|
import math |
|
import torch |
|
from torch import nn as nn |
|
from torch.autograd import Function |
|
from torch.autograd.function import once_differentiable |
|
from torch.nn import functional as F |
|
from torch.nn.modules.utils import _pair, _single |
|
|
|
try: |
|
from . import deform_conv_ext |
|
except ImportError: |
|
import os |
|
BASICSR_JIT = os.getenv('BASICSR_JIT') |
|
if BASICSR_JIT == 'True': |
|
from torch.utils.cpp_extension import load |
|
module_path = os.path.dirname(__file__) |
|
deform_conv_ext = load( |
|
'deform_conv', |
|
sources=[ |
|
os.path.join(module_path, 'src', 'deform_conv_ext.cpp'), |
|
os.path.join(module_path, 'src', 'deform_conv_cuda.cpp'), |
|
os.path.join(module_path, 'src', 'deform_conv_cuda_kernel.cu'), |
|
], |
|
) |
|
|
|
|
|
class DeformConvFunction(Function): |
|
|
|
@staticmethod |
|
def forward(ctx, |
|
input, |
|
offset, |
|
weight, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
groups=1, |
|
deformable_groups=1, |
|
im2col_step=64): |
|
if input is not None and input.dim() != 4: |
|
raise ValueError(f'Expected 4D tensor as input, got {input.dim()}' 'D tensor instead.') |
|
ctx.stride = _pair(stride) |
|
ctx.padding = _pair(padding) |
|
ctx.dilation = _pair(dilation) |
|
ctx.groups = groups |
|
ctx.deformable_groups = deformable_groups |
|
ctx.im2col_step = im2col_step |
|
|
|
ctx.save_for_backward(input, offset, weight) |
|
|
|
output = input.new_empty(DeformConvFunction._output_size(input, weight, ctx.padding, ctx.dilation, ctx.stride)) |
|
|
|
ctx.bufs_ = [input.new_empty(0), input.new_empty(0)] |
|
|
|
if not input.is_cuda: |
|
raise NotImplementedError |
|
else: |
|
cur_im2col_step = min(ctx.im2col_step, input.shape[0]) |
|
assert (input.shape[0] % cur_im2col_step) == 0, 'im2col step must divide batchsize' |
|
deform_conv_ext.deform_conv_forward(input, weight, |
|
offset, output, ctx.bufs_[0], ctx.bufs_[1], weight.size(3), |
|
weight.size(2), ctx.stride[1], ctx.stride[0], ctx.padding[1], |
|
ctx.padding[0], ctx.dilation[1], ctx.dilation[0], ctx.groups, |
|
ctx.deformable_groups, cur_im2col_step) |
|
return output |
|
|
|
@staticmethod |
|
@once_differentiable |
|
def backward(ctx, grad_output): |
|
input, offset, weight = ctx.saved_tensors |
|
|
|
grad_input = grad_offset = grad_weight = None |
|
|
|
if not grad_output.is_cuda: |
|
raise NotImplementedError |
|
else: |
|
cur_im2col_step = min(ctx.im2col_step, input.shape[0]) |
|
assert (input.shape[0] % cur_im2col_step) == 0, 'im2col step must divide batchsize' |
|
|
|
if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]: |
|
grad_input = torch.zeros_like(input) |
|
grad_offset = torch.zeros_like(offset) |
|
deform_conv_ext.deform_conv_backward_input(input, offset, grad_output, grad_input, |
|
grad_offset, weight, ctx.bufs_[0], weight.size(3), |
|
weight.size(2), ctx.stride[1], ctx.stride[0], ctx.padding[1], |
|
ctx.padding[0], ctx.dilation[1], ctx.dilation[0], ctx.groups, |
|
ctx.deformable_groups, cur_im2col_step) |
|
|
|
if ctx.needs_input_grad[2]: |
|
grad_weight = torch.zeros_like(weight) |
|
deform_conv_ext.deform_conv_backward_parameters(input, offset, grad_output, grad_weight, |
