("third_parts/zhouyik/zt_any_visual_prompt/sam_vit_h_4b8939.pth") |
|
sam.to(device="cuda") |
|
sam_predictor = SamPredictor(sam) |
|
sam_auto_mask_generator = SamAutomaticMaskGenerator(sam) |
|
|
|
path = "./work_dirs/colva_internvl2_4b" |
|
model = AutoModel.from_pretrained( |
|
path, |
|
torch_dtype=torch.bfloat16, |
|
low_cpu_mem_usage=True, |
|
use_flash_attn=True, |
|
trust_remote_code=True).eval().cuda() |
|
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False) |
|
|
|
generation_config = dict(max_new_tokens=1024, do_sample=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
image_path_list = [os.path.join(path, "examples/match_case/FRAME00_ORI.jpg"), os.path.join(path, "examples/match_case/FRAME01_ORI.jpg")] |
|
anno_file_list = [os.path.join(path, "examples/match_case/FRAME00.json"), os.path.join(path, "examples/match_case/FRAME01_CAND.json")] |
|
|
|
|
|
region_list = [] |
|
for query_json_file in anno_file_list[:-1]: |
|
with open(query_json_file, 'r') as f: |
|
query_anno = json.load(f) |
|
ori_height, ori_width = query_anno[0]['height'], query_anno[0]['width'] |
|
segm = query_anno[0]['segmentation'] |
|
segm = [np.array(poly) for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6] |
|
mask = polygons_to_bitmask(segm, ori_height, ori_width) |
|
region_list.append(mask[np.newaxis, :, :].astype(np.uint8)) |
|
with open(anno_file_list[-1], 'r') as f: |
|
query_anno = json.load(f) |
|
all_masks = [] |
|
for idx in range(len(query_anno)): |
|
ori_height, ori_width = query_anno[idx]['height'], query_anno[idx]['width'] |
|
segm = query_anno[idx]['segmentation'] |
|
segm = [np.array(poly) for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6] |
|
mask = polygons_to_bitmask(segm, ori_height, ori_width) |
|
all_masks.append(mask) |
|
all_masks = np.stack(all_masks, axis=0) |
|
region_list.append(all_masks.astype(np.uint8)) |
|
|
|
|
|
overlied_images = [cv2.imread(img_file) for img_file in image_path_list] |
|
for fidx, (image, regions) in enumerate(zip(overlied_images[:-1], region_list[:-1])): |
|
for region in regions: |
|
contours, hierarchy = cv2.findContours(region, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) |
|
cv2.drawContours(overlied_images[fidx], contours, -1, color=(255, 255, 0), thickness=2) |
|
random_id = list(range(1, len(region_list[-1])+1)) |
|
random.shuffle(random_id) |
|
all_region_ids = random_id |
|
contour_rendering(overlied_images[-1], region_list[-1], random_id) |
|
|
|
for fidx, overlied_image in enumerate(overlied_images): |
|
cv2.imwrite(f"./overlied_image_{fidx+1}.jpg", overlied_image) |
|
|
|
overlied_images = [Image.fromarray(cv2.cvtColor(item, cv2.COLOR_BGR2RGB)) for item in overlied_images] |
|
|
|
|
|
ot_image_processor = CLIPImageProcessor.from_pretrained("./nvidia/RADIO", trust_remote_code=True) |
|
ot_images = [Image.open(image_name).convert('RGB') for image_name in image_path_list] |
|
ot_pixel_values, ot_visual_prompts = [], [] |
|
for fi, image in enumerate(ot_images): |
|
w, h = image.size |
|
if w > h: |
|
target_size = (1024, int(h/w*1024)) |
|
else: |
|
target_size = (int(w/h*1024), 1024) |
|
resized_image = image.resize(target_size) |
|
cur_w, cur_h = resized_image.size |
|
padded_image = np.ones(shape=(1024, 1024, 3), dtype=np.uint8) * 255 |
|
padded_image[:cur_h, :cur_w, :] = np.array(resized_image) |
|
|
|
