|
from PIL import Image |
|
import torch |
|
from xtuner.model import InternVL_V1_5 |
|
from typing import List, Optional, Tuple, Union |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
from torch.nn import CrossEntropyLoss |
|
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM, |
|
LlamaTokenizer) |
|
|
|
from xtuner.utils import PROMPT_TEMPLATE |
|
from xtuner.tools.utils import get_stop_criteria, is_cn_string |
|
from transformers import GenerationConfig |
|
|
|
from projects.llava_sam2.models.preprocess.image_resize import DirectResize |
|
|
|
from projects.lisa.datasets.sem_seg_dataset import dynamic_preprocess |
|
|
|
import torchvision.transforms as T |
|
from torchvision.transforms.functional import InterpolationMode |
|
|
|
|
|
class InternVL_vlm(InternVL_V1_5): |
|
|
|
def forward(self, data, data_samples=None, mode='loss'): |
|
pixel_values = data['pixel_values'] |
|
|
|
if type(pixel_values) is list or pixel_values.ndim == 5: |
|
if type(pixel_values) is list: |
|
pixel_values = [ |
|
x.unsqueeze(0) if x.ndim == 3 else x for x in pixel_values |
|
] |
|
|
|
concat_images = torch.cat( |
|
[image.to(self.model.vision_model.dtype) for image in pixel_values], dim=0) |
|
else: |
|
raise NotImplementedError() |
|
|
|
input_ids = data['input_ids'] |
|
position_ids = data['position_ids'] |
|
attention_mask = data['attention_mask'] |
|
|
|
image_flags = torch.sum(concat_images, dim=(1, 2, 3)) != 0 |
|
image_flags = image_flags.long() |
|
|
|
labels = data['labels'] |
|
use_cache = False |
|
|
|
outputs = self._llm_forward( |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
attention_mask=attention_mask, |
|
image_flags=image_flags, |
|
pixel_values=concat_images, |
|
labels=labels, |
|
use_cache=use_cache, |
|
output_hidden_states=True) |
|
if mode == 'loss': |
|
return {'llm_loss': outputs.loss,} |
|
else: |
|
return outputs |
|
|
|
def _llm_forward( |
|
self, |
|
pixel_values: torch.FloatTensor, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
image_flags: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
return_dict = return_dict if return_dict is not None \ |
|
else self.model.config.use_return_dict |
|
|
|
image_flags = image_flags.squeeze(-1) |
|
|
|
input_embeds = self.model.language_model.get_input_embeddings()( |
|
input_ids).clone() |
|
|
|
vit_embeds = self.model.extract_feature(pixel_values) |
|
vit_embeds = vit_embeds.to(input_embeds.dtype) |
|
vit_embeds = vit_embeds[image_flags == 1] |
|
vit_batch_size = pixel_values.shape[0] |
|
|
|
B, N, C = input_embeds.shape |
|
input_embeds = input_embeds.reshape(B * N, C) |
|
|
|
self._count += 1 |
|
|
|
input_ids = input_ids.reshape(B * N) |
|
selected = (input_ids == self.model.img_context_token_id) |
|
try: |
|
input_embeds[selected] = vit_embeds.reshape(-1, C) |
|
except Exception as e: |
|
vit_embeds = vit_embeds.reshape(-1, C) |
|
print(f'warning: {e}, input_embeds[selected].shape=' |
|
f'{input_embeds[selected].shape}, ' |
|
f'vit_embeds.shape={vit_embeds.shape}') |
|
n_token = selected.sum() |
|
input_embeds[selected] = vit_embeds[:n_token] |
|
|
|
input_embeds = input_embeds.reshape(B, N, C) |
|
|
|
outputs = self.model.language_model( |
|
inputs_embeds=input_embeds, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
logits = outputs.logits |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view( |
|
-1, self.model.language_model.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
@torch.no_grad() |
|
def generate( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
input_ids: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
visual_features: Optional[torch.FloatTensor] = None, |
|
generation_config: Optional[GenerationConfig] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**generate_kwargs, |
|
) -> torch.LongTensor: |
|
device = self.model.device |
|
assert self.model.img_context_token_id is not None |
|
if pixel_values is not None: |
|
if visual_features is not None: |
|
vit_embeds = visual_features |
|
else: |
|
if type(pixel_values) is list or pixel_values.ndim == 5: |
|
if type(pixel_values) is list: |
|
pixel_values = [ |
|
x.unsqueeze(0) if x.ndim == 3 else x for x in pixel_values |
|
] |
|
|
|
pixel_values = torch.cat( |
|
[image.to(self.model.vision_model.dtype) for image in pixel_values], dim=0) |
|
vit_embeds = self.model.extract_feature(pixel_values.to(device)) |
|
image_flags = torch.sum(pixel_values, dim=(1, 2, 3)) != 0 |
|
image_flags = image_flags.long() |
|
vit_embeds = vit_embeds[image_flags == 1] |
|
|
|
input_embeds = self.model.language_model.get_input_embeddings()(input_ids.to(device)) |
|
B, N, C = input_embeds.shape |
|
input_embeds = input_embeds.reshape(B * N, C) |
|
|
|
input_ids = input_ids.reshape(B * N) |
|
selected = (input_ids == self.model.img_context_token_id) |
|
assert selected.sum() != 0 |