|
ctx.bufs_[0], ctx.bufs_[1], weight.size(3), |
|
weight.size(2), ctx.stride[1], ctx.stride[0], |
|
ctx.padding[1], ctx.padding[0], ctx.dilation[1], |
|
ctx.dilation[0], ctx.groups, ctx.deformable_groups, 1, |
|
cur_im2col_step) |
|
|
|
return (grad_input, grad_offset, grad_weight, None, None, None, None, None) |
|
|
|
@staticmethod |
|
def _output_size(input, weight, padding, dilation, stride): |
|
channels = weight.size(0) |
|
output_size = (input.size(0), channels) |
|
for d in range(input.dim() - 2): |
|
in_size = input.size(d + 2) |
|
pad = padding[d] |
|
kernel = dilation[d] * (weight.size(d + 2) - 1) + 1 |
|
stride_ = stride[d] |
|
output_size += ((in_size + (2 * pad) - kernel) // stride_ + 1, ) |
|
if not all(map(lambda s: s > 0, output_size)): |
|
raise ValueError('convolution input is too small (output would be ' f'{"x".join(map(str, output_size))})') |
|
return output_size |
|
|
|
|
|
class ModulatedDeformConvFunction(Function): |
|
|
|
@staticmethod |
|
def forward(ctx, |
|
input, |
|
offset, |
|
mask, |
|
weight, |
|
bias=None, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
groups=1, |
|
deformable_groups=1): |
|
ctx.stride = stride |
|
ctx.padding = padding |
|
ctx.dilation = dilation |
|
ctx.groups = groups |
|
ctx.deformable_groups = deformable_groups |
|
ctx.with_bias = bias is not None |
|
if not ctx.with_bias: |
|
bias = input.new_empty(1) |
|
if not input.is_cuda: |
|
raise NotImplementedError |
|
if weight.requires_grad or mask.requires_grad or offset.requires_grad \ |
|
or input.requires_grad: |
|
ctx.save_for_backward(input, offset, mask, weight, bias) |
|
output = input.new_empty(ModulatedDeformConvFunction._infer_shape(ctx, input, weight)) |
|
ctx._bufs = [input.new_empty(0), input.new_empty(0)] |
|
deform_conv_ext.modulated_deform_conv_forward(input, weight, bias, ctx._bufs[0], offset, mask, output, |
|
ctx._bufs[1], weight.shape[2], weight.shape[3], ctx.stride, |
|
ctx.stride, ctx.padding, ctx.padding, ctx.dilation, ctx.dilation, |
|
ctx.groups, ctx.deformable_groups, ctx.with_bias) |
|
return output |
|
|
|
@staticmethod |
|
@once_differentiable |
|
def backward(ctx, grad_output): |
|
if not grad_output.is_cuda: |
|
raise NotImplementedError |
|
input, offset, mask, weight, bias = ctx.saved_tensors |
|
grad_input = torch.zeros_like(input) |
|
grad_offset = torch.zeros_like(offset) |
|
grad_mask = torch.zeros_like(mask) |
|
grad_weight = torch.zeros_like(weight) |
|
grad_bias = torch.zeros_like(bias) |
|
deform_conv_ext.modulated_deform_conv_backward(input, weight, bias, ctx._bufs[0], offset, mask, ctx._bufs[1], |
|
grad_input, grad_weight, grad_bias, grad_offset, grad_mask, |
|
grad_output, weight.shape[2], weight.shape[3], ctx.stride, |
|
ctx.stride, ctx.padding, ctx.padding, ctx.dilation, ctx.dilation, |
|
ctx.groups, ctx.deformable_groups, ctx.with_bias) |
|
if not ctx.with_bias: |
|
grad_bias = None |
|
|
|
return (grad_input, grad_offset, grad_mask, grad_weight, grad_bias, None, None, None, None, None) |
|
|
|
@staticmethod |
|
def _infer_shape(ctx, input, weight): |
|
n = input.size(0) |
|
channels_out = weight.size(0) |
|
height, width = input.shape[2:4] |
