letschat.health / cuda_fp16.hpp
zhongkaifu's picture
Upload 5 files
b7460af verified
raw
history blame
101 kB
/*
* Copyright 1993-2022 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#if !defined(__CUDA_FP16_HPP__)
#define __CUDA_FP16_HPP__
#if !defined(__CUDA_FP16_H__)
#error "Do not include this file directly. Instead, include cuda_fp16.h."
#endif
#if !defined(_MSC_VER) && __cplusplus >= 201103L
# define __CPP_VERSION_AT_LEAST_11_FP16
#elif _MSC_FULL_VER >= 190024210 && _MSVC_LANG >= 201103L
# define __CPP_VERSION_AT_LEAST_11_FP16
#endif
// implicitly provided by NVRTC
#if !defined(__CUDACC_RTC__)
#include <nv/target>
#endif /* !defined(__CUDACC_RTC__) */
#if !defined(IF_DEVICE_OR_CUDACC)
#if defined(__CUDACC__)
#define IF_DEVICE_OR_CUDACC(d, c, f) NV_IF_ELSE_TARGET(NV_IS_DEVICE, d, c)
#else
#define IF_DEVICE_OR_CUDACC(d, c, f) NV_IF_ELSE_TARGET(NV_IS_DEVICE, d, f)
#endif
#endif
/* C++11 header for std::move.
* In RTC mode, std::move is provided implicitly; don't include the header
*/
#if defined(__CPP_VERSION_AT_LEAST_11_FP16) && !defined(__CUDACC_RTC__)
#include <utility>
#endif /* __cplusplus >= 201103L && !defined(__CUDACC_RTC__) */
/* C++ header for std::memcpy (used for type punning in host-side implementations).
* When compiling as a CUDA source file memcpy is provided implicitly.
* !defined(__CUDACC__) implies !defined(__CUDACC_RTC__).
*/
#if defined(__cplusplus) && !defined(__CUDACC__)
#include <cstring>
#endif /* defined(__cplusplus) && !defined(__CUDACC__) */
/* Set up function decorations */
#if defined(__CUDACC__) || defined(_NVHPC_CUDA)
#define __CUDA_FP16_DECL__ static __device__ __inline__
#define __CUDA_HOSTDEVICE_FP16_DECL__ static __host__ __device__ __inline__
#define __VECTOR_FUNCTIONS_DECL__ static __inline__ __host__ __device__
#define __CUDA_HOSTDEVICE__ __host__ __device__
#else /* !defined(__CUDACC__) */
#if defined(__GNUC__)
#define __CUDA_HOSTDEVICE_FP16_DECL__ static __attribute__ ((unused))
#else
#define __CUDA_HOSTDEVICE_FP16_DECL__ static
#endif /* defined(__GNUC__) */
#define __CUDA_HOSTDEVICE__
#endif /* defined(__CUDACC_) */
/* Set up structure-alignment attribute */
#if defined(__CUDACC__)
#define __CUDA_ALIGN__(align) __align__(align)
#else
/* Define alignment macro based on compiler type (cannot assume C11 "_Alignas" is available) */
#if __cplusplus >= 201103L
#define __CUDA_ALIGN__(n) alignas(n) /* C++11 kindly gives us a keyword for this */
#else /* !defined(__CPP_VERSION_AT_LEAST_11_FP16)*/
#if defined(__GNUC__)
#define __CUDA_ALIGN__(n) __attribute__ ((aligned(n)))
#elif defined(_MSC_VER)
#define __CUDA_ALIGN__(n) __declspec(align(n))
#else
#define __CUDA_ALIGN__(n)
#endif /* defined(__GNUC__) */
#endif /* defined(__CPP_VERSION_AT_LEAST_11_FP16) */
#endif /* defined(__CUDACC__) */
/* Macros to allow half & half2 to be used by inline assembly */
#define __HALF_TO_US(var) *(reinterpret_cast<unsigned short *>(&(var)))
#define __HALF_TO_CUS(var) *(reinterpret_cast<const unsigned short *>(&(var)))
#define __HALF2_TO_UI(var) *(reinterpret_cast<unsigned int *>(&(var)))
#define __HALF2_TO_CUI(var) *(reinterpret_cast<const unsigned int *>(&(var)))
/* Macros for half & half2 binary arithmetic */
#define __BINARY_OP_HALF_MACRO(name) /* do */ {\
__half val; \
asm( "{" __CUDA_FP16_STRINGIFY(name) ".f16 %0,%1,%2;\n}" \
:"=h"(__HALF_TO_US(val)) : "h"(__HALF_TO_CUS(a)),"h"(__HALF_TO_CUS(b))); \
return val; \
} /* while(0) */
#define __BINARY_OP_HALF2_MACRO(name) /* do */ {\
__half2 val; \
asm( "{" __CUDA_FP16_STRINGIFY(name) ".f16x2 %0,%1,%2;\n}" \
:"=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)),"r"(__HALF2_TO_CUI(b))); \
return val; \
} /* while(0) */
#define __TERNARY_OP_HALF_MACRO(name) /* do */ {\
__half val; \
asm( "{" __CUDA_FP16_STRINGIFY(name) ".f16 %0,%1,%2,%3;\n}" \
:"=h"(__HALF_TO_US(val)) : "h"(__HALF_TO_CUS(a)),"h"(__HALF_TO_CUS(b)),"h"(__HALF_TO_CUS(c))); \
return val; \
} /* while(0) */
#define __TERNARY_OP_HALF2_MACRO(name) /* do */ {\
__half2 val; \
asm( "{" __CUDA_FP16_STRINGIFY(name) ".f16x2 %0,%1,%2,%3;\n}" \
:"=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)),"r"(__HALF2_TO_CUI(b)),"r"(__HALF2_TO_CUI(c))); \
return val; \
} /* while(0) */
/**
* Types which allow static initialization of "half" and "half2" until
* these become an actual builtin. Note this initialization is as a
* bitfield representation of "half", and not a conversion from short->half.
* Such a representation will be deprecated in a future version of CUDA.
* (Note these are visible to non-nvcc compilers, including C-only compilation)
*/
typedef struct __CUDA_ALIGN__(2) {
unsigned short x;
} __half_raw;
typedef struct __CUDA_ALIGN__(4) {
unsigned short x;
unsigned short y;
} __half2_raw;
/* All other definitions in this file are only visible to C++ compilers */
#if defined(__cplusplus)
/* Hide GCC member initialization list warnings because of host/device in-function init requirement */
#if defined(__GNUC__)
#if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstrict-aliasing"
#pragma GCC diagnostic ignored "-Weffc++"
#endif /* __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6) */
#endif /* defined(__GNUC__) */
/* class' : multiple assignment operators specified
The class has multiple assignment operators of a single type. This warning is informational */
#if defined(_MSC_VER) && _MSC_VER >= 1500
#pragma warning( push )
#pragma warning( disable:4522 )
#endif /* defined(__GNUC__) */
struct __CUDA_ALIGN__(2) __half {
protected:
unsigned short __x;
public:
#if defined(__CPP_VERSION_AT_LEAST_11_FP16)
__half() = default;
#else
__CUDA_HOSTDEVICE__ __half() { }
#endif /* defined(__CPP_VERSION_AT_LEAST_11_FP16) */
/* Convert to/from __half_raw */
__CUDA_HOSTDEVICE__ __half(const __half_raw &hr) : __x(hr.x) { }
__CUDA_HOSTDEVICE__ __half &operator=(const __half_raw &hr) { __x = hr.x; return *this; }
__CUDA_HOSTDEVICE__ volatile __half &operator=(const __half_raw &hr) volatile { __x = hr.x; return *this; }
__CUDA_HOSTDEVICE__ volatile __half &operator=(const volatile __half_raw &hr) volatile { __x = hr.x; return *this; }
__CUDA_HOSTDEVICE__ operator __half_raw() const { __half_raw ret; ret.x = __x; return ret; }
__CUDA_HOSTDEVICE__ operator __half_raw() const volatile { __half_raw ret; ret.x = __x; return ret; }
#if !defined(__CUDA_NO_HALF_CONVERSIONS__)
/* Construct from float/double */
__CUDA_HOSTDEVICE__ __half(const float f) { __x = __float2half(f).__x; }
__CUDA_HOSTDEVICE__ __half(const double f) { __x = __double2half(f).__x; }
__CUDA_HOSTDEVICE__ operator float() const { return __half2float(*this); }
__CUDA_HOSTDEVICE__ __half &operator=(const float f) { __x = __float2half(f).__x; return *this; }
/* We omit "cast to double" operator, so as to not be ambiguous about up-cast */
__CUDA_HOSTDEVICE__ __half &operator=(const double f) { __x = __double2half(f).__x; return *this; }
/* Member functions only available to nvcc compilation so far */
#if defined(__CUDACC__)
/* Allow automatic construction from types supported natively in hardware */
/* Note we do avoid constructor init-list because of special host/device compilation rules */
__CUDA_HOSTDEVICE__ __half(const short val) { __x = __short2half_rn(val).__x; }
__CUDA_HOSTDEVICE__ __half(const unsigned short val) { __x = __ushort2half_rn(val).__x; }
__CUDA_HOSTDEVICE__ __half(const int val) { __x = __int2half_rn(val).__x; }
__CUDA_HOSTDEVICE__ __half(const unsigned int val) { __x = __uint2half_rn(val).__x; }
__CUDA_HOSTDEVICE__ __half(const long long val) { __x = __ll2half_rn(val).__x; }
__CUDA_HOSTDEVICE__ __half(const unsigned long long val) { __x = __ull2half_rn(val).__x; }
/* Allow automatic casts to supported builtin types, matching all that are permitted with float */
__CUDA_HOSTDEVICE__ operator short() const { return __half2short_rz(*this); }
__CUDA_HOSTDEVICE__ __half &operator=(const short val) { __x = __short2half_rn(val).__x; return *this; }
__CUDA_HOSTDEVICE__ operator unsigned short() const { return __half2ushort_rz(*this); }
__CUDA_HOSTDEVICE__ __half &operator=(const unsigned short val) { __x = __ushort2half_rn(val).__x; return *this; }
__CUDA_HOSTDEVICE__ operator int() const { return __half2int_rz(*this); }
__CUDA_HOSTDEVICE__ __half &operator=(const int val) { __x = __int2half_rn(val).__x; return *this; }
__CUDA_HOSTDEVICE__ operator unsigned int() const { return __half2uint_rz(*this); }
__CUDA_HOSTDEVICE__ __half &operator=(const unsigned int val) { __x = __uint2half_rn(val).__x; return *this; }
__CUDA_HOSTDEVICE__ operator long long() const { return __half2ll_rz(*this); }
__CUDA_HOSTDEVICE__ __half &operator=(const long long val) { __x = __ll2half_rn(val).__x; return *this; }
__CUDA_HOSTDEVICE__ operator unsigned long long() const { return __half2ull_rz(*this); }
__CUDA_HOSTDEVICE__ __half &operator=(const unsigned long long val) { __x = __ull2half_rn(val).__x; return *this; }
/* Boolean conversion - note both 0 and -0 must return false */
__CUDA_HOSTDEVICE__ operator bool() const { return (__x & 0x7FFFU) != 0U; }
#endif /* defined(__CUDACC__) */
#endif /* !defined(__CUDA_NO_HALF_CONVERSIONS__) */
};
/* Global-space operator functions are only available to nvcc compilation */
#if defined(__CUDACC__)
/* Arithmetic FP16 operations only supported on arch >= 5.3 */
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530) || defined(_NVHPC_CUDA)
#if !defined(__CUDA_NO_HALF_OPERATORS__)
/* Some basic arithmetic operations expected of a builtin */
__device__ __forceinline__ __half operator+(const __half &lh, const __half &rh) { return __hadd(lh, rh); }
__device__ __forceinline__ __half operator-(const __half &lh, const __half &rh) { return __hsub(lh, rh); }
__device__ __forceinline__ __half operator*(const __half &lh, const __half &rh) { return __hmul(lh, rh); }
__device__ __forceinline__ __half operator/(const __half &lh, const __half &rh) { return __hdiv(lh, rh); }
__device__ __forceinline__ __half &operator+=(__half &lh, const __half &rh) { lh = __hadd(lh, rh); return lh; }
__device__ __forceinline__ __half &operator-=(__half &lh, const __half &rh) { lh = __hsub(lh, rh); return lh; }
__device__ __forceinline__ __half &operator*=(__half &lh, const __half &rh) { lh = __hmul(lh, rh); return lh; }
__device__ __forceinline__ __half &operator/=(__half &lh, const __half &rh) { lh = __hdiv(lh, rh); return lh; }
/* Note for increment and decrement we use the raw value 0x3C00U equating to half(1.0F), to avoid the extra conversion */
__device__ __forceinline__ __half &operator++(__half &h) { __half_raw one; one.x = 0x3C00U; h += one; return h; }
__device__ __forceinline__ __half &operator--(__half &h) { __half_raw one; one.x = 0x3C00U; h -= one; return h; }
__device__ __forceinline__ __half operator++(__half &h, const int ignored)
{
// ignored on purpose. Parameter only needed to distinguish the function declaration from other types of operators.
static_cast<void>(ignored);
const __half ret = h;
__half_raw one;
one.x = 0x3C00U;
h += one;
return ret;
}
__device__ __forceinline__ __half operator--(__half &h, const int ignored)
{
// ignored on purpose. Parameter only needed to distinguish the function declaration from other types of operators.
