|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""MAMBA configuration""" |
|
|
|
import math |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class MambaConfig(PretrainedConfig): |
|
""" |
|
This is the configuration class to store the configuration of a [`MambaModel`]. It is used to instantiate a MAMBA |
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the MAMBA |
|
[state-spaces/mamba-2.8b](https://huggingface.co/state-spaces/mamba-2.8b) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 50280): |
|
Vocabulary size of the MAMBA model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`MambaModel`]. |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the embeddings and hidden states. |
|
state_size (`int`, *optional*, defaults to 16): shape of the state space latents. |
|
num_hidden_layers (`int`, *optional*, defaults to 32): |
|
Number of hidden layers in the model. |
|
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): |
|
The epsilon to use in the layer normalization layers. |
|
pad_token_id (`int`, *optional*, defaults to 0): |
|
Padding token id. |
|
bos_token_id (`int`, *optional*, defaults to 0): |
|
The id of the beginning of sentence token in the vocabulary. |
|
eos_token_id (`int`, *optional*, defaults to 0): |
|
The id of the end of sentence token in the vocabulary. |
|
expand (`int`, *optional*, defaults to 2): Expanding factor used to determine the intermediate size. |
|
conv_kernel (`int`, *optional*, defaults to 4): Size of the convolution kernel. |
|
use_bias (`bool`, *optional*, defaults to `False`): |
|
Whether or not to use bias in ["in_proj", "out_proj"] of the mixer block |
|
use_conv_bias (`bool`, *optional*, defaults to `True`): |
|
Whether or not to use bias in the convolution layer of the mixer block. |
|
hidden_act (`str`, *optional*, defaults to `"silu"`): |
|
The non-linear activation function (function or string) in the decoder. |
|
initializer_range (`float`, *optional*, defaults to 0.1): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
residual_in_fp32 (`bool`, *optional*, defaults to `True`): |
|
Whether or not residuals should be in `float32`. If set to `False` residuals will keep the same `dtype` as the rest of the model |
|
time_step_rank (`Union[int,str]`, *optional*, defaults to `"auto"`): |
|
Rank of the discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)` |
|
time_step_scale (`float`, *optional*, defaults to 1.0): |
|
Scale used used to scale `dt_proj.bias`. |
|
time_step_min (`float`, *optional*, defaults to 0.001): |
|
Minimum `time_step` used to bound `dt_proj.bias`. |
|
time_step_max (`float`, *optional*, defaults to 0.1): |
|
Maximum `time_step` used to bound `dt_proj.bias`. |
|
time_step_init_scheme (`float`, *optional*, defaults to `"random"`): |
|
Init scheme used for `dt_proj.weight`. Should be one of `["random","uniform"]` |
|
time_step_floor (`float`, *optional*, defaults to 0.0001): |
|
Minimum clamping value of the `dt_proj.bias` layer initialization. |
|
rescale_prenorm_residual (`bool`, *optional*, defaults to `False`): |
|
Whether or not to rescale `out_proj` weights when initializing. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the cache should be used. |
|
use_mambapy (`bool`, *optional*, defaults to `False`): |
|
Determines the fallback strategy during training if the CUDA-based official implementation of Mamba is not avaiable. If `True`, the mamba.py implementation is used. If `False`, the naive and slower implementation is used. Consider switching to the naive version if memory is limited. |
|
|
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import MambaConfig, MambaModel |
|
|
|
>>> # Initializing a Mamba configuration |
|
>>> configuration = MambaConfig() |
|
|
|
>>> # Initializing a model (with random weights) from the configuration |
|
>>> model = MambaModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "mamba" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=50280, |
|
hidden_size=768, |
|
state_size=16, |
|
num_hidden_layers=32, |
|
layer_norm_epsilon=1e-5, |
|
pad_token_id=0, |
|
bos_token_id=0, |
|
eos_token_id=0, |
|
expand=2, |
|
conv_kernel=4, |
|
use_bias=False, |
|
use_conv_bias=True, |
|
hidden_act="silu", |
|
initializer_range=0.1, |
|
residual_in_fp32=True, |
|
time_step_rank="auto", |
|
time_step_scale=1.0, |
|
time_step_min=0.001, |
|
time_step_max=0.1, |
|
time_step_init_scheme="random", |
|
time_step_floor=1e-4, |
|
rescale_prenorm_residual=False, |
|
use_cache=True, |
|
use_mambapy=False, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.state_size = state_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.layer_norm_epsilon = layer_norm_epsilon |
|
self.conv_kernel = conv_kernel |
|
self.expand = expand |
|
self.intermediate_size = int(expand * self.hidden_size) |
|
self.bos_token_id = bos_token_id |
|
self.eos_token_id = eos_token_id |
|
self.pad_token_id = pad_token_id |
|
self.use_bias = use_bias |
|
self.use_conv_bias = use_conv_bias |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.time_step_rank = math.ceil(self.hidden_size / 16) if time_step_rank == "auto" else time_step_rank |
|
self.time_step_scale = time_step_scale |
|
self.time_step_min = time_step_min |
|
self.time_step_max = time_step_max |
|
self.time_step_init_scheme = time_step_init_scheme |
|
self.time_step_floor = time_step_floor |
|
self.rescale_prenorm_residual = rescale_prenorm_residual |
|
self.residual_in_fp32 = residual_in_fp32 |
|
self.use_cache = use_cache |
|
self.use_mambapy = use_mambapy |
|
|
|
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, pad_token_id=pad_token_id, **kwargs) |
|
|