|
kernel_h, kernel_w = weight.shape[2:4] |
|
height_out = (height + 2 * ctx.padding - (ctx.dilation * (kernel_h - 1) + 1)) // ctx.stride + 1 |
|
width_out = (width + 2 * ctx.padding - (ctx.dilation * (kernel_w - 1) + 1)) // ctx.stride + 1 |
|
return n, channels_out, height_out, width_out |
|
|
|
|
|
deform_conv = DeformConvFunction.apply |
|
modulated_deform_conv = ModulatedDeformConvFunction.apply |
|
|
|
|
|
class DeformConv(nn.Module): |
|
|
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
groups=1, |
|
deformable_groups=1, |
|
bias=False): |
|
super(DeformConv, self).__init__() |
|
|
|
assert not bias |
|
assert in_channels % groups == 0, \ |
|
f'in_channels {in_channels} is not divisible by groups {groups}' |
|
assert out_channels % groups == 0, \ |
|
f'out_channels {out_channels} is not divisible ' \ |
|
f'by groups {groups}' |
|
|
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.kernel_size = _pair(kernel_size) |
|
self.stride = _pair(stride) |
|
self.padding = _pair(padding) |
|
self.dilation = _pair(dilation) |
|
self.groups = groups |
|
self.deformable_groups = deformable_groups |
|
|
|
self.transposed = False |
|
self.output_padding = _single(0) |
|
|
|
self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels // self.groups, *self.kernel_size)) |
|
|
|
self.reset_parameters() |
|
|
|
def reset_parameters(self): |
|
n = self.in_channels |
|
for k in self.kernel_size: |
|
n *= k |
|
stdv = 1. / math.sqrt(n) |
|
self.weight.data.uniform_(-stdv, stdv) |
|
|
|
def forward(self, x, offset): |
|
|
|
|
|
input_pad = (x.size(2) < self.kernel_size[0] or x.size(3) < self.kernel_size[1]) |
|
if input_pad: |
|
pad_h = max(self.kernel_size[0] - x.size(2), 0) |
|
pad_w = max(self.kernel_size[1] - x.size(3), 0) |
|
x = F.pad(x, (0, pad_w, 0, pad_h), 'constant', 0).contiguous() |
|
offset = F.pad(offset, (0, pad_w, 0, pad_h), 'constant', 0).contiguous() |
|
out = deform_conv(x, offset, self.weight, self.stride, self.padding, self.dilation, self.groups, |
|
self.deformable_groups) |
|
if input_pad: |
|
out = out[:, :, :out.size(2) - pad_h, :out.size(3) - pad_w].contiguous() |
|
return out |
|
|
|
|
|
class DeformConvPack(DeformConv): |
|
"""A Deformable Conv Encapsulation that acts as normal Conv layers. |
|
|
|
Args: |
|
in_channels (int): Same as nn.Conv2d. |
|
out_channels (int): Same as nn.Conv2d. |
|
kernel_size (int or tuple[int]): Same as nn.Conv2d. |
|
stride (int or tuple[int]): Same as nn.Conv2d. |
|
padding (int or tuple[int]): Same as nn.Conv2d. |
|
dilation (int or tuple[int]): Same as nn.Conv2d. |
|
groups (int): Same as nn.Conv2d. |
|
bias (bool or str): If specified as `auto`, it will be decided by the |
|
norm_cfg. Bias will be set as True if norm_cfg is None, otherwise |
|
False. |
|
""" |
|
|
|
_version = 2 |
|
|
|
def __init__(self, *args, **kwargs): |
|
super(DeformConvPack, self).__init__(*args, **kwargs) |
|
|
|
self.conv_offset = nn.Conv2d( |
|
self.in_channels, |
|
self.deformable_groups * 2 * self.kernel_size[0] * self.kernel_size[1], |
|
kernel_size=self.kernel_size, |
|
stride=_pair(self.stride), |
|
padding=_pair(self.padding), |
|