static_cast<void>(ignored);
const __half ret = h;
__half_raw one;
one.x = 0x3C00U;
h -= one;
return ret;
}
/* Unary plus and inverse operators */
__device__ __forceinline__ __half operator+(const __half &h) { return h; }
__device__ __forceinline__ __half operator-(const __half &h) { return __hneg(h); }
/* Some basic comparison operations to make it look like a builtin */
__device__ __forceinline__ bool operator==(const __half &lh, const __half &rh) { return __heq(lh, rh); }
__device__ __forceinline__ bool operator!=(const __half &lh, const __half &rh) { return __hneu(lh, rh); }
__device__ __forceinline__ bool operator> (const __half &lh, const __half &rh) { return __hgt(lh, rh); }
__device__ __forceinline__ bool operator< (const __half &lh, const __half &rh) { return __hlt(lh, rh); }
__device__ __forceinline__ bool operator>=(const __half &lh, const __half &rh) { return __hge(lh, rh); }
__device__ __forceinline__ bool operator<=(const __half &lh, const __half &rh) { return __hle(lh, rh); }
#endif /* !defined(__CUDA_NO_HALF_OPERATORS__) */
#endif /* !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530) || defined(_NVHPC_CUDA) */
#endif /* defined(__CUDACC__) */
/* __half2 is visible to non-nvcc host compilers */
struct __CUDA_ALIGN__(4) __half2 {
__half x;
__half y;
// All construct/copy/assign/move
public:
#if defined(__CPP_VERSION_AT_LEAST_11_FP16)
__half2() = default;
__CUDA_HOSTDEVICE__ __half2(const __half2 &&src) { __HALF2_TO_UI(*this) = std::move(__HALF2_TO_CUI(src)); }
__CUDA_HOSTDEVICE__ __half2 &operator=(const __half2 &&src) { __HALF2_TO_UI(*this) = std::move(__HALF2_TO_CUI(src)); return *this; }
#else
__CUDA_HOSTDEVICE__ __half2() { }
#endif /* defined(__CPP_VERSION_AT_LEAST_11_FP16) */
__CUDA_HOSTDEVICE__ __half2(const __half &a, const __half &b) : x(a), y(b) { }
__CUDA_HOSTDEVICE__ __half2(const __half2 &src) { __HALF2_TO_UI(*this) = __HALF2_TO_CUI(src); }
__CUDA_HOSTDEVICE__ __half2 &operator=(const __half2 &src) { __HALF2_TO_UI(*this) = __HALF2_TO_CUI(src); return *this; }
/* Convert to/from __half2_raw */
__CUDA_HOSTDEVICE__ __half2(const __half2_raw &h2r ) { __HALF2_TO_UI(*this) = __HALF2_TO_CUI(h2r); }
__CUDA_HOSTDEVICE__ __half2 &operator=(const __half2_raw &h2r) { __HALF2_TO_UI(*this) = __HALF2_TO_CUI(h2r); return *this; }
__CUDA_HOSTDEVICE__ operator __half2_raw() const { __half2_raw ret; ret.x = 0U; ret.y = 0U; __HALF2_TO_UI(ret) = __HALF2_TO_CUI(*this); return ret; }
};
/* Global-space operator functions are only available to nvcc compilation */
#if defined(__CUDACC__)
/* Arithmetic FP16x2 operations only supported on arch >= 5.3 */
#if (!defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530) || defined(_NVHPC_CUDA)) && !defined(__CUDA_NO_HALF2_OPERATORS__)
__device__ __forceinline__ __half2 operator+(const __half2 &lh, const __half2 &rh) { return __hadd2(lh, rh); }
__device__ __forceinline__ __half2 operator-(const __half2 &lh, const __half2 &rh) { return __hsub2(lh, rh); }
__device__ __forceinline__ __half2 operator*(const __half2 &lh, const __half2 &rh) { return __hmul2(lh, rh); }
__device__ __forceinline__ __half2 operator/(const __half2 &lh, const __half2 &rh) { return __h2div(lh, rh); }
__device__ __forceinline__ __half2& operator+=(__half2 &lh, const __half2 &rh) { lh = __hadd2(lh, rh); return lh; }
__device__ __forceinline__ __half2& operator-=(__half2 &lh, const __half2 &rh) { lh = __hsub2(lh, rh); return lh; }
__device__ __forceinline__ __half2& operator*=(__half2 &lh, const __half2 &rh) { lh = __hmul2(lh, rh); return lh; }
__device__ __forceinline__ __half2& operator/=(__half2 &lh, const __half2 &rh) { lh = __h2div(lh, rh); return lh; }
__device__ __forceinline__ __half2 &operator++(__half2 &h) { __half2_raw one; one.x = 0x3C00U; one.y = 0x3C00U; h = __hadd2(h, one); return h; }
__device__ __forceinline__ __half2 &operator--(__half2 &h) { __half2_raw one; one.x = 0x3C00U; one.y = 0x3C00U; h = __hsub2(h, one); return h; }
__device__ __forceinline__ __half2 operator++(__half2 &h, const int ignored)
{
// ignored on purpose. Parameter only needed to distinguish the function declaration from other types of operators.
static_cast<void>(ignored);
const __half2 ret = h;
__half2_raw one;
one.x = 0x3C00U;
one.y = 0x3C00U;
h = __hadd2(h, one);
return ret;
}
__device__ __forceinline__ __half2 operator--(__half2 &h, const int ignored)
{
// ignored on purpose. Parameter only needed to distinguish the function declaration from other types of operators.
static_cast<void>(ignored);
const __half2 ret = h;
__half2_raw one;
one.x = 0x3C00U;
one.y = 0x3C00U;
h = __hsub2(h, one);
return ret;
}
__device__ __forceinline__ __half2 operator+(const __half2 &h) { return h; }
__device__ __forceinline__ __half2 operator-(const __half2 &h) { return __hneg2(h); }
__device__ __forceinline__ bool operator==(const __half2 &lh, const __half2 &rh) { return __hbeq2(lh, rh); }
__device__ __forceinline__ bool operator!=(const __half2 &lh, const __half2 &rh) { return __hbneu2(lh, rh); }
__device__ __forceinline__ bool operator>(const __half2 &lh, const __half2 &rh) { return __hbgt2(lh, rh); }
__device__ __forceinline__ bool operator<(const __half2 &lh, const __half2 &rh) { return __hblt2(lh, rh); }
__device__ __forceinline__ bool operator>=(const __half2 &lh, const __half2 &rh) { return __hbge2(lh, rh); }
__device__ __forceinline__ bool operator<=(const __half2 &lh, const __half2 &rh) { return __hble2(lh, rh); }
#endif /* (!defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530) || defined(_NVHPC_CUDA)) && !defined(__CUDA_NO_HALF2_OPERATORS__) */
#endif /* defined(__CUDACC__) */
/* Restore warning for multiple assignment operators */
#if defined(_MSC_VER) && _MSC_VER >= 1500
#pragma warning( pop )
#endif /* defined(_MSC_VER) && _MSC_VER >= 1500 */
/* Restore -Weffc++ warnings from here on */
#if defined(__GNUC__)
#if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)
#pragma GCC diagnostic pop
#endif /* __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6) */
#endif /* defined(__GNUC__) */
#undef __CUDA_HOSTDEVICE__
#undef __CUDA_ALIGN__
#ifndef __CUDACC_RTC__ /* no host functions in NVRTC mode */
static inline unsigned short __internal_float2half(const float f, unsigned int &sign, unsigned int &remainder)
{
unsigned int x;
unsigned int u;
unsigned int result;
#if defined(__CUDACC__)
(void)memcpy(&x, &f, sizeof(f));
#else
(void)std::memcpy(&x, &f, sizeof(f));
#endif
u = (x & 0x7fffffffU);
sign = ((x >> 16U) & 0x8000U);
// NaN/+Inf/-Inf
if (u >= 0x7f800000U) {
remainder = 0U;
result = ((u == 0x7f800000U) ? (sign | 0x7c00U) : 0x7fffU);
} else if (u > 0x477fefffU) { // Overflows
remainder = 0x80000000U;
result = (sign | 0x7bffU);
} else if (u >= 0x38800000U) { // Normal numbers
remainder = u << 19U;
u -= 0x38000000U;
result = (sign | (u >> 13U));
} else if (u < 0x33000001U) { // +0/-0
remainder = u;
result = sign;
} else { // Denormal numbers
const unsigned int exponent = u >> 23U;
const unsigned int shift = 0x7eU - exponent;
unsigned int mantissa = (u & 0x7fffffU);
mantissa |= 0x800000U;
remainder = mantissa << (32U - shift);
result = (sign | (mantissa >> shift));
result &= 0x0000FFFFU;
}
return static_cast<unsigned short>(result);
}
#endif /* #if !defined(__CUDACC_RTC__) */
__CUDA_HOSTDEVICE_FP16_DECL__ __half __double2half(const double a)
{
IF_DEVICE_OR_CUDACC(
__half val;
asm("{ cvt.rn.f16.f64 %0, %1;}\n" : "=h"(__HALF_TO_US(val)) : "d"(a));
return val;
,
__half result;
// Perform rounding to 11 bits of precision, convert value
// to float and call existing float to half conversion.
// By pre-rounding to 11 bits we avoid additional rounding
// in float to half conversion.
unsigned long long int absa;
unsigned long long int ua;
(void)memcpy(&ua, &a, sizeof(a));
absa = (ua & 0x7fffffffffffffffULL);
if ((absa >= 0x40f0000000000000ULL) || (absa <= 0x3e60000000000000ULL))
{
// |a| >= 2^16 or NaN or |a| <= 2^(-25)
// double-rounding is not a problem
result = __float2half(static_cast<float>(a));
}
else
{
// here 2^(-25) < |a| < 2^16
// prepare shifter value such that a + shifter
// done in double precision performs round-to-nearest-even
// and (a + shifter) - shifter results in a rounded to
// 11 bits of precision. Shifter needs to have exponent of
// a plus 53 - 11 = 42 and a leading bit in mantissa to guard
// against negative values.
// So need to have |a| capped to avoid overflow in exponent.
// For inputs that are smaller than half precision minnorm
// we prepare fixed shifter exponent.
unsigned long long shifterBits;
if (absa >= 0x3f10000000000000ULL)
{ // Here if |a| >= 2^(-14)
// add 42 to exponent bits
shifterBits = (ua & 0x7ff0000000000000ULL) + 0x02A0000000000000ULL;
}
else
{ // 2^(-25) < |a| < 2^(-14), potentially results in denormal
// set exponent bits to 42 - 14 + bias
shifterBits = 0x41B0000000000000ULL;
}
// set leading mantissa bit to protect against negative inputs
shifterBits |= 0x0008000000000000ULL;
double shifter;
(void)memcpy(&shifter, &shifterBits, sizeof(shifterBits));
double aShiftRound = a + shifter;
// Prevent the compiler from optimizing away a + shifter - shifter
// by doing intermediate memcopy and harmless bitwize operation
unsigned long long int aShiftRoundBits;
(void)memcpy(&aShiftRoundBits, &aShiftRound, sizeof(aShiftRound));
// the value is positive, so this operation doesn't change anything
aShiftRoundBits &= 0x7fffffffffffffffULL;
(void)memcpy(&aShiftRound, &aShiftRoundBits, sizeof(aShiftRound));
result = __float2half(static_cast<float>(aShiftRound - shifter));
}
return result;
,
__half result;
/*
// Perform rounding to 11 bits of precision, convert value
// to float and call existing float to half conversion.
// By pre-rounding to 11 bits we avoid additional rounding
// in float to half conversion.
*/
unsigned long long int absa;
unsigned long long int ua;
(void)std::memcpy(&ua, &a, sizeof(a));
absa = (ua & 0x7fffffffffffffffULL);
if ((absa >= 0x40f0000000000000ULL) || (absa <= 0x3e60000000000000ULL))
{
/*
// |a| >= 2^16 or NaN or |a| <= 2^(-25)
// double-rounding is not a problem
*/
result = __float2half(static_cast<float>(a));
}
else
{
/*
// here 2^(-25) < |a| < 2^16
// prepare shifter value such that a + shifter
// done in double precision performs round-to-nearest-even
// and (a + shifter) - shifter results in a rounded to
// 11 bits of precision. Shifter needs to have exponent of
// a plus 53 - 11 = 42 and a leading bit in mantissa to guard
// against negative values.
// So need to have |a| capped to avoid overflow in exponent.
// For inputs that are smaller than half precision minnorm
// we prepare fixed shifter exponent.
