update model card README.md
Browse files
README.md
CHANGED
@@ -17,15 +17,15 @@ model-index:
|
|
17 |
name: tweet_eval
|
18 |
type: tweet_eval
|
19 |
config: emotion
|
20 |
-
split:
|
21 |
args: emotion
|
22 |
metrics:
|
23 |
- name: Precision
|
24 |
type: precision
|
25 |
-
value: 0.
|
26 |
- name: Recall
|
27 |
type: recall
|
28 |
-
value: 0.
|
29 |
---
|
30 |
|
31 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -35,10 +35,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
35 |
|
36 |
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tweet_eval dataset.
|
37 |
It achieves the following results on the evaluation set:
|
38 |
-
- Loss: 1.
|
39 |
-
- Precision: 0.
|
40 |
-
- Recall: 0.
|
41 |
-
- Fscore: 0.
|
42 |
|
43 |
## Model description
|
44 |
|
@@ -69,14 +69,14 @@ The following hyperparameters were used during training:
|
|
69 |
|
70 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Fscore |
|
71 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
|
76 |
|
77 |
### Framework versions
|
78 |
|
79 |
-
- Transformers 4.
|
80 |
-
- Pytorch
|
81 |
-
- Datasets 2.
|
82 |
-
- Tokenizers 0.13.
|
|
|
17 |
name: tweet_eval
|
18 |
type: tweet_eval
|
19 |
config: emotion
|
20 |
+
split: validation
|
21 |
args: emotion
|
22 |
metrics:
|
23 |
- name: Precision
|
24 |
type: precision
|
25 |
+
value: 0.7505623807659564
|
26 |
- name: Recall
|
27 |
type: recall
|
28 |
+
value: 0.7243031825553111
|
29 |
---
|
30 |
|
31 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
35 |
|
36 |
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tweet_eval dataset.
|
37 |
It achieves the following results on the evaluation set:
|
38 |
+
- Loss: 1.1413
|
39 |
+
- Precision: 0.7506
|
40 |
+
- Recall: 0.7243
|
41 |
+
- Fscore: 0.7340
|
42 |
|
43 |
## Model description
|
44 |
|
|
|
69 |
|
70 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Fscore |
|
71 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|
|
72 |
+
| 0.8556 | 1.0 | 815 | 0.7854 | 0.7461 | 0.5929 | 0.6088 |
|
73 |
+
| 0.5369 | 2.0 | 1630 | 0.9014 | 0.7549 | 0.7278 | 0.7359 |
|
74 |
+
| 0.2571 | 3.0 | 2445 | 1.1413 | 0.7506 | 0.7243 | 0.7340 |
|
75 |
|
76 |
|
77 |
### Framework versions
|
78 |
|
79 |
+
- Transformers 4.28.1
|
80 |
+
- Pytorch 2.0.0+cu118
|
81 |
+
- Datasets 2.11.0
|
82 |
+
- Tokenizers 0.13.3
|