longchen0421 commited on
Commit
fe81592
1 Parent(s): 694581b

Upload 8 files

Browse files
README.md CHANGED
@@ -1,3 +1,63 @@
1
- ---
2
- license: cc-by-nc-sa-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ widget:
4
+ - text: AGTCCAGTGGACGACCAGCCACGGCTCCGGTCTGTAGAACCATCGCGGAAACGGCTCGCAAAACTCTAAACAGCGCAAACGATGCGCGCGCCGAAGCAACCCGGCTCTACTTATAAAAACGTCCAACGGTGAGCACCGAGCAGCTACTACTCGTACTCCCCCCACCGATC
5
+ tags:
6
+ - DNA
7
+ - biology
8
+ - genomics
9
+ ---
10
+ # Plant foundation DNA large language models
11
+
12
+ The plant DNA large language models (LLMs) contain a series of foundation models based on different model architectures, which are pre-trained on various plant reference genomes.
13
+ All the models have a comparable model size between 90 MB and 150 MB, BPE tokenizer is used for tokenization and 8000 tokens are included in the vocabulary.
14
+
15
+
16
+ **Developed by:** zhangtaolab
17
+
18
+ ### Model Sources
19
+
20
+ - **Repository:** [Plant DNA LLMs](https://github.com/zhangtaolab/plant_DNA_LLMs)
21
+ - **Manuscript:** [Versatile applications of foundation DNA large language models in plant genomes]()
22
+
23
+ ### Architecture
24
+
25
+ The model is trained based on the zhihan1996/DNABERT-2-117M model with modified tokenizer.
26
+
27
+ This model is fine-tuned for predicting promoter strength in maize protoplasts system.
28
+
29
+
30
+ ### How to use
31
+
32
+ Install the runtime library first:
33
+ ```bash
34
+ pip install transformers
35
+ ```
36
+
37
+ Here is a simple code for inference:
38
+ ```python
39
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
40
+
41
+ model_name = 'plant-dnabert-singlebase-promoter_strength_protoplast'
42
+ # load model and tokenizer
43
+ model = AutoModelForSequenceClassification.from_pretrained(f'zhangtaolab/{model_name}', trust_remote_code=True)
44
+ tokenizer = AutoTokenizer.from_pretrained(f'zhangtaolab/{model_name}', trust_remote_code=True)
45
+
46
+ # inference
47
+ sequences = ['TACTCTAATCGTATCAGCTGCACTTGCGTACAGGCTACCGGCGTCCTCAGCCACGTAAGAAAAGGCCCAATAAAGGCCCAACTACAACCAGCGGATATATATACTGGAGCCTGGCGAGATCACCCTAACCCCTCACACTCCCATCCAGCCGCCACCAGGTGCAGAGTGTT',
48
+ 'ATTTCAAAACTAGTTTTCTATAAACGAAAACTTATATTTATTCCGCTTGTTCCGTTTGATCTGCTGATTCGACACCGTTTTAACGTATTTTAAGTAAGTATCAGAAATATTAATGTGAAGATAAAAGAAAATAGAGTAAATGTAAAGGAAAATGCATAAGATTTTGTTGA']
49
+ pipe = pipeline('text-classification', model=model, tokenizer=tokenizer,
50
+ trust_remote_code=True, function_to_apply="none")
51
+ results = pipe(sequences)
52
+ print(results)
53
+
54
+ ```
55
+
56
+
57
+ ### Training data
58
+ We use BertForSequenceClassification to fine-tune the model.
59
+ Detailed training procedure can be found in our manuscript.
60
+
61
+
62
+ #### Hardware
63
+ Model was trained on a NVIDIA GTX1080Ti GPU (11 GB).
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "../model/PlantDna_BERT_1mer",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "Promoter strength"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "Promoter strength": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 1,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.42.4",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 11
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37dd1eb96ae395251384fb7e616e51434802cf2a45f58bfc8f61087146c53f6e
3
+ size 344225644
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "<cls>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "<mask>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<pad>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
test_metrics.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {'test_loss': 0.5420615077018738, 'test_r2': 0.647, 'test_spearmanr': 0.7881287086643722, 'test_runtime': 25.2234, 'test_samples_per_second': 301.11, 'test_steps_per_second': 18.832}
tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "<mask>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<cls>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ }
35
+ },
36
+ "clean_up_tokenization_spaces": true,
37
+ "cls_token": "<cls>",
38
+ "eos_token": null,
39
+ "mask_token": "<mask>",
40
+ "model_max_length": 512,
41
+ "pad_token": "<pad>",
42
+ "tokenizer_class": "EsmTokenizer",
43
+ "unk_token": "<unk>"
44
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2eadc252ea9b5f905800ceac6940c77a8611c41226031de0087912405e670315
3
+ size 5432
vocab.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <unk>
2
+ <pad>
3
+ <mask>
4
+ <cls>
5
+ A
6
+ T
7
+ C
8
+ G
9
+ N
10
+ <eos>
11
+ <bos>