|
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device) |
|
|
|
input_embeds = input_embeds.reshape(B, N, C) |
|
else: |
|
input_embeds = self.model.language_model.get_input_embeddings()(input_ids) |
|
|
|
outputs = self.model.language_model.generate( |
|
inputs_embeds=input_embeds, |
|
attention_mask=attention_mask.to(device), |
|
generation_config=generation_config, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
use_cache=True, |
|
**generate_kwargs, |
|
) |
|
|
|
return outputs |
|
|
|
def preparing_for_generation(self, metainfo, **kwargs): |
|
|
|
self.torch_dtype = torch.bfloat16 |
|
assert 'tokenizer' in metainfo |
|
tokenizer = metainfo['tokenizer'] |
|
tokenizer_type = tokenizer['type'] |
|
del tokenizer['type'] |
|
self.tokenizer = tokenizer_type(**tokenizer) |
|
|
|
assert hasattr(self, 'tokenizer'), "The Model does not have the tokenizer!!!" |
|
self.bot_name = 'BOT' |
|
if 'template' in metainfo.keys(): |
|
template = metainfo['template'] |
|
else: |
|
template = PROMPT_TEMPLATE['phi3_chat'] |
|
self.template = template |
|
stop_words = [] |
|
stop_words += template.get('STOP_WORDS', []) |
|
stop_criteria = get_stop_criteria( |
|
tokenizer=self.tokenizer, stop_words=stop_words) |
|
self.stop_criteria = stop_criteria |
|
|
|
default_generation_kwargs = dict( |
|
max_new_tokens=512, |
|
do_sample=False, |
|
eos_token_id=self.tokenizer.eos_token_id, |
|
pad_token_id=( |
|
self.tokenizer.pad_token_id |
|
if self.tokenizer.pad_token_id is not None |
|
else self.tokenizer.eos_token_id |
|
), |
|
) |
|
default_generation_kwargs.update(metainfo.get('generation_kwargs', {})) |
|
self.gen_config = GenerationConfig(**default_generation_kwargs) |
|
self.init_prediction_config = True |
|
|
|
self.to(self.torch_dtype) |
|
|
|
|
|
self.min_dynamic_patch = 1 |
|
self.max_dynamic_patch = 12 |
|
self.downsample_ratio = 0.5 |
|
self.image_size = 448 |
|
self.use_thumbnail = True |
|
patch_size = 14 |
|
self.patch_token = int((self.image_size // patch_size) ** 2 * (self.downsample_ratio ** 2)) |
|
self.IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
self.IMAGENET_STD = (0.229, 0.224, 0.225) |
|
self.IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>' |
|
self.IMG_START_TOKEN = '<img>' |
|
self.IMG_END_TOKEN = '</img>' |
|
|
|
self.transformer = T.Compose([ |
|
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), |
|
T.Resize((self.image_size, self.image_size), interpolation=InterpolationMode.BICUBIC), |
|
T.ToTensor(), |
|
T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD) |
|
]) |
|
|
|
|
|
|
|
return |
|
|
|
def predict_forward(self, question=None, image_path=None, **kwargs): |
|
|
|
assert self.init_prediction_config, "Please set prediction configs using self.preparing_for_generation()" |
|
|
|
input_dict = {} |
|
|
|
assert image_path is not None, "InternVL2 only support process the image from scratch !!!" |
|
|
|
image = Image.open(image_path).convert('RGB') |
|
|
|
|
|
images = dynamic_preprocess(image, self.min_dynamic_patch, |
|
self.max_dynamic_patch, |
|
self.image_size, self.use_thumbnail) |
|
pixel_values = [self.transformer(image) for image in images] |
|
pixel_values = torch.stack(pixel_values).to(self.torch_dtype) |
|
input_dict['pixel_values'] = pixel_values |
|
|
|
num_image_tokens = pixel_values.shape[0] * self.patch_token |
|
image_token_str = f'{self.IMG_START_TOKEN}' \ |
|
f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \ |
|
f'{self.IMG_END_TOKEN}' |
|
|
|
|
|
ret_predictions = [] |
|
|
|
if isinstance(question, str): |
|
text_prompts = [question] |
|
for text_prompt in text_prompts: |
|
|
|
text_prompt = text_prompt.replace('<image>', image_token_str) |
|
input_text = '' |
|
input_text += self.template['INSTRUCTION'].format( |
|
input=text_prompt, round=1, bot_name=self.bot_name) |
|
|
|
ids = self.tokenizer.encode(input_text) |
|
ids = torch.tensor(ids).cuda().unsqueeze(0) |
|
|
|
attention_mask = torch.ones_like(ids, dtype=torch.bool) |
|
|
|
mm_inputs = { |
|
'pixel_values': input_dict['pixel_values'], |
|
'input_ids': ids, |
|
'attention_mask': attention_mask, |
|
'position_ids': None, |
|
'past_key_values': None, |
|
'labels': None |
|
} |
|
|
|
generate_output = self.generate( |
|
**mm_inputs, |
|
generation_config=self.gen_config, |
|
streamer=None, |
|
bos_token_id=self.tokenizer.bos_token_id, |
|
stopping_criteria=self.stop_criteria, |
|
output_hidden_states=True, |
|
return_dict_in_generate=True |
|
) |
|
predict = self.tokenizer.decode( |
|
generate_output.sequences[0], skip_special_tokens=True).strip() |
|
|
|
ret_predictions.append(predict) |
|
|
|
if len(ret_predictions) == 1: |
|
ret_predictions = ret_predictions[0] |
|
print(ret_predictions) |
|
ret_dict = {'prediction': ret_predictions} |
|
ret_dict.update(kwargs) |
|
return ret_dict |
|
|