ot_pixel_values.append(ot_image_processor(images=Image.fromarray(padded_image), return_tensors='pt').pixel_values) |
|
ot_pixel_values = torch.cat(ot_pixel_values).to(torch.bfloat16).cuda() |
|
|
|
for regions in region_list: |
|
h, w = regions.shape[-2:] |
|
regions = torch.from_numpy(regions).to(ot_pixel_values.dtype).to(ot_pixel_values.device) |
|
if h > w: |
|
padded_regions = regions.new_zeros((regions.shape[0], h, h)) |
|
else: |
|
padded_regions = regions.new_zeros((regions.shape[0], w, w)) |
|
padded_regions[:, :h, :w] = regions |
|
resized_padded_regions = F.interpolate(padded_regions.unsqueeze(0), size=(1024, 1024), mode='bilinear').squeeze(0) |
|
ot_visual_prompts.append(resized_padded_regions) |
|
|
|
|
|
choice_names = [f"{chr(i)}" for i in range(65,91)] |
|
if len(regions) > len(choice_names) - 1: |
|
valid_num = len(choice_names) - 1 |
|
else: |
|
valid_num = len(regions) |
|
region_ids = random_id[:valid_num] |
|
choice_names = choice_names[:valid_num+1] |
|
|
|
region_ids.sort() |
|
multi_choices_str = "" |
|
for choice_name, region_id in zip(choice_names[:-1], region_ids): |
|
multi_choices_str = multi_choices_str + f"{choice_name}. {region_id}\n" |
|
multi_choices_str = multi_choices_str + f"{choice_names[-1]}. None of the above choices are correct\n" |
|
|
|
question = "Here are two images. In the second image, I have marked several "\ |
|
"visual objects with their contours in different colors, and each "\ |
|
"is identified by a white numeric ID against a background that "\ |
|
"matches the contour's color. Could you please tell me which of "\ |
|
"these marked objects is the same as the object marked with a cyan "\ |
|
"contour in the first image? Please make a choice from the following options: \n" |
|
|
|
object_token_str = "" |
|
for fidx in range(len(overlied_images)-1): |
|
object_token_str = object_token_str + f"Objects in Image-{fidx+1}: <query object>{VPT_CONTEXT_TOKEN}\n" |
|
object_token_str = object_token_str + f"Objects in Image-{len(overlied_images)}: " |
|
sorted_indices = sorted(range(len(all_region_ids)), key=lambda k: all_region_ids[k]) |
|
for sorted_idx in sorted_indices: |
|
object_token_str = object_token_str + f"<object-{all_region_ids[sorted_idx]}>{VPT_CONTEXT_TOKEN}, " |
|
object_token_str = object_token_str[:-2] + '.\n' |
|
prefix_str = f"Image-1: <image>\nImage-2: <image>\n" + object_token_str |
|
question = prefix_str + question + multi_choices_str |
|
|
|
num_patches_list = [] |
|
pixel_values_list = [] |
|
for overlied_image in overlied_images: |
|
pixel_values = load_image(overlied_image, max_num=12).to(torch.bfloat16).cuda() |
|
pixel_values_list.append(pixel_values) |
|
num_patches_list.append(pixel_values.size(0)) |
|
pixel_values = torch.cat(pixel_values_list, dim=0) |
|
|
|
response, history = model.chat(tokenizer, pixel_values, question, generation_config, return_history=True, |
|
num_patches_list=num_patches_list, ot_pixel_values=ot_pixel_values, ot_visual_prompts=ot_visual_prompts) |
|
print(f'User: {question}\nAssistant: {response}') |
|
|
|
question = "Why are they the same one?" |
|
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True, |
|
num_patches_list=num_patches_list, ot_pixel_values=ot_pixel_values, ot_visual_prompts=ot_visual_prompts) |
|
print(f'User: {question}\nAssistant: {response}') |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|