zhiyil commited on
Commit
bd9aa52
1 Parent(s): f5aaffc

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - glue
7
+ metrics:
8
+ - matthews_correlation
9
+ model-index:
10
+ - name: roberta-base-finetuned-cola
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # roberta-base-finetuned-cola
18
+
19
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the glue dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.6074
22
+ - Matthews Correlation: 0.6221
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 2e-05
42
+ - train_batch_size: 1
43
+ - eval_batch_size: 1
44
+ - seed: 42
45
+ - distributed_type: IPU
46
+ - gradient_accumulation_steps: 16
47
+ - total_train_batch_size: 16
48
+ - total_eval_batch_size: 5
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 5
52
+ - training precision: Mixed Precision
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
57
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------:|
58
+ | 0.4536 | 1.0 | 534 | 0.4104 | 0.5738 |
59
+ | 0.4876 | 2.0 | 1068 | 0.5156 | 0.5729 |
60
+ | 0.1281 | 3.0 | 1602 | 0.5083 | 0.6145 |
61
+ | 0.0441 | 4.0 | 2136 | 0.5483 | 0.6119 |
62
+ | 0.2985 | 5.0 | 2670 | 0.6074 | 0.6221 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.20.1
68
+ - Pytorch 1.10.0+cpu
69
+ - Datasets 2.7.1
70
+ - Tokenizers 0.12.0