*/
unsigned long long shifterBits;
if (absa >= 0x3f10000000000000ULL)
{
/*
// Here if |a| >= 2^(-14)
// add 42 to exponent bits
*/
shifterBits = (ua & 0x7ff0000000000000ULL) + 0x02A0000000000000ULL;
}
else
{
/*
// 2^(-25) < |a| < 2^(-14), potentially results in denormal
// set exponent bits to 42 - 14 + bias
*/
shifterBits = 0x41B0000000000000ULL;
}
// set leading mantissa bit to protect against negative inputs
shifterBits |= 0x0008000000000000ULL;
double shifter;
(void)std::memcpy(&shifter, &shifterBits, sizeof(shifterBits));
double aShiftRound = a + shifter;
/*
// Prevent the compiler from optimizing away a + shifter - shifter
// by doing intermediate memcopy and harmless bitwize operation
*/
unsigned long long int aShiftRoundBits;
(void)std::memcpy(&aShiftRoundBits, &aShiftRound, sizeof(aShiftRound));
// the value is positive, so this operation doesn't change anything
aShiftRoundBits &= 0x7fffffffffffffffULL;
(void)std::memcpy(&aShiftRound, &aShiftRoundBits, sizeof(aShiftRound));
result = __float2half(static_cast<float>(aShiftRound - shifter));
}
return result;
)
}
__CUDA_HOSTDEVICE_FP16_DECL__ __half __float2half(const float a)
{
__half val;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("{ cvt.rn.f16.f32 %0, %1;}\n" : "=h"(__HALF_TO_US(val)) : "f"(a));
,
__half_raw r;
unsigned int sign = 0U;
unsigned int remainder = 0U;
r.x = __internal_float2half(a, sign, remainder);
if ((remainder > 0x80000000U) || ((remainder == 0x80000000U) && ((r.x & 0x1U) != 0U))) {
r.x++;
}
val = r;
)
return val;
}
__CUDA_HOSTDEVICE_FP16_DECL__ __half __float2half_rn(const float a)
{
__half val;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("{ cvt.rn.f16.f32 %0, %1;}\n" : "=h"(__HALF_TO_US(val)) : "f"(a));
,
__half_raw r;
unsigned int sign = 0U;
unsigned int remainder = 0U;
r.x = __internal_float2half(a, sign, remainder);
if ((remainder > 0x80000000U) || ((remainder == 0x80000000U) && ((r.x & 0x1U) != 0U))) {
r.x++;
}
val = r;
)
return val;
}
__CUDA_HOSTDEVICE_FP16_DECL__ __half __float2half_rz(const float a)
{
__half val;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("{ cvt.rz.f16.f32 %0, %1;}\n" : "=h"(__HALF_TO_US(val)) : "f"(a));
,
__half_raw r;
unsigned int sign = 0U;
unsigned int remainder = 0U;
r.x = __internal_float2half(a, sign, remainder);
val = r;
)
return val;
}
__CUDA_HOSTDEVICE_FP16_DECL__ __half __float2half_rd(const float a)
{
__half val;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("{ cvt.rm.f16.f32 %0, %1;}\n" : "=h"(__HALF_TO_US(val)) : "f"(a));
,
__half_raw r;
unsigned int sign = 0U;
unsigned int remainder = 0U;
r.x = __internal_float2half(a, sign, remainder);
if ((remainder != 0U) && (sign != 0U)) {
r.x++;
}
val = r;
)
return val;
}
__CUDA_HOSTDEVICE_FP16_DECL__ __half __float2half_ru(const float a)
{
__half val;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("{ cvt.rp.f16.f32 %0, %1;}\n" : "=h"(__HALF_TO_US(val)) : "f"(a));
,
__half_raw r;
unsigned int sign = 0U;
unsigned int remainder = 0U;
r.x = __internal_float2half(a, sign, remainder);
if ((remainder != 0U) && (sign == 0U)) {
r.x++;
}
val = r;
)
return val;
}
__CUDA_HOSTDEVICE_FP16_DECL__ __half2 __float2half2_rn(const float a)
{
__half2 val;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("{.reg .f16 low;\n"
" cvt.rn.f16.f32 low, %1;\n"
" mov.b32 %0, {low,low};}\n" : "=r"(__HALF2_TO_UI(val)) : "f"(a));
,
val = __half2(__float2half_rn(a), __float2half_rn(a));
)
return val;
}
#if defined(__CUDA_ARCH__) || defined(_NVHPC_CUDA)
__CUDA_FP16_DECL__ __half2 __internal_device_float2_to_half2_rn(const float a, const float b) {
__half2 val;
NV_IF_ELSE_TARGET(NV_PROVIDES_SM_80,
asm("{ cvt.rn.f16x2.f32 %0, %2, %1; }\n"
: "=r"(__HALF2_TO_UI(val)) : "f"(a), "f"(b));
,
asm("{.reg .f16 low,high;\n"
" cvt.rn.f16.f32 low, %1;\n"
" cvt.rn.f16.f32 high, %2;\n"
" mov.b32 %0, {low,high};}\n" : "=r"(__HALF2_TO_UI(val)) : "f"(a), "f"(b));
)
return val;
}
#endif
__CUDA_HOSTDEVICE_FP16_DECL__ __half2 __floats2half2_rn(const float a, const float b)
{
__half2 val;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
val = __internal_device_float2_to_half2_rn(a,b);
,
val = __half2(__float2half_rn(a), __float2half_rn(b));
)
return val;
}
#ifndef __CUDACC_RTC__ /* no host functions in NVRTC mode */
static inline float __internal_half2float(const unsigned short h)
{
unsigned int sign = ((static_cast<unsigned int>(h) >> 15U) & 1U);
unsigned int exponent = ((static_cast<unsigned int>(h) >> 10U) & 0x1fU);
unsigned int mantissa = ((static_cast<unsigned int>(h) & 0x3ffU) << 13U);
float f;
if (exponent == 0x1fU) { /* NaN or Inf */
/* discard sign of a NaN */
sign = ((mantissa != 0U) ? (sign >> 1U) : sign);
mantissa = ((mantissa != 0U) ? 0x7fffffU : 0U);
exponent = 0xffU;
} else if (exponent == 0U) { /* Denorm or Zero */
if (mantissa != 0U) {
unsigned int msb;
exponent = 0x71U;
do {
msb = (mantissa & 0x400000U);
mantissa <<= 1U; /* normalize */
--exponent;
} while (msb == 0U);
mantissa &= 0x7fffffU; /* 1.mantissa is implicit */
}
} else {
exponent += 0x70U;
}
const unsigned int u = ((sign << 31U) | (exponent << 23U) | mantissa);
#if defined(__CUDACC__)
(void)memcpy(&f, &u, sizeof(u));
#else
(void)std::memcpy(&f, &u, sizeof(u));
#endif
return f;
}
#endif /* !defined(__CUDACC_RTC__) */
__CUDA_HOSTDEVICE_FP16_DECL__ float __half2float(const __half a)
{
float val;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("{ cvt.f32.f16 %0, %1;}\n" : "=f"(val) : "h"(__HALF_TO_CUS(a)));
,
val = __internal_half2float(static_cast<__half_raw>(a).x);
)
return val;
}
__CUDA_HOSTDEVICE_FP16_DECL__ float __low2float(const __half2 a)
{
float val;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("{.reg .f16 low,high;\n"
" mov.b32 {low,high},%1;\n"
" cvt.f32.f16 %0, low;}\n" : "=f"(val) : "r"(__HALF2_TO_CUI(a)));
,
val = __internal_half2float(static_cast<__half2_raw>(a).x);
)
return val;
}
__CUDA_HOSTDEVICE_FP16_DECL__ float __high2float(const __half2 a)
{
float val;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("{.reg .f16 low,high;\n"
" mov.b32 {low,high},%1;\n"
" cvt.f32.f16 %0, high;}\n" : "=f"(val) : "r"(__HALF2_TO_CUI(a)));
,
val = __internal_half2float(static_cast<__half2_raw>(a).y);
)
return val;
}
__CUDA_HOSTDEVICE_FP16_DECL__ short int __half2short_rz(const __half h)
{
short int i;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("cvt.rzi.s16.f16 %0, %1;" : "=h"(i) : "h"(__HALF_TO_CUS(h)));
,
const float f = __half2float(h);
const short int max_val = (short int)0x7fffU;
const short int min_val = (short int)0x8000U;
const unsigned short bits = static_cast<unsigned short>(static_cast<__half_raw>(h).x << 1U);
// saturation fixup
if (bits > (unsigned short)0xF800U) {
// NaN
i = 0;
} else if (f > static_cast<float>(max_val)) {
// saturate maximum
i = max_val;
} else if (f < static_cast<float>(min_val)) {
// saturate minimum
i = min_val;
} else {
// normal value, conversion is well-defined
i = static_cast<short int>(f);
}
)
return i;
}
__CUDA_HOSTDEVICE_FP16_DECL__ unsigned short int __half2ushort_rz(const __half h)
{
unsigned short int i;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("cvt.rzi.u16.f16 %0, %1;" : "=h"(i) : "h"(__HALF_TO_CUS(h)));
,
const float f = __half2float(h);
const unsigned short int max_val = 0xffffU;
const unsigned short int min_val = 0U;
const unsigned short bits = static_cast<unsigned short>(static_cast<__half_raw>(h).x << 1U);
// saturation fixup
if (bits > (unsigned short)0xF800U) {
// NaN
i = 0U;
} else if (f > static_cast<float>(max_val)) {
// saturate maximum
i = max_val;
} else if (f < static_cast<float>(min_val)) {
// saturate minimum
i = min_val;
} else {
// normal value, conversion is well-defined
i = static_cast<unsigned short int>(f);
}
)
return i;
}
__CUDA_HOSTDEVICE_FP16_DECL__ int __half2int_rz(const __half h)
{
int i;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("cvt.rzi.s32.f16 %0, %1;" : "=r"(i) : "h"(__HALF_TO_CUS(h)));
,
const float f = __half2float(h);
const int max_val = (int)0x7fffffffU;
const int min_val = (int)0x80000000U;
const unsigned short bits = static_cast<unsigned short>(static_cast<__half_raw>(h).x << 1U);
// saturation fixup
if (bits > (unsigned short)0xF800U) {
// NaN
i = 0;
} else if (f > static_cast<float>(max_val)) {
// saturate maximum
i = max_val;
} else if (f < static_cast<float>(min_val)) {
// saturate minimum
i = min_val;
} else {
// normal value, conversion is well-defined
i = static_cast<int>(f);
}
)
return i;
}
__CUDA_HOSTDEVICE_FP16_DECL__ unsigned int __half2uint_rz(const __half h)
{
unsigned int i;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("cvt.rzi.u32.f16 %0, %1;" : "=r"(i) : "h"(__HALF_TO_CUS(h)));
,
const float f = __half2float(h);
const unsigned int max_val = 0xffffffffU;
const unsigned int min_val = 0U;
const unsigned short bits = static_cast<unsigned short>(static_cast<__half_raw>(h).x << 1U);
// saturation fixup
if (bits > (unsigned short)0xF800U) {
// NaN
i = 0U;
} else if (f > static_cast<float>(max_val)) {
// saturate maximum
i = max_val;
} else if (f < static_cast<float>(min_val)) {
// saturate minimum
i = min_val;
} else {
// normal value, conversion is well-defined
i = static_cast<unsigned int>(f);
}
)
return i;
}
__CUDA_HOSTDEVICE_FP16_DECL__ long long int __half2ll_rz(const __half h)
{
long long int i;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("cvt.rzi.s64.f16 %0, %1;" : "=l"(i) : "h"(__HALF_TO_CUS(h)));
,
const float f = __half2float(h);
const long long int max_val = (long long int)0x7fffffffffffffffULL;
const long long int min_val = (long long int)0x8000000000000000ULL;
const unsigned short bits = static_cast<unsigned short>(static_cast<__half_raw>(h).x << 1U);
// saturation fixup
if (bits > (unsigned short)0xF800U) {
// NaN
i = min_val;
} else if (f > static_cast<float>(max_val)) {
// saturate maximum
i = max_val;
} else if (f < static_cast<float>(min_val)) {
// saturate minimum
i = min_val;
} else {
// normal value, conversion is well-defined
i = static_cast<long long int>(f);
}
)
return i;
}
__CUDA_HOSTDEVICE_FP16_DECL__ unsigned long long int __half2ull_rz(const __half h)
{
unsigned long long int i;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("cvt.rzi.u64.f16 %0, %1;" : "=l"(i) : "h"(__HALF_TO_CUS(h)));
,
const float f = __half2float(h);
const unsigned long long int max_val = 0xffffffffffffffffULL;
const unsigned long long int min_val = 0ULL;
const unsigned short bits = static_cast<unsigned short>(static_cast<__half_raw>(h).x << 1U);
// saturation fixup
if (bits > (unsigned short)0xF800U) {
// NaN
i = 0x8000000000000000ULL;
} else if (f > static_cast<float>(max_val)) {
// saturate maximum
i = max_val;
} else if (f < static_cast<float>(min_val)) {
// saturate minimum
i = min_val;
} else {
// normal value, conversion is well-defined
i = static_cast<unsigned long long int>(f);
}
)
return i;
}
/* Intrinsic functions only available to nvcc compilers */
#if defined(__CUDACC__)
/* CUDA vector-types compatible vector creation function (note returns __half2, not half2) */
__VECTOR_FUNCTIONS_DECL__ __half2 make_half2(const __half x, const __half y)
{
__half2 t; t.x = x; t.y = y; return t;
}
#undef __VECTOR_FUNCTIONS_DECL__
/* Definitions of intrinsics */
__CUDA_HOSTDEVICE_FP16_DECL__ __half2 __float22half2_rn(const float2 a)
{
const __half2 val = __floats2half2_rn(a.x, a.y);
return val;
}
__CUDA_HOSTDEVICE_FP16_DECL__ float2 __half22float2(const __half2 a)
{
float hi_float;
float lo_float;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("{.reg .f16 low,high;\n"
" mov.b32 {low,high},%1;\n"
" cvt.f32.f16 %0, low;}\n" : "=f"(lo_float) : "r"(__HALF2_TO_CUI(a)));
asm("{.reg .f16 low,high;\n"
" mov.b32 {low,high},%1;\n"
" cvt.f32.f16 %0, high;}\n" : "=f"(hi_float) : "r"(__HALF2_TO_CUI(a)));
,
lo_float = __internal_half2float(((__half2_raw)a).x);
hi_float = __internal_half2float(((__half2_raw)a).y);
)
return make_float2(lo_float, hi_float);
}
__CUDA_FP16_DECL__ int __half2int_rn(const __half h)
{
int i;
asm("cvt.rni.s32.f16 %0, %1;" : "=r"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_FP16_DECL__ int __half2int_rd(const __half h)
{
int i;
asm("cvt.rmi.s32.f16 %0, %1;" : "=r"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_FP16_DECL__ int __half2int_ru(const __half h)
{
int i;
asm("cvt.rpi.s32.f16 %0, %1;" : "=r"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_HOSTDEVICE_FP16_DECL__ __half __int2half_rn(const int i)
{
__half h;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("cvt.rn.f16.s32 %0, %1;" : "=h"(__HALF_TO_US(h)) : "r"(i));
,
// double-rounding is not a problem here: if integer
// has more than 24 bits, it is already too large to
// be represented in half precision, and result will
// be infinity.
