|
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook, |
|
LoggerHook, ParamSchedulerHook) |
|
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR |
|
from torch.optim import AdamW |
|
from transformers import AutoTokenizer |
|
|
|
from xtuner.dataset import ConcatDataset |
|
from xtuner.dataset.samplers import LengthGroupedSampler |
|
from xtuner.engine.hooks import DatasetInfoHook |
|
from xtuner.engine.runner import TrainLoop |
|
from xtuner.utils import PROMPT_TEMPLATE |
|
from xtuner.dataset.map_fns import template_map_fn_factory |
|
from projects.InternVL.collect_fns import internvl_collate_fn |
|
|
|
from peft import LoraConfig |
|
|
|
from projects.InternVL.internvl import InternVL_vlm |
|
|
|
from projects.lisa.datasets.vqa_dataset import LLaVADataset |
|
from projects.llava_sam2.datasets import ReferSegmDataset |
|
from projects.llava_sam2.models.preprocess.image_resize import DirectResize |
|
|
|
|
|
|
|
|
|
|
|
path = './pretrained/internvl/InternVL2-4B' |
|
|
|
|
|
image_folder = './data/DiagrammaticReasoning/' |
|
data_file = './data//DiagrammaticReasoning/train.json' |
|
prompt_template = PROMPT_TEMPLATE.phi3_chat |
|
max_length = 8192 |
|
|
|
|
|
batch_size = 4 |
|
accumulative_counts = 4 |
|
dataloader_num_workers = 4 |
|
max_epochs = 1 |
|
optim_type = AdamW |
|
|
|
|
|
lr = 4e-5 |
|
betas = (0.9, 0.999) |
|
weight_decay = 0.05 |
|
max_norm = 1 |
|
warmup_ratio = 0.05 |
|
|
|
|
|
save_steps = 1000 |
|
save_total_limit = 2 |
|
|
|
tokenizer = dict( |
|
type=AutoTokenizer.from_pretrained, |
|
pretrained_model_name_or_path=path, |
|
trust_remote_code=True, |
|
padding_side='right') |
|
|
|
extra_image_processor = dict( |
|
type=DirectResize, |
|
target_length=1024, |
|
) |
|
|
|
|
|
|
|
model = dict( |
|
dict( |
|
type=InternVL_vlm, |
|
model_path=path, |
|
freeze_llm=True, |
|
freeze_visual_encoder=True, |
|
llm_lora=dict( |
|
type=LoraConfig, |
|
r=128, |
|
lora_alpha=256, |
|
lora_dropout=0.05, |
|
bias='none', |
|
task_type='CAUSAL_LM'), |
|
), |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
llava_vqa_dataset = dict( |
|
type=LLaVADataset, |
|
tokenizer=tokenizer, |
|
data_path=data_file, |
|
prompt_template=prompt_template, |
|
special_tokens=None, |
|
image_folder=image_folder, |
|
) |
|
|
|
train_dataloader = dict( |
|
batch_size=batch_size, |
|
num_workers=dataloader_num_workers, |
|
dataset=llava_vqa_dataset, |
|
sampler=dict( |
|
type=LengthGroupedSampler, |
|
length_property='modality_length', |
|
per_device_batch_size=batch_size * accumulative_counts), |
|
collate_fn=dict(type=internvl_collate_fn) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
optim_wrapper = dict( |
|
type=AmpOptimWrapper, |
|
optimizer=dict( |
|
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay), |
|
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False), |
|
accumulative_counts=accumulative_counts, |
|
loss_scale='dynamic', |
|
dtype='bfloat16' |
|
) |
|
|
|
|
|
|
|
param_scheduler = [ |
|
dict( |
|
type=LinearLR, |
|
start_factor=1e-5, |
|
by_epoch=True, |
|
begin=0, |
|
end=warmup_ratio * max_epochs, |
|
convert_to_iter_based=True), |
|
dict( |
|
type=CosineAnnealingLR, |
|
eta_min=0.0, |
|
by_epoch=True, |
|
begin=warmup_ratio * max_epochs, |
|
end=max_epochs, |
|
convert_to_iter_based=True) |
|
] |
|
|
|
|
|
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs) |
|
|
|
|
|
|
|
|
|
|
|
custom_hooks = [ |
|
dict(type=DatasetInfoHook, tokenizer=tokenizer), |
|
] |
|
|
|
|
|
default_hooks = dict( |
|
|
|
timer=dict(type=IterTimerHook), |
|
|
|
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10), |
|
|
|
param_scheduler=dict(type=ParamSchedulerHook), |
|
|
|
checkpoint=dict( |
|
type=CheckpointHook, |
|
save_optimizer=False, |
|
by_epoch=False, |
|
interval=save_steps, |
|
max_keep_ckpts=save_total_limit), |
|
|
|
sampler_seed=dict(type=DistSamplerSeedHook), |
|
) |
|
|
|
|
|
env_cfg = dict( |
|
|
|
cudnn_benchmark=False, |
|
|
|
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), |
|
|
|
dist_cfg=dict(backend='nccl'), |
|
) |
|
|
|
|
|
visualizer = None |
|
|
|
|
|
log_level = 'INFO' |
|
|
|
|
|
load_from = None |
|
|
|
|
|
resume = False |
|
|
|
|
|
randomness = dict(seed=None, deterministic=False) |
|
|
|
|
|
log_processor = dict(by_epoch=False) |
|
|