zhaojer commited on
Commit
94863ac
·
verified ·
1 Parent(s): 2a81928

Update README with basic model information

Browse files
Files changed (1) hide show
  1. README.md +39 -118
README.md CHANGED
@@ -1,77 +1,66 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
10
-
11
-
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
  <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
69
 
70
- ## How to Get Started with the Model
 
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
 
 
75
 
76
  ## Training Details
77
 
@@ -129,71 +118,3 @@ Use the code below to get started with the model.
129
  [More Information Needed]
130
 
131
  #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - Compiler
5
+ - LLVM
6
+ - Intermediate Representation
7
+ - IR
8
+ - Path
9
+ - Hot Path
10
+ datasets:
11
+ - zhaojer/compiler_hot_paths
12
+ language:
13
+ - en
14
+ base_model:
15
+ - google-bert/bert-base-uncased
16
  ---
17
 
18
+ # Model Card for BERT Hot Path Predictor
19
 
20
  <!-- Provide a quick summary of what the model is/does. -->
21
 
 
 
22
  ## Model Details
23
 
24
  ### Model Description
25
 
26
+ This BERT model performs hot path prediction: Given a path (i.e. a sequence of LLVM IR instructions), predict whether it is "hot" (1) or "cold" (0).
27
+ It was fine-tuned on the [hot paths dataset](https://huggingface.co/datasets/zhaojer/compiler_hot_paths) for 3 epochs with standard learning hyperparameters.
 
 
 
 
 
 
 
 
 
 
 
28
 
29
+ - **Model type:** Binary Sequence Classification
30
+ - **Language(s) (NLP):** English, Compiler/LLVM
31
+ - **Finetuned from model:** google-bert/bert-base-uncased
32
+ - **Dataset used:** zhaojer/compiler_hot_paths
 
33
 
34
  ## Uses
35
 
36
  <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
37
 
38
+ The model can be used to predict whether a path is hot or cold, which is important information for compiler optimizations. Here is an instance of the prediction pipeline:
39
+ 1. Given a program (written in C, C++, Fortran, or other languages supported by LLVM), compile it into LLVM IR (e.g., `clang -S -emit-llvm program.c -o program.ll`)
40
+ 2. Select a sequence of instructions (in the unit of basic blocks) from the IR file; use this as the input to the model.
41
+ 3. Load the present model and feed it the selected input, the model will then output either 0 (cold path) or 1 (hot path).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
+ The model can be further fine-tuned using additional data. Please see zhaojer/compiler_hot_paths dataset card for more information on the expected data used for fine-tuning.
44
 
45
+ ## How to Get Started with the Model
46
 
47
+ Use the code below to get started with the model.
48
 
49
+ ```
50
+ from transformers import BertForSequenceClassification, BertTokenizer, pipeline
51
 
52
+ # Load saved model
53
+ saved_model = BertForSequenceClassification.from_pretrained("zhaojer/bert-hot-path-predictor")
54
+ saved_tokenizer = BertTokenizer.from_pretrained("zhaojer/bert-hot-path-predictor")
55
 
56
+ # Pipeline for predictions
57
+ classifier = pipeline("text-classification", model=saved_model, tokenizer=saved_tokenizer)
58
 
59
+ # Example prediction
60
+ new_path = "%26 = load i32, ptr %21, align 4\n%27 = load i32, ptr %11, align\n%28 = icmp slt i32 %26, %27\nbr i1 %28, label %29, label %59\n\nstore i32 0, ptr %22, align 4\nbr label %30"
61
+ prediction = classifier(new_path)
62
+ print(prediction)
63
+ ```
64
 
65
  ## Training Details
66
 
 
118
  [More Information Needed]
119
 
120
  #### Summary