const float f = static_cast<float>(i);
h = __float2half_rn(f);
)
return h;
}
__CUDA_FP16_DECL__ __half __int2half_rz(const int i)
{
__half h;
asm("cvt.rz.f16.s32 %0, %1;" : "=h"(__HALF_TO_US(h)) : "r"(i));
return h;
}
__CUDA_FP16_DECL__ __half __int2half_rd(const int i)
{
__half h;
asm("cvt.rm.f16.s32 %0, %1;" : "=h"(__HALF_TO_US(h)) : "r"(i));
return h;
}
__CUDA_FP16_DECL__ __half __int2half_ru(const int i)
{
__half h;
asm("cvt.rp.f16.s32 %0, %1;" : "=h"(__HALF_TO_US(h)) : "r"(i));
return h;
}
__CUDA_FP16_DECL__ short int __half2short_rn(const __half h)
{
short int i;
asm("cvt.rni.s16.f16 %0, %1;" : "=h"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_FP16_DECL__ short int __half2short_rd(const __half h)
{
short int i;
asm("cvt.rmi.s16.f16 %0, %1;" : "=h"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_FP16_DECL__ short int __half2short_ru(const __half h)
{
short int i;
asm("cvt.rpi.s16.f16 %0, %1;" : "=h"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_HOSTDEVICE_FP16_DECL__ __half __short2half_rn(const short int i)
{
__half h;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("cvt.rn.f16.s16 %0, %1;" : "=h"(__HALF_TO_US(h)) : "h"(i));
,
const float f = static_cast<float>(i);
h = __float2half_rn(f);
)
return h;
}
__CUDA_FP16_DECL__ __half __short2half_rz(const short int i)
{
__half h;
asm("cvt.rz.f16.s16 %0, %1;" : "=h"(__HALF_TO_US(h)) : "h"(i));
return h;
}
__CUDA_FP16_DECL__ __half __short2half_rd(const short int i)
{
__half h;
asm("cvt.rm.f16.s16 %0, %1;" : "=h"(__HALF_TO_US(h)) : "h"(i));
return h;
}
__CUDA_FP16_DECL__ __half __short2half_ru(const short int i)
{
__half h;
asm("cvt.rp.f16.s16 %0, %1;" : "=h"(__HALF_TO_US(h)) : "h"(i));
return h;
}
__CUDA_FP16_DECL__ unsigned int __half2uint_rn(const __half h)
{
unsigned int i;
asm("cvt.rni.u32.f16 %0, %1;" : "=r"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_FP16_DECL__ unsigned int __half2uint_rd(const __half h)
{
unsigned int i;
asm("cvt.rmi.u32.f16 %0, %1;" : "=r"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_FP16_DECL__ unsigned int __half2uint_ru(const __half h)
{
unsigned int i;
asm("cvt.rpi.u32.f16 %0, %1;" : "=r"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_HOSTDEVICE_FP16_DECL__ __half __uint2half_rn(const unsigned int i)
{
__half h;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("cvt.rn.f16.u32 %0, %1;" : "=h"(__HALF_TO_US(h)) : "r"(i));
,
// double-rounding is not a problem here: if integer
// has more than 24 bits, it is already too large to
// be represented in half precision, and result will
// be infinity.
const float f = static_cast<float>(i);
h = __float2half_rn(f);
)
return h;
}
__CUDA_FP16_DECL__ __half __uint2half_rz(const unsigned int i)
{
__half h;
asm("cvt.rz.f16.u32 %0, %1;" : "=h"(__HALF_TO_US(h)) : "r"(i));
return h;
}
__CUDA_FP16_DECL__ __half __uint2half_rd(const unsigned int i)
{
__half h;
asm("cvt.rm.f16.u32 %0, %1;" : "=h"(__HALF_TO_US(h)) : "r"(i));
return h;
}
__CUDA_FP16_DECL__ __half __uint2half_ru(const unsigned int i)
{
__half h;
asm("cvt.rp.f16.u32 %0, %1;" : "=h"(__HALF_TO_US(h)) : "r"(i));
return h;
}
__CUDA_FP16_DECL__ unsigned short int __half2ushort_rn(const __half h)
{
unsigned short int i;
asm("cvt.rni.u16.f16 %0, %1;" : "=h"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_FP16_DECL__ unsigned short int __half2ushort_rd(const __half h)
{
unsigned short int i;
asm("cvt.rmi.u16.f16 %0, %1;" : "=h"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_FP16_DECL__ unsigned short int __half2ushort_ru(const __half h)
{
unsigned short int i;
asm("cvt.rpi.u16.f16 %0, %1;" : "=h"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_HOSTDEVICE_FP16_DECL__ __half __ushort2half_rn(const unsigned short int i)
{
__half h;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("cvt.rn.f16.u16 %0, %1;" : "=h"(__HALF_TO_US(h)) : "h"(i));
,
const float f = static_cast<float>(i);
h = __float2half_rn(f);
)
return h;
}
__CUDA_FP16_DECL__ __half __ushort2half_rz(const unsigned short int i)
{
__half h;
asm("cvt.rz.f16.u16 %0, %1;" : "=h"(__HALF_TO_US(h)) : "h"(i));
return h;
}
__CUDA_FP16_DECL__ __half __ushort2half_rd(const unsigned short int i)
{
__half h;
asm("cvt.rm.f16.u16 %0, %1;" : "=h"(__HALF_TO_US(h)) : "h"(i));
return h;
}
__CUDA_FP16_DECL__ __half __ushort2half_ru(const unsigned short int i)
{
__half h;
asm("cvt.rp.f16.u16 %0, %1;" : "=h"(__HALF_TO_US(h)) : "h"(i));
return h;
}
__CUDA_FP16_DECL__ unsigned long long int __half2ull_rn(const __half h)
{
unsigned long long int i;
asm("cvt.rni.u64.f16 %0, %1;" : "=l"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_FP16_DECL__ unsigned long long int __half2ull_rd(const __half h)
{
unsigned long long int i;
asm("cvt.rmi.u64.f16 %0, %1;" : "=l"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_FP16_DECL__ unsigned long long int __half2ull_ru(const __half h)
{
unsigned long long int i;
asm("cvt.rpi.u64.f16 %0, %1;" : "=l"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_HOSTDEVICE_FP16_DECL__ __half __ull2half_rn(const unsigned long long int i)
{
__half h;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("cvt.rn.f16.u64 %0, %1;" : "=h"(__HALF_TO_US(h)) : "l"(i));
,
// double-rounding is not a problem here: if integer
// has more than 24 bits, it is already too large to
// be represented in half precision, and result will
// be infinity.
const float f = static_cast<float>(i);
h = __float2half_rn(f);
)
return h;
}
__CUDA_FP16_DECL__ __half __ull2half_rz(const unsigned long long int i)
{
__half h;
asm("cvt.rz.f16.u64 %0, %1;" : "=h"(__HALF_TO_US(h)) : "l"(i));
return h;
}
__CUDA_FP16_DECL__ __half __ull2half_rd(const unsigned long long int i)
{
__half h;
asm("cvt.rm.f16.u64 %0, %1;" : "=h"(__HALF_TO_US(h)) : "l"(i));
return h;
}
__CUDA_FP16_DECL__ __half __ull2half_ru(const unsigned long long int i)
{
__half h;
asm("cvt.rp.f16.u64 %0, %1;" : "=h"(__HALF_TO_US(h)) : "l"(i));
return h;
}
__CUDA_FP16_DECL__ long long int __half2ll_rn(const __half h)
{
long long int i;
asm("cvt.rni.s64.f16 %0, %1;" : "=l"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_FP16_DECL__ long long int __half2ll_rd(const __half h)
{
long long int i;
asm("cvt.rmi.s64.f16 %0, %1;" : "=l"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_FP16_DECL__ long long int __half2ll_ru(const __half h)
{
long long int i;
asm("cvt.rpi.s64.f16 %0, %1;" : "=l"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_HOSTDEVICE_FP16_DECL__ __half __ll2half_rn(const long long int i)
{
__half h;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("cvt.rn.f16.s64 %0, %1;" : "=h"(__HALF_TO_US(h)) : "l"(i));
,
// double-rounding is not a problem here: if integer
// has more than 24 bits, it is already too large to
// be represented in half precision, and result will
// be infinity.
const float f = static_cast<float>(i);
h = __float2half_rn(f);
)
return h;
}
__CUDA_FP16_DECL__ __half __ll2half_rz(const long long int i)
{
__half h;
asm("cvt.rz.f16.s64 %0, %1;" : "=h"(__HALF_TO_US(h)) : "l"(i));
return h;
}
__CUDA_FP16_DECL__ __half __ll2half_rd(const long long int i)
{
__half h;
asm("cvt.rm.f16.s64 %0, %1;" : "=h"(__HALF_TO_US(h)) : "l"(i));
return h;
}
__CUDA_FP16_DECL__ __half __ll2half_ru(const long long int i)
{
__half h;
asm("cvt.rp.f16.s64 %0, %1;" : "=h"(__HALF_TO_US(h)) : "l"(i));
return h;
}
__CUDA_FP16_DECL__ __half htrunc(const __half h)
{
__half r;
asm("cvt.rzi.f16.f16 %0, %1;" : "=h"(__HALF_TO_US(r)) : "h"(__HALF_TO_CUS(h)));
return r;
}
__CUDA_FP16_DECL__ __half hceil(const __half h)
{
__half r;
asm("cvt.rpi.f16.f16 %0, %1;" : "=h"(__HALF_TO_US(r)) : "h"(__HALF_TO_CUS(h)));
return r;
}
__CUDA_FP16_DECL__ __half hfloor(const __half h)
{
__half r;
asm("cvt.rmi.f16.f16 %0, %1;" : "=h"(__HALF_TO_US(r)) : "h"(__HALF_TO_CUS(h)));
return r;
}
__CUDA_FP16_DECL__ __half hrint(const __half h)
{
__half r;
asm("cvt.rni.f16.f16 %0, %1;" : "=h"(__HALF_TO_US(r)) : "h"(__HALF_TO_CUS(h)));
return r;
}
__CUDA_FP16_DECL__ __half2 h2trunc(const __half2 h)
{
__half2 val;
asm("{.reg .f16 low,high;\n"
" mov.b32 {low,high}, %1;\n"
" cvt.rzi.f16.f16 low, low;\n"
" cvt.rzi.f16.f16 high, high;\n"
" mov.b32 %0, {low,high};}\n" : "=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(h)));
return val;
}
__CUDA_FP16_DECL__ __half2 h2ceil(const __half2 h)
{
__half2 val;
asm("{.reg .f16 low,high;\n"
" mov.b32 {low,high}, %1;\n"
" cvt.rpi.f16.f16 low, low;\n"
" cvt.rpi.f16.f16 high, high;\n"
" mov.b32 %0, {low,high};}\n" : "=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(h)));
return val;
}
__CUDA_FP16_DECL__ __half2 h2floor(const __half2 h)
{
__half2 val;
asm("{.reg .f16 low,high;\n"
" mov.b32 {low,high}, %1;\n"
" cvt.rmi.f16.f16 low, low;\n"
" cvt.rmi.f16.f16 high, high;\n"
" mov.b32 %0, {low,high};}\n" : "=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(h)));
return val;
}
__CUDA_FP16_DECL__ __half2 h2rint(const __half2 h)
{
__half2 val;
asm("{.reg .f16 low,high;\n"
" mov.b32 {low,high}, %1;\n"
" cvt.rni.f16.f16 low, low;\n"
" cvt.rni.f16.f16 high, high;\n"
" mov.b32 %0, {low,high};}\n" : "=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(h)));
return val;
}
__CUDA_FP16_DECL__ __half2 __lows2half2(const __half2 a, const __half2 b)
{
__half2 val;
asm("{.reg .f16 alow,ahigh,blow,bhigh;\n"
" mov.b32 {alow,ahigh}, %1;\n"
" mov.b32 {blow,bhigh}, %2;\n"
" mov.b32 %0, {alow,blow};}\n" : "=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)), "r"(__HALF2_TO_CUI(b)));
return val;
}
__CUDA_FP16_DECL__ __half2 __highs2half2(const __half2 a, const __half2 b)
{
__half2 val;
asm("{.reg .f16 alow,ahigh,blow,bhigh;\n"
" mov.b32 {alow,ahigh}, %1;\n"
" mov.b32 {blow,bhigh}, %2;\n"
" mov.b32 %0, {ahigh,bhigh};}\n" : "=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)), "r"(__HALF2_TO_CUI(b)));
return val;
}
__CUDA_FP16_DECL__ __half __low2half(const __half2 a)
{
__half ret;
asm("{.reg .f16 low,high;\n"
" mov.b32 {low,high}, %1;\n"
" mov.b16 %0, low;}" : "=h"(__HALF_TO_US(ret)) : "r"(__HALF2_TO_CUI(a)));
return ret;
}
__CUDA_FP16_DECL__ int __hisinf(const __half a)
{
int retval;
if (__HALF_TO_CUS(a) == 0xFC00U) {
retval = -1;
} else if (__HALF_TO_CUS(a) == 0x7C00U) {
retval = 1;
} else {
retval = 0;
}
return retval;
}
__CUDA_FP16_DECL__ __half2 __low2half2(const __half2 a)
{
__half2 val;
asm("{.reg .f16 low,high;\n"
" mov.b32 {low,high}, %1;\n"