dilation=_pair(self.dilation), |
|
bias=True) |
|
self.init_offset() |
|
|
|
def init_offset(self): |
|
self.conv_offset.weight.data.zero_() |
|
self.conv_offset.bias.data.zero_() |
|
|
|
def forward(self, x): |
|
offset = self.conv_offset(x) |
|
return deform_conv(x, offset, self.weight, self.stride, self.padding, self.dilation, self.groups, |
|
self.deformable_groups) |
|
|
|
|
|
class ModulatedDeformConv(nn.Module): |
|
|
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
groups=1, |
|
deformable_groups=1, |
|
bias=True): |
|
super(ModulatedDeformConv, self).__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.kernel_size = _pair(kernel_size) |
|
self.stride = stride |
|
self.padding = padding |
|
self.dilation = dilation |
|
self.groups = groups |
|
self.deformable_groups = deformable_groups |
|
self.with_bias = bias |
|
|
|
self.transposed = False |
|
self.output_padding = _single(0) |
|
|
|
self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels // groups, *self.kernel_size)) |
|
if bias: |
|
self.bias = nn.Parameter(torch.Tensor(out_channels)) |
|
else: |
|
self.register_parameter('bias', None) |
|
self.init_weights() |
|
|
|
def init_weights(self): |
|
n = self.in_channels |
|
for k in self.kernel_size: |
|
n *= k |
|
stdv = 1. / math.sqrt(n) |
|
self.weight.data.uniform_(-stdv, stdv) |
|
if self.bias is not None: |
|
self.bias.data.zero_() |
|
|
|
def forward(self, x, offset, mask): |
|
return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding, self.dilation, |
|
self.groups, self.deformable_groups) |
|
|
|
|
|
class ModulatedDeformConvPack(ModulatedDeformConv): |
|
"""A ModulatedDeformable Conv Encapsulation that acts as normal Conv layers. |
|
|
|
Args: |
|
in_channels (int): Same as nn.Conv2d. |
|
out_channels (int): Same as nn.Conv2d. |
|
kernel_size (int or tuple[int]): Same as nn.Conv2d. |
|
stride (int or tuple[int]): Same as nn.Conv2d. |
|
padding (int or tuple[int]): Same as nn.Conv2d. |
|
dilation (int or tuple[int]): Same as nn.Conv2d. |
|
groups (int): Same as nn.Conv2d. |
|
bias (bool or str): If specified as `auto`, it will be decided by the |
|
norm_cfg. Bias will be set as True if norm_cfg is None, otherwise |
|
False. |
|
""" |
|
|
|
_version = 2 |
|
|
|
def __init__(self, *args, **kwargs): |
|
super(ModulatedDeformConvPack, self).__init__(*args, **kwargs) |
|
|
|
self.conv_offset = nn.Conv2d( |
|
self.in_channels, |
|
self.deformable_groups * 3 * self.kernel_size[0] * self.kernel_size[1], |
|
kernel_size=self.kernel_size, |
|
stride=_pair(self.stride), |
|
padding=_pair(self.padding), |
|
dilation=_pair(self.dilation), |
|
bias=True) |
|
self.init_weights() |
|
|
|
def init_weights(self): |
|
super(ModulatedDeformConvPack, self).init_weights() |
|
if hasattr(self, 'conv_offset'): |
|
self.conv_offset.weight.data.zero_() |
|
self.conv_offset.bias.data.zero_() |
|
|
|
def forward(self, x): |
|
out = self.conv_offset(x) |
|
o1, o2, mask = torch.chunk(out, 3, dim=1) |
|
offset = torch.cat((o1, o2), dim=1) |
|
mask = torch.sigmoid(mask) |
|
return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding, self.dilation, |
|
self.groups, self.deformable_groups) |
|
|