longchen0421
commited on
Commit
•
f72f893
1
Parent(s):
7f23364
Upload 8 files
Browse files- README.md +63 -3
- config.json +34 -0
- model.safetensors +3 -0
- special_tokens_map.json +30 -0
- test_metrics.json +1 -0
- tokenizer_config.json +44 -0
- training_args.bin +3 -0
- vocab.txt +11 -0
README.md
CHANGED
@@ -1,3 +1,63 @@
|
|
1 |
-
---
|
2 |
-
license: cc-by-nc-sa-4.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
widget:
|
4 |
+
- text: AGTCGCCGCAACCCACACACGGACGGCTCGACGTGGCGATCTTAGCGGCTCATCCGCCCGGCCTCCCTCGCGCTCGATCGCTACGCAGCCTACGCTCGTTTCGCTCGGTTCGGTGGGTCGCCGATCTGGCGCCACGGCGGCTACCAACGACACCGCGATTGAGAAGGGTGCGTGGCCGTGGAGTCGTGGAGAAACGCCCGCGCGCGCGGGTGCGGCGAGGGACGACGACCGCGTCGTGCGGATCGATTGGCGGGGCAGCTCGGCGCCCCG
|
5 |
+
tags:
|
6 |
+
- DNA
|
7 |
+
- biology
|
8 |
+
- genomics
|
9 |
+
---
|
10 |
+
# Plant foundation DNA large language models
|
11 |
+
|
12 |
+
The plant DNA large language models (LLMs) contain a series of foundation models based on different model architectures, which are pre-trained on various plant reference genomes.
|
13 |
+
All the models have a comparable model size between 90 MB and 150 MB, BPE tokenizer is used for tokenization and 8000 tokens are included in the vocabulary.
|
14 |
+
|
15 |
+
|
16 |
+
**Developed by:** zhangtaolab
|
17 |
+
|
18 |
+
### Model Sources
|
19 |
+
|
20 |
+
- **Repository:** [Plant DNA LLMs](https://github.com/zhangtaolab/plant_DNA_LLMs)
|
21 |
+
- **Manuscript:** [Versatile applications of foundation DNA language models in plant genomes]()
|
22 |
+
|
23 |
+
### Architecture
|
24 |
+
|
25 |
+
The model is trained based on the zhihan1996/DNABERT-2-117M model with modified tokenizer.
|
26 |
+
|
27 |
+
This model is fine-tuned for predicting H3K27ac histone modification.
|
28 |
+
|
29 |
+
|
30 |
+
### How to use
|
31 |
+
|
32 |
+
Install the runtime library first:
|
33 |
+
```bash
|
34 |
+
pip install transformers
|
35 |
+
```
|
36 |
+
|
37 |
+
Here is a simple code for inference:
|
38 |
+
```python
|
39 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
40 |
+
|
41 |
+
model_name = 'plant-dnabert-singlebase-H3K27ac'
|
42 |
+
# load model and tokenizer
|
43 |
+
model = AutoModelForSequenceClassification.from_pretrained(f'zhangtaolab/{model_name}', trust_remote_code=True)
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained(f'zhangtaolab/{model_name}', trust_remote_code=True)
|
45 |
+
|
46 |
+
# inference
|
47 |
+
sequences = ['GCTTTGGTTTATACCTTACACAACATAAATCACATAGTTAATCCCTAATCGTCTTTGATTCTCAATGTTTTGTTCATTTTTACCATGAACATCATCTGATTGATAAGTGCATAGAGAATTAACGGCTTACACTTTACACTTGCATAGATGATTCCTAAGTATGTCCT',
|
48 |
+
'TAGCCCCCTCCTCTCTTTATATAGTGCAATCTAATATATGAAAGGTTCGGTGATGGGGCCAATAAGTGTATTTAGGCTAGGCCTTCATGGGCCAAGCCCAAAAGTTTCTCAACACTCCCCCTTGAGCACTCACCGCGTAATGTCCATGCCTCGTCAAAACTCCATAAAAACCCAGTG']
|
49 |
+
pipe = pipeline('text-classification', model=model, tokenizer=tokenizer,
|
50 |
+
trust_remote_code=True, top_k=None)
|
51 |
+
results = pipe(sequences)
|
52 |
+
print(results)
|
53 |
+
|
54 |
+
```
|
55 |
+
|
56 |
+
|
57 |
+
### Training data
|
58 |
+
We use BertForSequenceClassification to fine-tune the model.
|
59 |
+
Detailed training procedure can be found in our manuscript.
|
60 |
+
|
61 |
+
|
62 |
+
#### Hardware
|
63 |
+
Model was trained on a NVIDIA GTX1080Ti GPU (11 GB).
|
config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "../model/PlantDna_BERT_1mer",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"id2label": {
|
12 |
+
"0": "Not_modification",
|
13 |
+
"1": "modification"
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 3072,
|
17 |
+
"label2id": {
|
18 |
+
"Not_modification": 0,
|
19 |
+
"modification": 1
|
20 |
+
},
|
21 |
+
"layer_norm_eps": 1e-12,
|
22 |
+
"max_position_embeddings": 512,
|
23 |
+
"model_type": "bert",
|
24 |
+
"num_attention_heads": 12,
|
25 |
+
"num_hidden_layers": 12,
|
26 |
+
"pad_token_id": 1,
|
27 |
+
"position_embedding_type": "absolute",
|
28 |
+
"problem_type": "single_label_classification",
|
29 |
+
"torch_dtype": "float32",
|
30 |
+
"transformers_version": "4.42.4",
|
31 |
+
"type_vocab_size": 2,
|
32 |
+
"use_cache": true,
|
33 |
+
"vocab_size": 11
|
34 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06b03d1904e77f7cba040a705e38084124fcc48daa2c1688fd29037a3161ff66
|
3 |
+
size 344228720
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "<cls>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "<mask>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<pad>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
test_metrics.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{'test_loss': 0.541134774684906, 'test_accuracy': 0.73662109375, 'test_f1': 0.7403984984117817, 'test_precision': 0.7299297779464794, 'test_recall': 0.751171875, 'test_matthews_correlation': 0.4734427095024038, 'test_runtime': 34.2049, 'test_samples_per_second': 299.373, 'test_steps_per_second': 18.711}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<unk>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "<mask>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<cls>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
}
|
35 |
+
},
|
36 |
+
"clean_up_tokenization_spaces": true,
|
37 |
+
"cls_token": "<cls>",
|
38 |
+
"eos_token": null,
|
39 |
+
"mask_token": "<mask>",
|
40 |
+
"model_max_length": 512,
|
41 |
+
"pad_token": "<pad>",
|
42 |
+
"tokenizer_class": "EsmTokenizer",
|
43 |
+
"unk_token": "<unk>"
|
44 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1aef61a1e00541d10830360e32f3ff0fc339436aeaf72a67f45fb840b48e283
|
3 |
+
size 5432
|
vocab.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<unk>
|
2 |
+
<pad>
|
3 |
+
<mask>
|
4 |
+
<cls>
|
5 |
+
A
|
6 |
+
T
|
7 |
+
C
|
8 |
+
G
|
9 |
+
N
|
10 |
+
<eos>
|
11 |
+
<bos>
|