" mov.b32 %0, {low,low};}\n" : "=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)));
return val;
}
__CUDA_FP16_DECL__ __half2 __high2half2(const __half2 a)
{
__half2 val;
asm("{.reg .f16 low,high;\n"
" mov.b32 {low,high}, %1;\n"
" mov.b32 %0, {high,high};}\n" : "=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)));
return val;
}
__CUDA_FP16_DECL__ __half __high2half(const __half2 a)
{
__half ret;
asm("{.reg .f16 low,high;\n"
" mov.b32 {low,high}, %1;\n"
" mov.b16 %0, high;}" : "=h"(__HALF_TO_US(ret)) : "r"(__HALF2_TO_CUI(a)));
return ret;
}
__CUDA_FP16_DECL__ __half2 __halves2half2(const __half a, const __half b)
{
__half2 val;
asm("{ mov.b32 %0, {%1,%2};}\n"
: "=r"(__HALF2_TO_UI(val)) : "h"(__HALF_TO_CUS(a)), "h"(__HALF_TO_CUS(b)));
return val;
}
__CUDA_FP16_DECL__ __half2 __half2half2(const __half a)
{
__half2 val;
asm("{ mov.b32 %0, {%1,%1};}\n"
: "=r"(__HALF2_TO_UI(val)) : "h"(__HALF_TO_CUS(a)));
return val;
}
__CUDA_FP16_DECL__ __half2 __lowhigh2highlow(const __half2 a)
{
__half2 val;
asm("{.reg .f16 low,high;\n"
" mov.b32 {low,high}, %1;\n"
" mov.b32 %0, {high,low};}\n" : "=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)));
return val;
}
__CUDA_FP16_DECL__ short int __half_as_short(const __half h)
{
return static_cast<short int>(__HALF_TO_CUS(h));
}
__CUDA_FP16_DECL__ unsigned short int __half_as_ushort(const __half h)
{
return __HALF_TO_CUS(h);
}
__CUDA_FP16_DECL__ __half __short_as_half(const short int i)
{
__half h;
__HALF_TO_US(h) = static_cast<unsigned short int>(i);
return h;
}
__CUDA_FP16_DECL__ __half __ushort_as_half(const unsigned short int i)
{
__half h;
__HALF_TO_US(h) = i;
return h;
}
/******************************************************************************
* __half arithmetic *
******************************************************************************/
__CUDA_FP16_DECL__ __half __hmax(const __half a, const __half b)
{
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 800)
__BINARY_OP_HALF_MACRO(max)
#else
const float fa = __half2float(a);
const float fb = __half2float(b);
float fr;
asm("{max.f32 %0,%1,%2;\n}"
:"=f"(fr) : "f"(fa), "f"(fb));
const __half hr = __float2half(fr);
return hr;
#endif
}
__CUDA_FP16_DECL__ __half __hmin(const __half a, const __half b)
{
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 800)
__BINARY_OP_HALF_MACRO(min)
#else
const float fa = __half2float(a);
const float fb = __half2float(b);
float fr;
asm("{min.f32 %0,%1,%2;\n}"
:"=f"(fr) : "f"(fa), "f"(fb));
const __half hr = __float2half(fr);
return hr;
#endif
}
/******************************************************************************
* __half2 arithmetic *
******************************************************************************/
__CUDA_FP16_DECL__ __half2 __hmax2(const __half2 a, const __half2 b)
{
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 800)
__BINARY_OP_HALF2_MACRO(max)
#else
const float2 fa = __half22float2(a);
const float2 fb = __half22float2(b);
float2 fr;
asm("{max.f32 %0,%1,%2;\n}"
:"=f"(fr.x) : "f"(fa.x), "f"(fb.x));
asm("{max.f32 %0,%1,%2;\n}"
:"=f"(fr.y) : "f"(fa.y), "f"(fb.y));
const __half2 hr = __float22half2_rn(fr);
return hr;
#endif
}
__CUDA_FP16_DECL__ __half2 __hmin2(const __half2 a, const __half2 b)
{
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 800)
__BINARY_OP_HALF2_MACRO(min)
#else
const float2 fa = __half22float2(a);
const float2 fb = __half22float2(b);
float2 fr;
asm("{min.f32 %0,%1,%2;\n}"
:"=f"(fr.x) : "f"(fa.x), "f"(fb.x));
asm("{min.f32 %0,%1,%2;\n}"
:"=f"(fr.y) : "f"(fa.y), "f"(fb.y));
const __half2 hr = __float22half2_rn(fr);
return hr;
#endif
}
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 300) || defined(_NVHPC_CUDA)
/******************************************************************************
* __half, __half2 warp shuffle *
******************************************************************************/
#define __SHUFFLE_HALF2_MACRO(name) /* do */ {\
__half2 r; \
asm volatile ("{" __CUDA_FP16_STRINGIFY(name) " %0,%1,%2,%3;\n}" \
:"=r"(__HALF2_TO_UI(r)): "r"(__HALF2_TO_CUI(var)), "r"(delta), "r"(c)); \
return r; \
} /* while(0) */
#define __SHUFFLE_SYNC_HALF2_MACRO(name) /* do */ {\
__half2 r; \
asm volatile ("{" __CUDA_FP16_STRINGIFY(name) " %0,%1,%2,%3,%4;\n}" \
:"=r"(__HALF2_TO_UI(r)): "r"(__HALF2_TO_CUI(var)), "r"(delta), "r"(c), "r"(mask)); \
return r; \
} /* while(0) */
#if defined(_NVHPC_CUDA) || !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ < 700)
__CUDA_FP16_DECL__ __half2 __shfl(const __half2 var, const int delta, const int width)
{
unsigned int warp_size;
asm("{mov.u32 %0, WARP_SZ;\n}" : "=r"(warp_size));
const unsigned int c = ((warp_size - static_cast<unsigned>(width)) << 8U) | 0x1fU;
__SHUFFLE_HALF2_MACRO(shfl.idx.b32)
}
__CUDA_FP16_DECL__ __half2 __shfl_up(const __half2 var, const unsigned int delta, const int width)
{
unsigned int warp_size;
asm("{mov.u32 %0, WARP_SZ;\n}" : "=r"(warp_size));
const unsigned int c = (warp_size - static_cast<unsigned>(width)) << 8U;
__SHUFFLE_HALF2_MACRO(shfl.up.b32)
}
__CUDA_FP16_DECL__ __half2 __shfl_down(const __half2 var, const unsigned int delta, const int width)
{
unsigned int warp_size;
asm("{mov.u32 %0, WARP_SZ;\n}" : "=r"(warp_size));
const unsigned int c = ((warp_size - static_cast<unsigned>(width)) << 8U) | 0x1fU;
__SHUFFLE_HALF2_MACRO(shfl.down.b32)
}
__CUDA_FP16_DECL__ __half2 __shfl_xor(const __half2 var, const int delta, const int width)
{
unsigned int warp_size;
asm("{mov.u32 %0, WARP_SZ;\n}" : "=r"(warp_size));
const unsigned int c = ((warp_size - static_cast<unsigned>(width)) << 8U) | 0x1fU;
__SHUFFLE_HALF2_MACRO(shfl.bfly.b32)
}
#endif /* defined(_NVHPC_CUDA) || !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ < 700) */
__CUDA_FP16_DECL__ __half2 __shfl_sync(const unsigned mask, const __half2 var, const int delta, const int width)
{
unsigned int warp_size;
asm("{mov.u32 %0, WARP_SZ;\n}" : "=r"(warp_size));
const unsigned int c = ((warp_size - static_cast<unsigned>(width)) << 8U) | 0x1fU;
__SHUFFLE_SYNC_HALF2_MACRO(shfl.sync.idx.b32)
}
__CUDA_FP16_DECL__ __half2 __shfl_up_sync(const unsigned mask, const __half2 var, const unsigned int delta, const int width)
{
unsigned int warp_size;
asm("{mov.u32 %0, WARP_SZ;\n}" : "=r"(warp_size));
const unsigned int c = (warp_size - static_cast<unsigned>(width)) << 8U;
__SHUFFLE_SYNC_HALF2_MACRO(shfl.sync.up.b32)
}
__CUDA_FP16_DECL__ __half2 __shfl_down_sync(const unsigned mask, const __half2 var, const unsigned int delta, const int width)
{
unsigned int warp_size;
asm("{mov.u32 %0, WARP_SZ;\n}" : "=r"(warp_size));
const unsigned int c = ((warp_size - static_cast<unsigned>(width)) << 8U) | 0x1fU;
__SHUFFLE_SYNC_HALF2_MACRO(shfl.sync.down.b32)
}
__CUDA_FP16_DECL__ __half2 __shfl_xor_sync(const unsigned mask, const __half2 var, const int delta, const int width)
{
unsigned int warp_size;
asm("{mov.u32 %0, WARP_SZ;\n}" : "=r"(warp_size));
const unsigned int c = ((warp_size - static_cast<unsigned>(width)) << 8U) | 0x1fU;
__SHUFFLE_SYNC_HALF2_MACRO(shfl.sync.bfly.b32)
}
#undef __SHUFFLE_HALF2_MACRO
#undef __SHUFFLE_SYNC_HALF2_MACRO
#if defined(_NVHPC_CUDA) || !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ < 700)
__CUDA_FP16_DECL__ __half __shfl(const __half var, const int delta, const int width)
{
const __half2 temp1 = __halves2half2(var, var);
const __half2 temp2 = __shfl(temp1, delta, width);
return __low2half(temp2);
}
__CUDA_FP16_DECL__ __half __shfl_up(const __half var, const unsigned int delta, const int width)
{
const __half2 temp1 = __halves2half2(var, var);
const __half2 temp2 = __shfl_up(temp1, delta, width);
return __low2half(temp2);
}
__CUDA_FP16_DECL__ __half __shfl_down(const __half var, const unsigned int delta, const int width)
{
const __half2 temp1 = __halves2half2(var, var);
const __half2 temp2 = __shfl_down(temp1, delta, width);
return __low2half(temp2);
}
__CUDA_FP16_DECL__ __half __shfl_xor(const __half var, const int delta, const int width)
{
const __half2 temp1 = __halves2half2(var, var);
const __half2 temp2 = __shfl_xor(temp1, delta, width);
return __low2half(temp2);
}
#endif /* defined(_NVHPC_CUDA) || !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ < 700) */
__CUDA_FP16_DECL__ __half __shfl_sync(const unsigned mask, const __half var, const int delta, const int width)
{
const __half2 temp1 = __halves2half2(var, var);
const __half2 temp2 = __shfl_sync(mask, temp1, delta, width);
return __low2half(temp2);
}
__CUDA_FP16_DECL__ __half __shfl_up_sync(const unsigned mask, const __half var, const unsigned int delta, const int width)
{
const __half2 temp1 = __halves2half2(var, var);
const __half2 temp2 = __shfl_up_sync(mask, temp1, delta, width);
return __low2half(temp2);
}
__CUDA_FP16_DECL__ __half __shfl_down_sync(const unsigned mask, const __half var, const unsigned int delta, const int width)
{
const __half2 temp1 = __halves2half2(var, var);
const __half2 temp2 = __shfl_down_sync(mask, temp1, delta, width);
return __low2half(temp2);
}
__CUDA_FP16_DECL__ __half __shfl_xor_sync(const unsigned mask, const __half var, const int delta, const int width)
{
const __half2 temp1 = __halves2half2(var, var);
const __half2 temp2 = __shfl_xor_sync(mask, temp1, delta, width);
return __low2half(temp2);
}
#endif /* !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 300) || defined(_NVHPC_CUDA) */
/******************************************************************************
* __half and __half2 __ldg,__ldcg,__ldca,__ldcs *
******************************************************************************/
#if defined(__cplusplus) && (!defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 320) || defined(_NVHPC_CUDA))
#if (defined(_MSC_VER) && defined(_WIN64)) || defined(__LP64__) || defined(__CUDACC_RTC__)
#define __LDG_PTR "l"
#else
#define __LDG_PTR "r"
#endif /*(defined(_MSC_VER) && defined(_WIN64)) || defined(__LP64__) || defined(__CUDACC_RTC__)*/
__CUDA_FP16_DECL__ __half2 __ldg(const __half2 *const ptr)
{
__half2 ret;
asm ("ld.global.nc.b32 %0, [%1];" : "=r"(__HALF2_TO_UI(ret)) : __LDG_PTR(ptr));
return ret;
}
__CUDA_FP16_DECL__ __half __ldg(const __half *const ptr)
{
__half ret;
asm ("ld.global.nc.b16 %0, [%1];" : "=h"(__HALF_TO_US(ret)) : __LDG_PTR(ptr));
return ret;
}
__CUDA_FP16_DECL__ __half2 __ldcg(const __half2 *const ptr)
{
