zhangjian94cn commited on
Commit
50271b3
1 Parent(s): 0e4386f

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -151.48 +/- 41.36
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8db5c395e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8db5c39670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8db5c39700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8db5c39790>", "_build": "<function ActorCriticPolicy._build at 0x7f8db5c39820>", "forward": "<function ActorCriticPolicy.forward at 0x7f8db5c398b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8db5c39940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8db5c399d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8db5c39a60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8db5c39af0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8db5c39b80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8db5c39c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8db5c302a0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686233253718222390, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAEbT1p2JQ/TjdmPf4fGb/uNjM+Do+QPAAAAAAAAAAAsw8CvZ3zuD/AUU+/1h6tPt0+Jj0AR2Y+AAAAAAAAAADzNq89LJe5P25Puz6cb+a9RKM0PcrpWL0AAAAAAAAAAO3vUT7qXRM/Fc7BvcCOYb9HXhM/JKRJPQAAAAAAAAAAOqcxPpBjKD9QgY48bwc9v+Zp5j5VCpY+AAAAAAAAAAAzJZU8Yr6qPz4AoD7kARy/4ZwnvVd4Jr4AAAAAAAAAALYlvj5PWwU+pxkIPqxIRb8/HKQ+IJZIPgAAgD8AAAAAZs4NO4VvtD8+a2A+oqFmvYbgI7tKVku9AAAAAAAAAACaetm8iFCdP9gj9b3e5ry+jeFsvc0W2b0AAAAAAAAAAACZRj3aYbk/uiHKPgskvz1tck69xsYJvQAAAAAAAAAAYD0Rvn2PvT+Ak9a+tW40vrTQRD7KmRs6AAAAAAAAAACgMgE+dMG+P5TnID+uZDK8Cmf4PDN5/z0AAAAAAAAAAL2HY74Ul7s/xufTvqXHpL5eobi9rvNUvgAAAAAAAAAA8x2uvbDxij/V2nG+G0sLv5/qqz7ZPTw+AAAAAAAAAABmuoc+MG2LP8majD4LMgi/PBb/PuWr+D4AAAAAAAAAAGAQQj588kw/A2/hPgMmVL9dpBc91kQmPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAABAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFe5D1oQFs6MAWyUS2KMAXSUR0A8RXsw+MZQdX2UKGgGR8BZqqHoHLRsaAdLWGgIR0A8RwhnrY5DdX2UKGgGR8BSUWBreqJeaAdLjGgIR0A8ShB7eEZjdX2UKGgGR8BVE9Vea8YiaAdLXmgIR0A8Tda+vhZRdX2UKGgGR8BCw/mLcbiqaAdLZ2gIR0A8VNLUTcqOdX2UKGgGR8BT2BAbADaHaAdLkGgIR0A8VgCfYjB3dX2UKGgGR8Bo03hddE9daAdLd2gIR0A8WEPUaybAdX2UKGgGR8BWYrK/20zCaAdLh2gIR0A8WIsiB5HFdX2UKGgGR8BuXdcv/R3NaAdLjWgIR0A8XVzp5eJIdX2UKGgGR8BTnk4ecQRPaAdLUmgIR0A8YDRtxdY5dX2UKGgGR8BWmMpw0fozaAdLVWgIR0A8Yya/h2nsdX2UKGgGR8BVhSbQTmGNaAdLY2gIR0A8Z0iyIHkcdX2UKGgGR8BB0xTCLuQZaAdLhmgIR0A8anb7CSA6dX2UKGgGR8BIu71qWTouaAdLWmgIR0A8aj+717IDdX2UKGgGR8BSnTdpItlJaAdLhWgIR0A8bMibDuSfdX2UKGgGR8BTID9wWFewaAdLaWgIR0A8bMs6JZW8dX2UKGgGR8BTYfAbhm5EaAdLa2gIR0A8b2gnMMZxdX2UKGgGR8BX8VuBMBZIaAdLZWgIR0A8cYj0L+gldX2UKGgGR0A2FYh+vyLAaAdLZWgIR0A8dTqSowVTdX2UKGgGR8BlLld1MdtEaAdLjWgIR0A8dCp3os7NdX2UKGgGR8BRm+xrzoU0aAdLc2gIR0A8gWa+evpydX2UKGgGR8BIq+rU9ZA6aAdLYWgIR0A8gtbs4T9LdX2UKGgGR8BTAmus90RwaAdLbGgIR0A8gi3XqZ+hdX2UKGgGR8BVHeOn2qT9aAdLcmgIR0A8hFLnLaEjdX2UKGgGR8BL8gzguRLcaAdLY2gIR0A8hpH7P6bfdX2UKGgGR8BZ41R+BpYcaAdLhmgIR0A8icurZJ05dX2UKGgGR8BSXDGT9sJqaAdLaGgIR0A8j1pj+aScdX2UKGgGR8BX07hFVktmaAdLZGgIR0A8kNfgJkXldX2UKGgGR8BbEZlSS/0vaAdLfWgIR0A8k5S3solVdX2UKGgGR8BgclO9FnZkaAdLZmgIR0A8k+u/1xsEdX2UKGgGR8Bkbz1yvLX+aAdLb2gIR0A8lQRPGhmHdX2UKGgGR8BWVG8/UvwmaAdLXmgIR0A8mDaXa8HwdX2UKGgGR8BS8h51Ng0CaAdLf2gIR0A8nYMvysjndX2UKGgGR8BVxo7aIvalaAdLUGgIR0A8oSElE7W/dX2UKGgGR8BIygnc+JP7aAdLhmgIR0A8oxcE/0NCdX2UKGgGR8BVi8j/uLJkaAdLj2gIR0A8qMibDuSfdX2UKGgGR8BSRP7rLQokaAdLmGgIR0A8sFirksBidX2UKGgGR8BeLp84PwuvaAdLb2gIR0A8r9gnc+JQdX2UKGgGR8B0F7Fjurp8aAdLfWgIR0A8spAUtZmqdX2UKGgGR8BY91Ey+HrRaAdLW2gIR0A8t/7BO58SdX2UKGgGR8BmM6rmyPdVaAdLgGgIR0A8uS9M9KVZdX2UKGgGR8BuJMi4axX5aAdLW2gIR0A8uVT72tdSdX2UKGgGR8BY8/fO2RaHaAdLYmgIR0A8ussQNCqqdX2UKGgGR8BUk/9Hc1wYaAdLSGgIR0A8wDYywfQsdX2UKGgGR8BLT6bF0gbIaAdLoGgIR0A8wmL9/BnBdX2UKGgGR8BAGsx46fapaAdLT2gIR0A8wVbiZOSGdX2UKGgGR8A6OqcVgx8EaAdLkWgIR0A8w69kBjnWdX2UKGgGR8A3DVwgkka/aAdLfmgIR0A8w4agmJFcdX2UKGgGR8Bc3H2h7E5yaAdLbWgIR0A8xDMvAXVLdX2UKGgGR8BTh1E7W/ahaAdLiWgIR0A8xi1iONo8dX2UKGgGR8BkMVy5qdpZaAdLf2gIR0A8z3qzJIUbdX2UKGgGR8BY2sJlar3kaAdLWWgIR0A80xQSBbwCdX2UKGgGR8BRICOFQEZBaAdLV2gIR0A81F/hESdwdX2UKGgGR8A62nYQJ5VwaAdLSGgIR0A81jRUm2LHdX2UKGgGR8BK92EsasIWaAdLTGgIR0A81mNBF/hEdX2UKGgGR8BAZCsfaHsUaAdLhGgIR0A83Fjurp7kdX2UKGgGR8BYyddeIEbHaAdLYGgIR0A83RB/qgRLdX2UKGgGR8Bc9bsfJV81aAdLX2gIR0A83bWEsasIdX2UKGgGR8BHCLpqynk1aAdLU2gIR0A84HNorWiDdX2UKGgGR8BXqCfg75mAaAdLhmgIR0A84752yLQ5dX2UKGgGR8BVAQieNDMNaAdLU2gIR0A85VZcLSeAdX2UKGgGR8BgDX7iyY5UaAdLZWgIR0A86J1q33HrdX2UKGgGR8BcbxGpda+waAdLaGgIR0A859P1tfoidX2UKGgGR8Bgp0nb7CSBaAdLaWgIR0A86zgdfb9IdX2UKGgGR8BEOEOI68xsaAdLQGgIR0A87PdVNpM6dX2UKGgGR8Bvtx3A2ycDaAdLcmgIR0A87vF3pwCKdX2UKGgGR8BEP1Muez2OaAdLhmgIR0A89bSJCSiedX2UKGgGR8BFBtCAtnPFaAdLYGgIR0A8+xdpqREGdX2UKGgGR8BlXEo0ALiNaAdLWmgIR0A8/zImw7kodX2UKGgGR8BUaQCCBf8eaAdLbmgIR0A9ANrj5sTGdX2UKGgGR8BR8NeUpuuSaAdLfWgIR0A9AAksz2vjdX2UKGgGR8BRnUdV/+bWaAdLYWgIR0A9AtV7x/d7dX2UKGgGR8BQbYkRjBl+aAdLX2gIR0A9COnEVFhHdX2UKGgGR0Awk1Oj7ALzaAdLlWgIR0A9DSkCV8kVdX2UKGgGR8BXlsqaw2VFaAdLcGgIR0A9DH1OCXhPdX2UKGgGR8BYoFdkauOkaAdLVGgIR0A9EIuXeFcqdX2UKGgGR8BOrOWSlnAZaAdLcmgIR0A9FcG1QZXNdX2UKGgGR8BcPTaoMrmRaAdLaWgIR0A9FQ9ic5KfdX2UKGgGR8Bm4RL5AQg+aAdLemgIR0A9FcslLOAzdX2UKGgGR8BJ75zYEnstaAdLkWgIR0A9Fv0RODaodX2UKGgGR8BqdolD4QBgaAdLcmgIR0A9GnHNorWidX2UKGgGR8BD5PlU6xPgaAdLkmgIR0A9IT9bX6IndX2UKGgGR8ArTH+ZPVNIaAdLVWgIR0A9JJUYKpkxdX2UKGgGR8BSUUhFEy+IaAdLdWgIR0A9JN8VpKzzdX2UKGgGR8BGre3QUpNLaAdLZ2gIR0A9KHVwxWT5dX2UKGgGR8Bdqi7sfJV9aAdLV2gIR0A9K9Tgl4TsdX2UKGgGR8Azu/KQq7ROaAdLW2gIR0A9MM6zVtoBdX2UKGgGR8By/9y2hIvraAdLe2gIR0A9MTzd1uBMdX2UKGgGR8Bwdsy/KyOaaAdLf2gIR0A9M987ZFoddX2UKGgGR8BbdCSNfgJkaAdLZWgIR0A9Nc9W6shgdX2UKGgGR8BcdC1NQCSzaAdLWmgIR0A9NL5AQg9vdX2UKGgGR8BQY7876pHaaAdLU2gIR0A9N/ATIvJzdX2UKGgGR8BYwU1VHWjHaAdLmWgIR0A9OMR6F/QTdX2UKGgGR8BTN0lAu7HyaAdLaGgIR0A9Plt0mtyQdX2UKGgGR8BfllGgBcRlaAdLa2gIR0A9QGnn+yZ8dX2UKGgGR8BEwLBj4HopaAdLRWgIR0A9QJpFkQPJdX2UKGgGR8Bk5RccENe/aAdLVmgIR0A9Q9LHuJDWdX2UKGgGR8BRJE9hZyMlaAdLVWgIR0A9RoEB8x9HdX2UKGgGR0AaEG4ZuQ6qaAdLc2gIR0A9R+NcW0qpdX2UKGgGR8BDqNXo1UEQaAdLUGgIR0A9SCVbA1vVdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFgvaG9tZS96aGFuZ2ppYW4vbWluaWNvbmRhMy9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxYL2hvbWUvemhhbmdqaWFuL21pbmljb25kYTMvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFgvaG9tZS96aGFuZ2ppYW4vbWluaWNvbmRhMy9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxYL2hvbWUvemhhbmdqaWFuL21pbmljb25kYTMvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.19.0-43-generic-x86_64-with-glibc2.17 # 44~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon May 22 13:39:36 UTC 2", "Python": "3.8.13", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu117", "GPU Enabled": "False", "Numpy": "1.24.3", "Cloudpickle": "1.6.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.19.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2928423cc14aa7bc1a40776bc80f605c3ac0daaf5ac434cfaeb3aaffe2109ead
3
+ size 146218