__half2 ret;
asm ("ld.global.cg.b32 %0, [%1];" : "=r"(__HALF2_TO_UI(ret)) : __LDG_PTR(ptr));
return ret;
}
__CUDA_FP16_DECL__ __half __ldcg(const __half *const ptr)
{
__half ret;
asm ("ld.global.cg.b16 %0, [%1];" : "=h"(__HALF_TO_US(ret)) : __LDG_PTR(ptr));
return ret;
}
__CUDA_FP16_DECL__ __half2 __ldca(const __half2 *const ptr)
{
__half2 ret;
asm ("ld.global.ca.b32 %0, [%1];" : "=r"(__HALF2_TO_UI(ret)) : __LDG_PTR(ptr));
return ret;
}
__CUDA_FP16_DECL__ __half __ldca(const __half *const ptr)
{
__half ret;
asm ("ld.global.ca.b16 %0, [%1];" : "=h"(__HALF_TO_US(ret)) : __LDG_PTR(ptr));
return ret;
}
__CUDA_FP16_DECL__ __half2 __ldcs(const __half2 *const ptr)
{
__half2 ret;
asm ("ld.global.cs.b32 %0, [%1];" : "=r"(__HALF2_TO_UI(ret)) : __LDG_PTR(ptr));
return ret;
}
__CUDA_FP16_DECL__ __half __ldcs(const __half *const ptr)
{
__half ret;
asm ("ld.global.cs.b16 %0, [%1];" : "=h"(__HALF_TO_US(ret)) : __LDG_PTR(ptr));
return ret;
}
__CUDA_FP16_DECL__ __half2 __ldlu(const __half2 *const ptr)
{
__half2 ret;
asm ("ld.global.lu.b32 %0, [%1];" : "=r"(__HALF2_TO_UI(ret)) : __LDG_PTR(ptr) : "memory");
return ret;
}
__CUDA_FP16_DECL__ __half __ldlu(const __half *const ptr)
{
__half ret;
asm ("ld.global.lu.b16 %0, [%1];" : "=h"(__HALF_TO_US(ret)) : __LDG_PTR(ptr) : "memory");
return ret;
}
__CUDA_FP16_DECL__ __half2 __ldcv(const __half2 *const ptr)
{
__half2 ret;
asm ("ld.global.cv.b32 %0, [%1];" : "=r"(__HALF2_TO_UI(ret)) : __LDG_PTR(ptr) : "memory");
return ret;
}
__CUDA_FP16_DECL__ __half __ldcv(const __half *const ptr)
{
__half ret;
asm ("ld.global.cv.b16 %0, [%1];" : "=h"(__HALF_TO_US(ret)) : __LDG_PTR(ptr) : "memory");
return ret;
}
__CUDA_FP16_DECL__ void __stwb(__half2 *const ptr, const __half2 value)
{
asm ("st.global.wb.b32 [%0], %1;" :: __LDG_PTR(ptr), "r"(__HALF2_TO_CUI(value)) : "memory");
}
__CUDA_FP16_DECL__ void __stwb(__half *const ptr, const __half value)
{
asm ("st.global.wb.b16 [%0], %1;" :: __LDG_PTR(ptr), "h"(__HALF_TO_CUS(value)) : "memory");
}
__CUDA_FP16_DECL__ void __stcg(__half2 *const ptr, const __half2 value)
{
asm ("st.global.cg.b32 [%0], %1;" :: __LDG_PTR(ptr), "r"(__HALF2_TO_CUI(value)) : "memory");
}
__CUDA_FP16_DECL__ void __stcg(__half *const ptr, const __half value)
{
asm ("st.global.cg.b16 [%0], %1;" :: __LDG_PTR(ptr), "h"(__HALF_TO_CUS(value)) : "memory");
}
__CUDA_FP16_DECL__ void __stcs(__half2 *const ptr, const __half2 value)
{
asm ("st.global.cs.b32 [%0], %1;" :: __LDG_PTR(ptr), "r"(__HALF2_TO_CUI(value)) : "memory");
}
__CUDA_FP16_DECL__ void __stcs(__half *const ptr, const __half value)
{
asm ("st.global.cs.b16 [%0], %1;" :: __LDG_PTR(ptr), "h"(__HALF_TO_CUS(value)) : "memory");
}
__CUDA_FP16_DECL__ void __stwt(__half2 *const ptr, const __half2 value)
{
asm ("st.global.wt.b32 [%0], %1;" :: __LDG_PTR(ptr), "r"(__HALF2_TO_CUI(value)) : "memory");
}
__CUDA_FP16_DECL__ void __stwt(__half *const ptr, const __half value)
{
asm ("st.global.wt.b16 [%0], %1;" :: __LDG_PTR(ptr), "h"(__HALF_TO_CUS(value)) : "memory");
}
#undef __LDG_PTR
#endif /* defined(__cplusplus) && (!defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 320) || defined(_NVHPC_CUDA)) */
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530) || defined(_NVHPC_CUDA)
/******************************************************************************
* __half2 comparison *
******************************************************************************/
#define __COMPARISON_OP_HALF2_MACRO(name) /* do */ {\
__half2 val; \
asm( "{ " __CUDA_FP16_STRINGIFY(name) ".f16x2.f16x2 %0,%1,%2;\n}" \
:"=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)),"r"(__HALF2_TO_CUI(b))); \
return val; \
} /* while(0) */
__CUDA_FP16_DECL__ __half2 __heq2(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO(set.eq)
}
__CUDA_FP16_DECL__ __half2 __hne2(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO(set.ne)
}
__CUDA_FP16_DECL__ __half2 __hle2(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO(set.le)
}
__CUDA_FP16_DECL__ __half2 __hge2(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO(set.ge)
}
__CUDA_FP16_DECL__ __half2 __hlt2(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO(set.lt)
}
__CUDA_FP16_DECL__ __half2 __hgt2(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO(set.gt)
}
__CUDA_FP16_DECL__ __half2 __hequ2(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO(set.equ)
}
__CUDA_FP16_DECL__ __half2 __hneu2(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO(set.neu)
}
__CUDA_FP16_DECL__ __half2 __hleu2(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO(set.leu)
}
__CUDA_FP16_DECL__ __half2 __hgeu2(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO(set.geu)
}
__CUDA_FP16_DECL__ __half2 __hltu2(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO(set.ltu)
}
__CUDA_FP16_DECL__ __half2 __hgtu2(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO(set.gtu)
}
#undef __COMPARISON_OP_HALF2_MACRO
/******************************************************************************
* __half2 comparison with mask output *
******************************************************************************/
#define __COMPARISON_OP_HALF2_MACRO_MASK(name) /* do */ {\
unsigned val; \
asm( "{ " __CUDA_FP16_STRINGIFY(name) ".u32.f16x2 %0,%1,%2;\n}" \
:"=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)),"r"(__HALF2_TO_CUI(b))); \
return val; \
} /* while(0) */
__CUDA_FP16_DECL__ unsigned __heq2_mask(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO_MASK(set.eq)
}
__CUDA_FP16_DECL__ unsigned __hne2_mask(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO_MASK(set.ne)
}
__CUDA_FP16_DECL__ unsigned __hle2_mask(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO_MASK(set.le)
}
__CUDA_FP16_DECL__ unsigned __hge2_mask(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO_MASK(set.ge)
}
__CUDA_FP16_DECL__ unsigned __hlt2_mask(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO_MASK(set.lt)
}
__CUDA_FP16_DECL__ unsigned __hgt2_mask(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO_MASK(set.gt)
}
__CUDA_FP16_DECL__ unsigned __hequ2_mask(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO_MASK(set.equ)
}
__CUDA_FP16_DECL__ unsigned __hneu2_mask(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO_MASK(set.neu)
}
__CUDA_FP16_DECL__ unsigned __hleu2_mask(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO_MASK(set.leu)
}
__CUDA_FP16_DECL__ unsigned __hgeu2_mask(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO_MASK(set.geu)
}
__CUDA_FP16_DECL__ unsigned __hltu2_mask(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO_MASK(set.ltu)
}
__CUDA_FP16_DECL__ unsigned __hgtu2_mask(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO_MASK(set.gtu)
}
#undef __COMPARISON_OP_HALF2_MACRO_MASK
#define __BOOL_COMPARISON_OP_HALF2_MACRO(name) /* do */ {\
__half2 val; \
bool retval; \
asm( "{ " __CUDA_FP16_STRINGIFY(name) ".f16x2.f16x2 %0,%1,%2;\n}" \
:"=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)),"r"(__HALF2_TO_CUI(b))); \
if (__HALF2_TO_CUI(val) == 0x3C003C00U) {\
retval = true; \
} else { \
retval = false; \
}\
return retval;\
} /* while(0) */
__CUDA_FP16_DECL__ bool __hbeq2(const __half2 a, const __half2 b)
{
__BOOL_COMPARISON_OP_HALF2_MACRO(set.eq)
}
__CUDA_FP16_DECL__ bool __hbne2(const __half2 a, const __half2 b)
{
__BOOL_COMPARISON_OP_HALF2_MACRO(set.ne)
}
__CUDA_FP16_DECL__ bool __hble2(const __half2 a, const __half2 b)
{
__BOOL_COMPARISON_OP_HALF2_MACRO(set.le)
}
__CUDA_FP16_DECL__ bool __hbge2(const __half2 a, const __half2 b)
{
__BOOL_COMPARISON_OP_HALF2_MACRO(set.ge)
}
__CUDA_FP16_DECL__ bool __hblt2(const __half2 a, const __half2 b)
{
__BOOL_COMPARISON_OP_HALF2_MACRO(set.lt)
}
__CUDA_FP16_DECL__ bool __hbgt2(const __half2 a, const __half2 b)
{
__BOOL_COMPARISON_OP_HALF2_MACRO(set.gt)
}
__CUDA_FP16_DECL__ bool __hbequ2(const __half2 a, const __half2 b)
{
__BOOL_COMPARISON_OP_HALF2_MACRO(set.equ)
}
__CUDA_FP16_DECL__ bool __hbneu2(const __half2 a, const __half2 b)
{
__BOOL_COMPARISON_OP_HALF2_MACRO(set.neu)
}
__CUDA_FP16_DECL__ bool __hbleu2(const __half2 a, const __half2 b)
{
__BOOL_COMPARISON_OP_HALF2_MACRO(set.leu)
}
__CUDA_FP16_DECL__ bool __hbgeu2(const __half2 a, const __half2 b)
{
__BOOL_COMPARISON_OP_HALF2_MACRO(set.geu)
}
__CUDA_FP16_DECL__ bool __hbltu2(const __half2 a, const __half2 b)
{
__BOOL_COMPARISON_OP_HALF2_MACRO(set.ltu)
}
__CUDA_FP16_DECL__ bool __hbgtu2(const __half2 a, const __half2 b)
{
__BOOL_COMPARISON_OP_HALF2_MACRO(set.gtu)
}
#undef __BOOL_COMPARISON_OP_HALF2_MACRO
/******************************************************************************
* __half comparison *
******************************************************************************/
#define __COMPARISON_OP_HALF_MACRO(name) /* do */ {\
unsigned short val; \
asm( "{ .reg .pred __$temp3;\n" \
" setp." __CUDA_FP16_STRINGIFY(name) ".f16 __$temp3, %1, %2;\n" \
" selp.u16 %0, 1, 0, __$temp3;}" \
: "=h"(val) : "h"(__HALF_TO_CUS(a)), "h"(__HALF_TO_CUS(b))); \
return (val != 0U) ? true : false; \
} /* while(0) */
__CUDA_FP16_DECL__ bool __heq(const __half a, const __half b)
{
__COMPARISON_OP_HALF_MACRO(eq)
}
__CUDA_FP16_DECL__ bool __hne(const __half a, const __half b)
{
__COMPARISON_OP_HALF_MACRO(ne)
}
__CUDA_FP16_DECL__ bool __hle(const __half a, const __half b)
{
__COMPARISON_OP_HALF_MACRO(le)
}
__CUDA_FP16_DECL__ bool __hge(const __half a, const __half b)
{
__COMPARISON_OP_HALF_MACRO(ge)
}
__CUDA_FP16_DECL__ bool __hlt(const __half a, const __half b)
{
__COMPARISON_OP_HALF_MACRO(lt)
}
__CUDA_FP16_DECL__ bool __hgt(const __half a, const __half b)
{
__COMPARISON_OP_HALF_MACRO(gt)
}
__CUDA_FP16_DECL__ bool __hequ(const __half a, const __half b)
{
__COMPARISON_OP_HALF_MACRO(equ)
}
__CUDA_FP16_DECL__ bool __hneu(const __half a, const __half b)
{
__COMPARISON_OP_HALF_MACRO(neu)
}
__CUDA_FP16_DECL__ bool __hleu(const __half a, const __half b)
{
__COMPARISON_OP_HALF_MACRO(leu)
}
__CUDA_FP16_DECL__ bool __hgeu(const __half a, const __half b)
{
__COMPARISON_OP_HALF_MACRO(geu)
}
__CUDA_FP16_DECL__ bool __hltu(const __half a, const __half b)
{
__COMPARISON_OP_HALF_MACRO(ltu)
}
__CUDA_FP16_DECL__ bool __hgtu(const __half a, const __half b)
{
__COMPARISON_OP_HALF_MACRO(gtu)
}
#undef __COMPARISON_OP_HALF_MACRO
/******************************************************************************
* __half2 arithmetic *
******************************************************************************/
__CUDA_FP16_DECL__ __half2 __hadd2(const __half2 a, const __half2 b)
{
__BINARY_OP_HALF2_MACRO(add)
}
__CUDA_FP16_DECL__ __half2 __hsub2(const __half2 a, const __half2 b)
{
__BINARY_OP_HALF2_MACRO(sub)
}
__CUDA_FP16_DECL__ __half2 __hmul2(const __half2 a, const __half2 b)
{
__BINARY_OP_HALF2_MACRO(mul)
}
__CUDA_FP16_DECL__ __half2 __hadd2_sat(const __half2 a, const __half2 b)
{
__BINARY_OP_HALF2_MACRO(add.sat)
}
__CUDA_FP16_DECL__ __half2 __hsub2_sat(const __half2 a, const __half2 b)
{
__BINARY_OP_HALF2_MACRO(sub.sat)
}
__CUDA_FP16_DECL__ __half2 __hmul2_sat(const __half2 a, const __half2 b)
{
__BINARY_OP_HALF2_MACRO(mul.sat)
}
__CUDA_FP16_DECL__ __half2 __hadd2_rn(const __half2 a, const __half2 b)
{
__BINARY_OP_HALF2_MACRO(add.rn)
}
__CUDA_FP16_DECL__ __half2 __hsub2_rn(const __half2 a, const __half2 b)
{
__BINARY_OP_HALF2_MACRO(sub.rn)
}
__CUDA_FP16_DECL__ __half2 __hmul2_rn(const __half2 a, const __half2 b)
{
__BINARY_OP_HALF2_MACRO(mul.rn)
}
__CUDA_FP16_DECL__ __half2 __hfma2(const __half2 a, const __half2 b, const __half2 c)
{
__TERNARY_OP_HALF2_MACRO(fma.rn)
}
__CUDA_FP16_DECL__ __half2 __hfma2_sat(const __half2 a, const __half2 b, const __half2 c)
{
__TERNARY_OP_HALF2_MACRO(fma.rn.sat)
}
__CUDA_FP16_DECL__ __half2 __h2div(const __half2 a, const __half2 b) {
__half ha = __low2half(a);
__half hb = __low2half(b);
const __half v1 = __hdiv(ha, hb);
ha = __high2half(a);
hb = __high2half(b);
const __half v2 = __hdiv(ha, hb);
return __halves2half2(v1, v2);
}
/******************************************************************************
* __half arithmetic *
******************************************************************************/
__CUDA_FP16_DECL__ __half __hadd(const __half a, const __half b)
{
__BINARY_OP_HALF_MACRO(add)
}
__CUDA_FP16_DECL__ __half __hsub(const __half a, const __half b)
{
__BINARY_OP_HALF_MACRO(sub)
}
__CUDA_FP16_DECL__ __half __hmul(const __half a, const __half b)
{
__BINARY_OP_HALF_MACRO(mul)
}
__CUDA_FP16_DECL__ __half __hadd_sat(const __half a, const __half b)
{
__BINARY_OP_HALF_MACRO(add.sat)
}
__CUDA_FP16_DECL__ __half __hsub_sat(const __half a, const __half b)
{
__BINARY_OP_HALF_MACRO(sub.sat)
}
__CUDA_FP16_DECL__ __half __hmul_sat(const __half a, const __half b)
{
__BINARY_OP_HALF_MACRO(mul.sat)
}
__CUDA_FP16_DECL__ __half __hadd_rn(const __half a, const __half b)
{
__BINARY_OP_HALF_MACRO(add.rn)
}
__CUDA_FP16_DECL__ __half __hsub_rn(const __half a, const __half b)
{
__BINARY_OP_HALF_MACRO(sub.rn)
}
__CUDA_FP16_DECL__ __half __hmul_rn(const __half a, const __half b)
{
__BINARY_OP_HALF_MACRO(mul.rn)
}
__CUDA_FP16_DECL__ __half __hfma(const __half a, const __half b, const __half c)
{
__TERNARY_OP_HALF_MACRO(fma.rn)
}
__CUDA_FP16_DECL__ __half __hfma_sat(const __half a, const __half b, const __half c)
{
__TERNARY_OP_HALF_MACRO(fma.rn.sat)
}
__CUDA_FP16_DECL__ __half __hdiv(const __half a, const __half b) {
__half v;
__half abs;
__half den;
__HALF_TO_US(den) = 0x008FU;
float rcp;
const float fa = __half2float(a);
const float fb = __half2float(b);
asm("{rcp.approx.ftz.f32 %0, %1;\n}" :"=f"(rcp) : "f"(fb));
float fv = rcp * fa;
v = __float2half(fv);
abs = __habs(v);
if (__hlt(abs, den) && __hlt(__float2half(0.0f), abs)) {
const float err = __fmaf_rn(-fb, fv, fa);
fv = __fmaf_rn(rcp, err, fv);
v = __float2half(fv);
}
return v;
}
/******************************************************************************
* __half2 functions *
******************************************************************************/
#define __SPEC_CASE2(i,r, spc, ulp) \
"{.reg.b32 spc, ulp, p;\n"\
" mov.b32 spc," __CUDA_FP16_STRINGIFY(spc) ";\n"\
" mov.b32 ulp," __CUDA_FP16_STRINGIFY(ulp) ";\n"\
" set.eq.f16x2.f16x2 p," __CUDA_FP16_STRINGIFY(i) ", spc;\n"\
" fma.rn.f16x2 " __CUDA_FP16_STRINGIFY(r) ",p,ulp," __CUDA_FP16_STRINGIFY(r) ";\n}\n"
#define __SPEC_CASE(i,r, spc, ulp) \
"{.reg.b16 spc, ulp, p;\n"\
" mov.b16 spc," __CUDA_FP16_STRINGIFY(spc) ";\n"\
" mov.b16 ulp," __CUDA_FP16_STRINGIFY(ulp) ";\n"\
" set.eq.f16.f16 p," __CUDA_FP16_STRINGIFY(i) ", spc;\n"\
" fma.rn.f16 " __CUDA_FP16_STRINGIFY(r) ",p,ulp," __CUDA_FP16_STRINGIFY(r) ";\n}\n"
#define __APPROX_FCAST(fun) /* do */ {\
__half val;\
asm("{.reg.b32 f; \n"\
" .reg.b16 r; \n"\
" mov.b16 r,%1; \n"\
" cvt.f32.f16 f,r; \n"\
" " __CUDA_FP16_STRINGIFY(fun) ".approx.ftz.f32 f,f; \n"\
" cvt.rn.f16.f32 r,f; \n"\
" mov.b16 %0,r; \n"\
"}": "=h"(__HALF_TO_US(val)) : "h"(__HALF_TO_CUS(a)));\
return val;\
} /* while(0) */
#define __APPROX_FCAST2(fun) /* do */ {\
__half2 val;\
asm("{.reg.b16 hl, hu; \n"\
" .reg.b32 fl, fu; \n"\
" mov.b32 {hl, hu}, %1; \n"\
" cvt.f32.f16 fl, hl; \n"\
" cvt.f32.f16 fu, hu; \n"\
" " __CUDA_FP16_STRINGIFY(fun) ".approx.ftz.f32 fl, fl; \n"\
" " __CUDA_FP16_STRINGIFY(fun) ".approx.ftz.f32 fu, fu; \n"\
" cvt.rn.f16.f32 hl, fl; \n"\
" cvt.rn.f16.f32 hu, fu; \n"\
" mov.b32 %0, {hl, hu}; \n"\
"}":"=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a))); \
return val;\
} /* while(0) */
static __device__ __forceinline__ float __float_simpl_sinf(float a);
static __device__ __forceinline__ float __float_simpl_cosf(float a);
__CUDA_FP16_DECL__ __half hsin(const __half a) {
const float sl = __float_simpl_sinf(__half2float(a));
__half r = __float2half_rn(sl);
asm("{\n\t"
" .reg.b16 i,r,t; \n\t"
" mov.b16 r, %0; \n\t"
" mov.b16 i, %1; \n\t"
" and.b16 t, r, 0x8000U; \n\t"
" abs.f16 r, r; \n\t"
" abs.f16 i, i; \n\t"
__SPEC_CASE(i, r, 0X32B3U, 0x0800U)
__SPEC_CASE(i, r, 0X5CB0U, 0x9000U)
" or.b16 r,r,t; \n\t"
" mov.b16 %0, r; \n"
"}\n" : "+h"(__HALF_TO_US(r)) : "h"(__HALF_TO_CUS(a)));
return r;
}
__CUDA_FP16_DECL__ __half2 h2sin(const __half2 a) {
const float sl = __float_simpl_sinf(__half2float(a.x));
const float sh = __float_simpl_sinf(__half2float(a.y));
__half2 r = __floats2half2_rn(sl, sh);
asm("{\n\t"
" .reg.b32 i,r,t; \n\t"
" mov.b32 r, %0; \n\t"
" mov.b32 i, %1; \n\t"
" and.b32 t, r, 0x80008000U; \n\t"
" abs.f16x2 r, r; \n\t"
" abs.f16x2 i, i; \n\t"
__SPEC_CASE2(i, r, 0X32B332B3U, 0x08000800U)
__SPEC_CASE2(i, r, 0X5CB05CB0U, 0x90009000U)
" or.b32 r, r, t; \n\t"
" mov.b32 %0, r; \n"
"}\n" : "+r"(__HALF2_TO_UI(r)) : "r"(__HALF2_TO_CUI(a)));
return r;
}
__CUDA_FP16_DECL__ __half hcos(const __half a) {
const float cl = __float_simpl_cosf(__half2float(a));
__half r = __float2half_rn(cl);
asm("{\n\t"
" .reg.b16 i,r; \n\t"
" mov.b16 r, %0; \n\t"
" mov.b16 i, %1; \n\t"
" abs.f16 i, i; \n\t"
__SPEC_CASE(i, r, 0X2B7CU, 0x1000U)
" mov.b16 %0, r; \n"
"}\n" : "+h"(__HALF_TO_US(r)) : "h"(__HALF_TO_CUS(a)));
return r;
}
__CUDA_FP16_DECL__ __half2 h2cos(const __half2 a) {
const float cl = __float_simpl_cosf(__half2float(a.x));
const float ch = __float_simpl_cosf(__half2float(a.y));
__half2 r = __floats2half2_rn(cl, ch);
asm("{\n\t"
" .reg.b32 i,r; \n\t"
" mov.b32 r, %0; \n\t"
" mov.b32 i, %1; \n\t"
" abs.f16x2 i, i; \n\t"
__SPEC_CASE2(i, r, 0X2B7C2B7CU, 0x10001000U)
" mov.b32 %0, r; \n"
"}\n" : "+r"(__HALF2_TO_UI(r)) : "r"(__HALF2_TO_CUI(a)));
return r;
}
static __device__ __forceinline__ float __internal_trig_reduction_kernel(const float a, unsigned int *const quadrant)
{
const float ar = __fmaf_rn(a, 0.636619772F, 12582912.0F);
const unsigned q = __float_as_uint(ar);
const float j = __fsub_rn(ar, 12582912.0F);
float t = __fmaf_rn(j, -1.5707962512969971e+000F, a);
t = __fmaf_rn(j, -7.5497894158615964e-008F, t);
*quadrant = q;
return t;
}
static __device__ __forceinline__ float __internal_sin_cos_kernel(const float x, const unsigned int i)
{
float z;
const float x2 = x*x;
float a8;
float a6;
float a4;
float a2;
float a1;
float a0;
if ((i & 1U) != 0U) {
// cos
a8 = 2.44331571e-5F;
a6 = -1.38873163e-3F;
a4 = 4.16666457e-2F;
a2 = -5.00000000e-1F;
a1 = x2;
a0 = 1.0F;
}
else {
// sin
a8 = -1.95152959e-4F;
a6 = 8.33216087e-3F;
a4 = -1.66666546e-1F;
a2 = 0.0F;
a1 = x;
a0 = x;
}
z = __fmaf_rn(a8, x2, a6);
z = __fmaf_rn(z, x2, a4);
z = __fmaf_rn(z, x2, a2);
z = __fmaf_rn(z, a1, a0);
if ((i & 2U) != 0U) {
z = -z;
}
return z;
}
static __device__ __forceinline__ float __float_simpl_sinf(float a)
{
float z;
unsigned i;
a = __internal_trig_reduction_kernel(a, &i);
z = __internal_sin_cos_kernel(a, i);
return z;
}
static __device__ __forceinline__ float __float_simpl_cosf(float a)
{
float z;
unsigned i;
a = __internal_trig_reduction_kernel(a, &i);
z = __internal_sin_cos_kernel(a, (i & 0x3U) + 1U);
return z;
}
__CUDA_FP16_DECL__ __half hexp(const __half a) {
__half val;
asm("{.reg.b32 f, C, nZ; \n"
" .reg.b16 h,r; \n"
" mov.b16 h,%1; \n"
" cvt.f32.f16 f,h; \n"
" mov.b32 C, 0x3fb8aa3bU; \n"
" mov.b32 nZ, 0x80000000U;\n"
" fma.rn.f32 f,f,C,nZ; \n"
" ex2.approx.ftz.f32 f,f; \n"
" cvt.rn.f16.f32 r,f; \n"
__SPEC_CASE(h, r, 0X1F79U, 0x9400U)
__SPEC_CASE(h, r, 0X25CFU, 0x9400U)
__SPEC_CASE(h, r, 0XC13BU, 0x0400U)
__SPEC_CASE(h, r, 0XC1EFU, 0x0200U)
" mov.b16 %0,r; \n"
"}": "=h"(__HALF_TO_US(val)) : "h"(__HALF_TO_CUS(a)));
return val;
}
__CUDA_FP16_DECL__ __half2 h2exp(const __half2 a) {
__half2 val;
asm("{.reg.b16 hl, hu; \n"
" .reg.b32 h,r,fl,fu,C,nZ; \n"
" mov.b32 {hl, hu}, %1; \n"
" mov.b32 h, %1; \n"
" cvt.f32.f16 fl, hl; \n"
" cvt.f32.f16 fu, hu; \n"
" mov.b32 C, 0x3fb8aa3bU; \n"
" mov.b32 nZ, 0x80000000U;\n"
" fma.rn.f32 fl,fl,C,nZ; \n"
" fma.rn.f32 fu,fu,C,nZ; \n"
" ex2.approx.ftz.f32 fl, fl; \n"
" ex2.approx.ftz.f32 fu, fu; \n"
" cvt.rn.f16.f32 hl, fl; \n"
" cvt.rn.f16.f32 hu, fu; \n"
" mov.b32 r, {hl, hu}; \n"
__SPEC_CASE2(h, r, 0X1F791F79U, 0x94009400U)
__SPEC_CASE2(h, r, 0X25CF25CFU, 0x94009400U)
__SPEC_CASE2(h, r, 0XC13BC13BU, 0x04000400U)
__SPEC_CASE2(h, r, 0XC1EFC1EFU, 0x02000200U)
" mov.b32 %0, r; \n"
"}":"=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)));
return val;
}
__CUDA_FP16_DECL__ __half hexp2(const __half a) {
__half val;
asm("{.reg.b32 f, ULP; \n"
" .reg.b16 r; \n"
" mov.b16 r,%1; \n"
" cvt.f32.f16 f,r; \n"
" ex2.approx.ftz.f32 f,f; \n"
" mov.b32 ULP, 0x33800000U;\n"
" fma.rn.f32 f,f,ULP,f; \n"
" cvt.rn.f16.f32 r,f; \n"
" mov.b16 %0,r; \n"
"}": "=h"(__HALF_TO_US(val)) : "h"(__HALF_TO_CUS(a)));
return val;
}
__CUDA_FP16_DECL__ __half2 h2exp2(const __half2 a) {
__half2 val;
asm("{.reg.b16 hl, hu; \n"
" .reg.b32 fl, fu, ULP; \n"
" mov.b32 {hl, hu}, %1; \n"
" cvt.f32.f16 fl, hl; \n"
" cvt.f32.f16 fu, hu; \n"
" ex2.approx.ftz.f32 fl, fl; \n"