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8db5c395e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8db5c39670>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8db5c39700>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8db5c39790>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8db5c39820>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8db5c398b0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8db5c39940>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8db5c399d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f8db5c39a60>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8db5c39af0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8db5c39b80>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8db5c39c10>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f8db5c302a0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 114688,
25
+ "_total_timesteps": 100000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1686233253718222390,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAEbT1p2JQ/TjdmPf4fGb/uNjM+Do+QPAAAAAAAAAAAsw8CvZ3zuD/AUU+/1h6tPt0+Jj0AR2Y+AAAAAAAAAADzNq89LJe5P25Puz6cb+a9RKM0PcrpWL0AAAAAAAAAAO3vUT7qXRM/Fc7BvcCOYb9HXhM/JKRJPQAAAAAAAAAAOqcxPpBjKD9QgY48bwc9v+Zp5j5VCpY+AAAAAAAAAAAzJZU8Yr6qPz4AoD7kARy/4ZwnvVd4Jr4AAAAAAAAAALYlvj5PWwU+pxkIPqxIRb8/HKQ+IJZIPgAAgD8AAAAAZs4NO4VvtD8+a2A+oqFmvYbgI7tKVku9AAAAAAAAAACaetm8iFCdP9gj9b3e5ry+jeFsvc0W2b0AAAAAAAAAAACZRj3aYbk/uiHKPgskvz1tck69xsYJvQAAAAAAAAAAYD0Rvn2PvT+Ak9a+tW40vrTQRD7KmRs6AAAAAAAAAACgMgE+dMG+P5TnID+uZDK8Cmf4PDN5/z0AAAAAAAAAAL2HY74Ul7s/xufTvqXHpL5eobi9rvNUvgAAAAAAAAAA8x2uvbDxij/V2nG+G0sLv5/qqz7ZPTw+AAAAAAAAAABmuoc+MG2LP8majD4LMgi/PBb/PuWr+D4AAAAAAAAAAGAQQj588kw/A2/hPgMmVL9dpBc91kQmPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAABAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.1468799999999999,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFe5D1oQFs6MAWyUS2KMAXSUR0A8RXsw+MZQdX2UKGgGR8BZqqHoHLRsaAdLWGgIR0A8RwhnrY5DdX2UKGgGR8BSUWBreqJeaAdLjGgIR0A8ShB7eEZjdX2UKGgGR8BVE9Vea8YiaAdLXmgIR0A8Tda+vhZRdX2UKGgGR8BCw/mLcbiqaAdLZ2gIR0A8VNLUTcqOdX2UKGgGR8BT2BAbADaHaAdLkGgIR0A8VgCfYjB3dX2UKGgGR8Bo03hddE9daAdLd2gIR0A8WEPUaybAdX2UKGgGR8BWYrK/20zCaAdLh2gIR0A8WIsiB5HFdX2UKGgGR8BuXdcv/R3NaAdLjWgIR0A8XVzp5eJIdX2UKGgGR8BTnk4ecQRPaAdLUmgIR0A8YDRtxdY5dX2UKGgGR8BWmMpw0fozaAdLVWgIR0A8Yya/h2nsdX2UKGgGR8BVhSbQTmGNaAdLY2gIR0A8Z0iyIHkcdX2UKGgGR8BB0xTCLuQZaAdLhmgIR0A8anb7CSA6dX2UKGgGR8BIu71qWTouaAdLWmgIR0A8aj+717IDdX2UKGgGR8BSnTdpItlJaAdLhWgIR0A8bMibDuSfdX2UKGgGR8BTID9wWFewaAdLaWgIR0A8bMs6JZW8dX2UKGgGR8BTYfAbhm5EaAdLa2gIR0A8b2gnMMZxdX2UKGgGR8BX8VuBMBZIaAdLZWgIR0A8cYj0L+gldX2UKGgGR0A2FYh+vyLAaAdLZWgIR0A8dTqSowVTdX2UKGgGR8BlLld1MdtEaAdLjWgIR0A8dCp3os7NdX2UKGgGR8BRm+xrzoU0aAdLc2gIR0A8gWa+evpydX2UKGgGR8BIq+rU9ZA6aAdLYWgIR0A8gtbs4T9LdX2UKGgGR8BTAmus90RwaAdLbGgIR0A8gi3XqZ+hdX2UKGgGR8BVHeOn2qT9aAdLcmgIR0A8hFLnLaEjdX2UKGgGR8BL8gzguRLcaAdLY2gIR0A8hpH7P6bfdX2UKGgGR8BZ41R+BpYcaAdLhmgIR0A8icurZJ05dX2UKGgGR8BSXDGT9sJqaAdLaGgIR0A8j1pj+aScdX2UKGgGR8BX07hFVktmaAdLZGgIR0A8kNfgJkXldX2UKGgGR8BbEZlSS/0vaAdLfWgIR0A8k5S3solVdX2UKGgGR8BgclO9FnZkaAdLZmgIR0A8k+u/1xsEdX2UKGgGR8Bkbz1yvLX+aAdLb2gIR0A8lQRPGhmHdX2UKGgGR8BWVG8/UvwmaAdLXmgIR0A8mDaXa8HwdX2UKGgGR8BS8h51Ng0CaAdLf2gIR0A8nYMvysjndX2UKGgGR8BVxo7aIvalaAdLUGgIR0A8oSElE7W/dX2UKGgGR8BIygnc+JP7aAdLhmgIR0A8oxcE/0NCdX2UKGgGR8BVi8j/uLJkaAdLj2gIR0A8qMibDuSfdX2UKGgGR8BSRP7rLQokaAdLmGgIR0A8sFirksBidX2UKGgGR8BeLp84PwuvaAdLb2gIR0A8r9gnc+JQdX2UKGgGR8B0F7Fjurp8aAdLfWgIR0A8spAUtZmqdX2UKGgGR8BY91Ey+HrRaAdLW2gIR0A8t/7BO58SdX2UKGgGR8BmM6rmyPdVaAdLgGgIR0A8uS9M9KVZdX2UKGgGR8BuJMi4axX5aAdLW2gIR0A8uVT72tdSdX2UKGgGR8BY8/fO2RaHaAdLYmgIR0A8ussQNCqqdX2UKGgGR8BUk/9Hc1wYaAdLSGgIR0A8wDYywfQsdX2UKGgGR8BLT6bF0gbIaAdLoGgIR0A8wmL9/BnBdX2UKGgGR8BAGsx46fapaAdLT2gIR0A8wVbiZOSGdX2UKGgGR8A6OqcVgx8EaAdLkWgIR0A8w69kBjnWdX2UKGgGR8A3DVwgkka/aAdLfmgIR0A8w4agmJFcdX2UKGgGR8Bc3H2h7E5yaAdLbWgIR0A8xDMvAXVLdX2UKGgGR8BTh1E7W/ahaAdLiWgIR0A8xi1iONo8dX2UKGgGR8BkMVy5qdpZaAdLf2gIR0A8z3qzJIUbdX2UKGgGR8BY2sJlar3kaAdLWWgIR0A80xQSBbwCdX2UKGgGR8BRICOFQEZBaAdLV2gIR0A81F/hESdwdX2UKGgGR8A62nYQJ5VwaAdLSGgIR0A81jRUm2LHdX2UKGgGR8BK92EsasIWaAdLTGgIR0A81mNBF/hEdX2UKGgGR8BAZCsfaHsUaAdLhGgIR0A83Fjurp7kdX2UKGgGR8BYyddeIEbHaAdLYGgIR0A83RB/qgRLdX2UKGgGR8Bc9bsfJV81aAdLX2gIR0A83bWEsasIdX2UKGgGR8BHCLpqynk1aAdLU2gIR0A84HNorWiDdX2UKGgGR8BXqCfg75mAaAdLhmgIR0A84752yLQ5dX2UKGgGR8BVAQieNDMNaAdLU2gIR0A85VZcLSeAdX2UKGgGR8BgDX7iyY5UaAdLZWgIR0A86J1q33HrdX2UKGgGR8BcbxGpda+waAdLaGgIR0A859P1tfoidX2UKGgGR8Bgp0nb7CSBaAdLaWgIR0A86zgdfb9IdX2UKGgGR8BEOEOI68xsaAdLQGgIR0A87PdVNpM6dX2UKGgGR8Bvtx3A2ycDaAdLcmgIR0A87vF3pwCKdX2UKGgGR8BEP1Muez2OaAdLhmgIR0A89bSJCSiedX2UKGgGR8BFBtCAtnPFaAdLYGgIR0A8+xdpqREGdX2UKGgGR8BlXEo0ALiNaAdLWmgIR0A8/zImw7kodX2UKGgGR8BUaQCCBf8eaAdLbmgIR0A9ANrj5sTGdX2UKGgGR8BR8NeUpuuSaAdLfWgIR0A9AAksz2vjdX2UKGgGR8BRnUdV/+bWaAdLYWgIR0A9AtV7x/d7dX2UKGgGR8BQbYkRjBl+aAdLX2gIR0A9COnEVFhHdX