" ex2.approx.ftz.f32 fu, fu; \n"
" mov.b32 ULP, 0x33800000U;\n"
" fma.rn.f32 fl,fl,ULP,fl; \n"
" fma.rn.f32 fu,fu,ULP,fu; \n"
" cvt.rn.f16.f32 hl, fl; \n"
" cvt.rn.f16.f32 hu, fu; \n"
" mov.b32 %0, {hl, hu}; \n"
"}":"=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)));
return val;
}
__CUDA_FP16_DECL__ __half hexp10(const __half a) {
__half val;
asm("{.reg.b16 h,r; \n"
" .reg.b32 f, C, nZ; \n"
" mov.b16 h, %1; \n"
" cvt.f32.f16 f, h; \n"
" mov.b32 C, 0x40549A78U; \n"
" mov.b32 nZ, 0x80000000U;\n"
" fma.rn.f32 f,f,C,nZ; \n"
" ex2.approx.ftz.f32 f, f; \n"
" cvt.rn.f16.f32 r, f; \n"
__SPEC_CASE(h, r, 0x34DEU, 0x9800U)
__SPEC_CASE(h, r, 0x9766U, 0x9000U)
__SPEC_CASE(h, r, 0x9972U, 0x1000U)
__SPEC_CASE(h, r, 0xA5C4U, 0x1000U)
__SPEC_CASE(h, r, 0xBF0AU, 0x8100U)
" mov.b16 %0, r; \n"
"}":"=h"(__HALF_TO_US(val)) : "h"(__HALF_TO_CUS(a)));
return val;
}
__CUDA_FP16_DECL__ __half2 h2exp10(const __half2 a) {
__half2 val;
asm("{.reg.b16 hl, hu; \n"
" .reg.b32 h,r,fl,fu,C,nZ; \n"
" mov.b32 {hl, hu}, %1; \n"
" mov.b32 h, %1; \n"
" cvt.f32.f16 fl, hl; \n"
" cvt.f32.f16 fu, hu; \n"
" mov.b32 C, 0x40549A78U; \n"
" mov.b32 nZ, 0x80000000U;\n"
" fma.rn.f32 fl,fl,C,nZ; \n"
" fma.rn.f32 fu,fu,C,nZ; \n"
" ex2.approx.ftz.f32 fl, fl; \n"
" ex2.approx.ftz.f32 fu, fu; \n"
" cvt.rn.f16.f32 hl, fl; \n"
" cvt.rn.f16.f32 hu, fu; \n"
" mov.b32 r, {hl, hu}; \n"
__SPEC_CASE2(h, r, 0x34DE34DEU, 0x98009800U)
__SPEC_CASE2(h, r, 0x97669766U, 0x90009000U)
__SPEC_CASE2(h, r, 0x99729972U, 0x10001000U)
__SPEC_CASE2(h, r, 0xA5C4A5C4U, 0x10001000U)
__SPEC_CASE2(h, r, 0xBF0ABF0AU, 0x81008100U)
" mov.b32 %0, r; \n"
"}":"=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)));
return val;
}
__CUDA_FP16_DECL__ __half hlog2(const __half a) {
__half val;
asm("{.reg.b16 h, r; \n"
" .reg.b32 f; \n"
" mov.b16 h, %1; \n"
" cvt.f32.f16 f, h; \n"
" lg2.approx.ftz.f32 f, f; \n"
" cvt.rn.f16.f32 r, f; \n"
__SPEC_CASE(r, r, 0xA2E2U, 0x8080U)
__SPEC_CASE(r, r, 0xBF46U, 0x9400U)
" mov.b16 %0, r; \n"
"}":"=h"(__HALF_TO_US(val)) : "h"(__HALF_TO_CUS(a)));
return val;
}
__CUDA_FP16_DECL__ __half2 h2log2(const __half2 a) {
__half2 val;
asm("{.reg.b16 hl, hu; \n"
" .reg.b32 fl, fu, r, p; \n"
" mov.b32 {hl, hu}, %1; \n"
" cvt.f32.f16 fl, hl; \n"
" cvt.f32.f16 fu, hu; \n"
" lg2.approx.ftz.f32 fl, fl; \n"
" lg2.approx.ftz.f32 fu, fu; \n"
" cvt.rn.f16.f32 hl, fl; \n"
" cvt.rn.f16.f32 hu, fu; \n"
" mov.b32 r, {hl, hu}; \n"
__SPEC_CASE2(r, r, 0xA2E2A2E2U, 0x80808080U)
__SPEC_CASE2(r, r, 0xBF46BF46U, 0x94009400U)
" mov.b32 %0, r; \n"
"}":"=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)));
return val;
}
__CUDA_FP16_DECL__ __half hlog(const __half a) {
__half val;
asm("{.reg.b32 f, C; \n"
" .reg.b16 r,h; \n"
" mov.b16 h,%1; \n"
" cvt.f32.f16 f,h; \n"
" lg2.approx.ftz.f32 f,f; \n"
" mov.b32 C, 0x3f317218U; \n"
" mul.f32 f,f,C; \n"
" cvt.rn.f16.f32 r,f; \n"
__SPEC_CASE(h, r, 0X160DU, 0x9C00U)
__SPEC_CASE(h, r, 0X3BFEU, 0x8010U)
__SPEC_CASE(h, r, 0X3C0BU, 0x8080U)
__SPEC_CASE(h, r, 0X6051U, 0x1C00U)
" mov.b16 %0,r; \n"
"}": "=h"(__HALF_TO_US(val)) : "h"(__HALF_TO_CUS(a)));
return val;
}
__CUDA_FP16_DECL__ __half2 h2log(const __half2 a) {
__half2 val;
asm("{.reg.b16 hl, hu; \n"
" .reg.b32 r, fl, fu, C, h; \n"
" mov.b32 {hl, hu}, %1; \n"
" mov.b32 h, %1; \n"
" cvt.f32.f16 fl, hl; \n"
" cvt.f32.f16 fu, hu; \n"
" lg2.approx.ftz.f32 fl, fl; \n"
" lg2.approx.ftz.f32 fu, fu; \n"
" mov.b32 C, 0x3f317218U; \n"
" mul.f32 fl,fl,C; \n"
" mul.f32 fu,fu,C; \n"
" cvt.rn.f16.f32 hl, fl; \n"
" cvt.rn.f16.f32 hu, fu; \n"
" mov.b32 r, {hl, hu}; \n"
__SPEC_CASE2(h, r, 0X160D160DU, 0x9C009C00U)
__SPEC_CASE2(h, r, 0X3BFE3BFEU, 0x80108010U)
__SPEC_CASE2(h, r, 0X3C0B3C0BU, 0x80808080U)
__SPEC_CASE2(h, r, 0X60516051U, 0x1C001C00U)
" mov.b32 %0, r; \n"
"}":"=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)));
return val;
}
__CUDA_FP16_DECL__ __half hlog10(const __half a) {
__half val;
asm("{.reg.b16 h, r; \n"
" .reg.b32 f, C; \n"
" mov.b16 h, %1; \n"
" cvt.f32.f16 f, h; \n"
" lg2.approx.ftz.f32 f, f; \n"
" mov.b32 C, 0x3E9A209BU; \n"
" mul.f32 f,f,C; \n"
" cvt.rn.f16.f32 r, f; \n"
__SPEC_CASE(h, r, 0x338FU, 0x1000U)
__SPEC_CASE(h, r, 0x33F8U, 0x9000U)
__SPEC_CASE(h, r, 0x57E1U, 0x9800U)
__SPEC_CASE(h, r, 0x719DU, 0x9C00U)
" mov.b16 %0, r; \n"
"}":"=h"(__HALF_TO_US(val)) : "h"(__HALF_TO_CUS(a)));
return val;
}
__CUDA_FP16_DECL__ __half2 h2log10(const __half2 a) {
__half2 val;
asm("{.reg.b16 hl, hu; \n"
" .reg.b32 r, fl, fu, C, h; \n"
" mov.b32 {hl, hu}, %1; \n"
" mov.b32 h, %1; \n"
" cvt.f32.f16 fl, hl; \n"
" cvt.f32.f16 fu, hu; \n"
" lg2.approx.ftz.f32 fl, fl; \n"
" lg2.approx.ftz.f32 fu, fu; \n"
" mov.b32 C, 0x3E9A209BU; \n"
" mul.f32 fl,fl,C; \n"
" mul.f32 fu,fu,C; \n"
" cvt.rn.f16.f32 hl, fl; \n"
" cvt.rn.f16.f32 hu, fu; \n"
" mov.b32 r, {hl, hu}; \n"
__SPEC_CASE2(h, r, 0x338F338FU, 0x10001000U)
__SPEC_CASE2(h, r, 0x33F833F8U, 0x90009000U)
__SPEC_CASE2(h, r, 0x57E157E1U, 0x98009800U)
__SPEC_CASE2(h, r, 0x719D719DU, 0x9C009C00U)
" mov.b32 %0, r; \n"
"}":"=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)));
return val;
}
#undef __SPEC_CASE2
#undef __SPEC_CASE
__CUDA_FP16_DECL__ __half2 h2rcp(const __half2 a) {
__APPROX_FCAST2(rcp)
}
__CUDA_FP16_DECL__ __half hrcp(const __half a) {
__APPROX_FCAST(rcp)
}
__CUDA_FP16_DECL__ __half2 h2rsqrt(const __half2 a) {
__APPROX_FCAST2(rsqrt)
}
__CUDA_FP16_DECL__ __half hrsqrt(const __half a) {
__APPROX_FCAST(rsqrt)
}
__CUDA_FP16_DECL__ __half2 h2sqrt(const __half2 a) {
__APPROX_FCAST2(sqrt)
}
__CUDA_FP16_DECL__ __half hsqrt(const __half a) {
__APPROX_FCAST(sqrt)
}
#undef __APPROX_FCAST
#undef __APPROX_FCAST2
__CUDA_FP16_DECL__ __half2 __hisnan2(const __half2 a)
{
__half2 r;
asm("{set.nan.f16x2.f16x2 %0,%1,%2;\n}"
:"=r"(__HALF2_TO_UI(r)) : "r"(__HALF2_TO_CUI(a)), "r"(__HALF2_TO_CUI(a)));
return r;
}
__CUDA_FP16_DECL__ bool __hisnan(const __half a)
{
__half r;
asm("{set.nan.f16.f16 %0,%1,%2;\n}"
:"=h"(__HALF_TO_US(r)) : "h"(__HALF_TO_CUS(a)), "h"(__HALF_TO_CUS(a)));
return __HALF_TO_CUS(r) != 0U;
}
__CUDA_FP16_DECL__ __half2 __hneg2(const __half2 a)
{
__half2 r;
asm("{neg.f16x2 %0,%1;\n}"
:"=r"(__HALF2_TO_UI(r)) : "r"(__HALF2_TO_CUI(a)));
return r;
}
__CUDA_FP16_DECL__ __half __hneg(const __half a)
{
__half r;
asm("{neg.f16 %0,%1;\n}"
:"=h"(__HALF_TO_US(r)) : "h"(__HALF_TO_CUS(a)));
return r;
}
__CUDA_FP16_DECL__ __half2 __habs2(const __half2 a)
{
__half2 r;
asm("{abs.f16x2 %0,%1;\n}"
:"=r"(__HALF2_TO_UI(r)) : "r"(__HALF2_TO_CUI(a)));
return r;
}
__CUDA_FP16_DECL__ __half __habs(const __half a)
{
__half r;
asm("{abs.f16 %0,%1;\n}"
:"=h"(__HALF_TO_US(r)) : "h"(__HALF_TO_CUS(a)));
return r;
}
__CUDA_FP16_DECL__ __half2 __hcmadd(const __half2 a, const __half2 b, const __half2 c)
{
// fast version of complex multiply-accumulate
// (a.re, a.im) * (b.re, b.im) + (c.re, c.im)
// acc.re = (c.re + a.re*b.re) - a.im*b.im
// acc.im = (c.im + a.re*b.im) + a.im*b.re
__half real_tmp = __hfma(a.x, b.x, c.x);
__half img_tmp = __hfma(a.x, b.y, c.y);
real_tmp = __hfma(__hneg(a.y), b.y, real_tmp);
img_tmp = __hfma(a.y, b.x, img_tmp);
return make_half2(real_tmp, img_tmp);
}
#endif /* !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530) || defined(_NVHPC_CUDA) */
#if defined(_NVHPC_CUDA) || !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 800)
__CUDA_FP16_DECL__ __half __hmax_nan(const __half a, const __half b)
{
__BINARY_OP_HALF_MACRO(max.NaN)
}
__CUDA_FP16_DECL__ __half __hmin_nan(const __half a, const __half b)
{
__BINARY_OP_HALF_MACRO(min.NaN)
}
__CUDA_FP16_DECL__ __half __hfma_relu(const __half a, const __half b, const __half c)
{
__TERNARY_OP_HALF_MACRO(fma.rn.relu)
}
__CUDA_FP16_DECL__ __half2 __hmax2_nan(const __half2 a, const __half2 b)
{
__BINARY_OP_HALF2_MACRO(max.NaN)
}
__CUDA_FP16_DECL__ __half2 __hmin2_nan(const __half2 a, const __half2 b)
{
__BINARY_OP_HALF2_MACRO(min.NaN)
}
__CUDA_FP16_DECL__ __half2 __hfma2_relu(const __half2 a, const __half2 b, const __half2 c)
{
__TERNARY_OP_HALF2_MACRO(fma.rn.relu)
}
#endif /*defined(_NVHPC_CUDA) || !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 800)*/
/* Define __PTR for atomicAdd prototypes below, undef after done */
#if (defined(_MSC_VER) && defined(_WIN64)) || defined(__LP64__) || defined(__CUDACC_RTC__)
#define __PTR "l"
#else
#define __PTR "r"
#endif /*(defined(_MSC_VER) && defined(_WIN64)) || defined(__LP64__) || defined(__CUDACC_RTC__)*/
#if defined(_NVHPC_CUDA) || !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 600)
__CUDA_FP16_DECL__ __half2 atomicAdd(__half2 *const address, const __half2 val) {
__half2 r;
asm volatile ("{ atom.add.noftz.f16x2 %0,[%1],%2; }\n"
: "=r"(__HALF2_TO_UI(r)) : __PTR(address), "r"(__HALF2_TO_CUI(val))
: "memory");
return r;
}
#endif /*defined(_NVHPC_CUDA) || !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 600)*/
#if defined(_NVHPC_CUDA) || !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 700)
__CUDA_FP16_DECL__ __half atomicAdd(__half *const address, const __half val) {
__half r;
asm volatile ("{ atom.add.noftz.f16 %0,[%1],%2; }\n"
: "=h"(__HALF_TO_US(r))
: __PTR(address), "h"(__HALF_TO_CUS(val))
: "memory");
return r;
}
#endif /*defined(_NVHPC_CUDA) || !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 700)*/
#undef __PTR
#undef __CUDA_FP16_DECL__
#endif /* defined(__CUDACC__) */
#endif /* defined(__cplusplus) */
#undef __TERNARY_OP_HALF2_MACRO
#undef __TERNARY_OP_HALF_MACRO
#undef __BINARY_OP_HALF2_MACRO
#undef __BINARY_OP_HALF_MACRO
#undef __CUDA_HOSTDEVICE_FP16_DECL__
#undef __CUDA_FP16_DECL__
#undef __HALF_TO_US
#undef __HALF_TO_CUS
#undef __HALF2_TO_UI
#undef __HALF2_TO_CUI
/* Define first-class types "half" and "half2", unless user specifies otherwise via "#define CUDA_NO_HALF" */
/* C cannot ever have these types defined here, because __half and __half2 are C++ classes */
#if defined(__cplusplus) && !defined(CUDA_NO_HALF)
typedef __half half;
typedef __half2 half2;
// for consistency with __nv_bfloat16
typedef __half __nv_half;
typedef __half2 __nv_half2;
typedef __half_raw __nv_half_raw;
typedef __half2_raw __nv_half2_raw;
typedef __half nv_half;
typedef __half2 nv_half2;
#endif /* defined(__cplusplus) && !defined(CUDA_NO_HALF) */
#if defined(__CPP_VERSION_AT_LEAST_11_FP16)
#undef __CPP_VERSION_AT_LEAST_11_FP16
#endif /* defined(__CPP_VERSION_AT_LEAST_11_FP16) */
#endif /* end of include guard: __CUDA_FP16_HPP__ */