2UKGgGR0Awk1Oj7ALzaAdLlWgIR0A9DSkCV8kVdX2UKGgGR8BXlsqaw2VFaAdLcGgIR0A9DH1OCXhPdX2UKGgGR8BYoFdkauOkaAdLVGgIR0A9EIuXeFcqdX2UKGgGR8BOrOWSlnAZaAdLcmgIR0A9FcG1QZXNdX2UKGgGR8BcPTaoMrmRaAdLaWgIR0A9FQ9ic5KfdX2UKGgGR8Bm4RL5AQg+aAdLemgIR0A9FcslLOAzdX2UKGgGR8BJ75zYEnstaAdLkWgIR0A9Fv0RODaodX2UKGgGR8BqdolD4QBgaAdLcmgIR0A9GnHNorWidX2UKGgGR8BD5PlU6xPgaAdLkmgIR0A9IT9bX6IndX2UKGgGR8ArTH+ZPVNIaAdLVWgIR0A9JJUYKpkxdX2UKGgGR8BSUUhFEy+IaAdLdWgIR0A9JN8VpKzzdX2UKGgGR8BGre3QUpNLaAdLZ2gIR0A9KHVwxWT5dX2UKGgGR8Bdqi7sfJV9aAdLV2gIR0A9K9Tgl4TsdX2UKGgGR8Azu/KQq7ROaAdLW2gIR0A9MM6zVtoBdX2UKGgGR8By/9y2hIvraAdLe2gIR0A9MTzd1uBMdX2UKGgGR8Bwdsy/KyOaaAdLf2gIR0A9M987ZFoddX2UKGgGR8BbdCSNfgJkaAdLZWgIR0A9Nc9W6shgdX2UKGgGR8BcdC1NQCSzaAdLWmgIR0A9NL5AQg9vdX2UKGgGR8BQY7876pHaaAdLU2gIR0A9N/ATIvJzdX2UKGgGR8BYwU1VHWjHaAdLmWgIR0A9OMR6F/QTdX2UKGgGR8BTN0lAu7HyaAdLaGgIR0A9Plt0mtyQdX2UKGgGR8BfllGgBcRlaAdLa2gIR0A9QGnn+yZ8dX2UKGgGR8BEwLBj4HopaAdLRWgIR0A9QJpFkQPJdX2UKGgGR8Bk5RccENe/aAdLVmgIR0A9Q9LHuJDWdX2UKGgGR8BRJE9hZyMlaAdLVWgIR0A9RoEB8x9HdX2UKGgGR0AaEG4ZuQ6qaAdLc2gIR0A9R+NcW0qpdX2UKGgGR8BDqNXo1UEQaAdLUGgIR0A9SCVbA1vVdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 28,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFgvaG9tZS96aGFuZ2ppYW4vbWluaWNvbmRhMy9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxYL2hvbWUvemhhbmdqaWFuL21pbmljb25kYTMvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFgvaG9tZS96aGFuZ2ppYW4vbWluaWNvbmRhMy9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxYL2hvbWUvemhhbmdqaWFuL21pbmljb25kYTMvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afe11cfcbc74e6c6bed190213d76c11bdb71197229f9deb9608dbc804d34a582
3
+ size 87545
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74a84a75763a806030a31ad492543e3ab4216a9222d5882cf570d91945c1b44c
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-43-generic-x86_64-with-glibc2.17 # 44~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon May 22 13:39:36 UTC 2
2
+ - Python: 3.8.13
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu117
5
+ - GPU Enabled: False
6
+ - Numpy: 1.24.3
7
+ - Cloudpickle: 1.6.0
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.19.0
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -151.48244798599916, "std_reward": 41.362593988906475, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-08T22:10:04.427306"}