codeformer / basicsr /models /sr_model.py
zhangbo2008's picture
Upload folder using huggingface_hub
6c60ccc
raw
history blame
8.26 kB
import torch
from collections import OrderedDict
from os import path as osp
from tqdm import tqdm
from basicsr.archs import build_network
from basicsr.losses import build_loss
from basicsr.metrics import calculate_metric
from basicsr.utils import get_root_logger, imwrite, tensor2img
from basicsr.utils.registry import MODEL_REGISTRY
from .base_model import BaseModel
@MODEL_REGISTRY.register()
class SRModel(BaseModel):
"""Base SR model for single image super-resolution."""
def __init__(self, opt):
super(SRModel, self).__init__(opt)
# define network
self.net_g = build_network(opt['network_g'])
self.net_g = self.model_to_device(self.net_g)
self.print_network(self.net_g)
# load pretrained models
load_path = self.opt['path'].get('pretrain_network_g', None)
if load_path is not None:
param_key = self.opt['path'].get('param_key_g', 'params')
self.load_network(self.net_g, load_path, self.opt['path'].get('strict_load_g', True), param_key)
if self.is_train:
self.init_training_settings()
def init_training_settings(self):
self.net_g.train()
train_opt = self.opt['train']
self.ema_decay = train_opt.get('ema_decay', 0)
if self.ema_decay > 0:
logger = get_root_logger()
logger.info(f'Use Exponential Moving Average with decay: {self.ema_decay}')
# define network net_g with Exponential Moving Average (EMA)
# net_g_ema is used only for testing on one GPU and saving
# There is no need to wrap with DistributedDataParallel
self.net_g_ema = build_network(self.opt['network_g']).to(self.device)
# load pretrained model
load_path = self.opt['path'].get('pretrain_network_g', None)
if load_path is not None:
self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema')
else:
self.model_ema(0) # copy net_g weight
self.net_g_ema.eval()
# define losses
if train_opt.get('pixel_opt'):
self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device)
else:
self.cri_pix = None
if train_opt.get('perceptual_opt'):
self.cri_perceptual = build_loss(train_opt['perceptual_opt']).to(self.device)
else:
self.cri_perceptual = None
if self.cri_pix is None and self.cri_perceptual is None:
raise ValueError('Both pixel and perceptual losses are None.')
# set up optimizers and schedulers
self.setup_optimizers()
self.setup_schedulers()
def setup_optimizers(self):
train_opt = self.opt['train']
optim_params = []
for k, v in self.net_g.named_parameters():
if v.requires_grad:
optim_params.append(v)
else:
logger = get_root_logger()
logger.warning(f'Params {k} will not be optimized.')
optim_type = train_opt['optim_g'].pop('type')
self.optimizer_g = self.get_optimizer(optim_type, optim_params, **train_opt['optim_g'])
self.optimizers.append(self.optimizer_g)
def feed_data(self, data):
self.lq = data['lq'].to(self.device)
if 'gt' in data:
self.gt = data['gt'].to(self.device)
def optimize_parameters(self, current_iter):
self.optimizer_g.zero_grad()
self.output = self.net_g(self.lq)
l_total = 0
loss_dict = OrderedDict()
# pixel loss
if self.cri_pix:
l_pix = self.cri_pix(self.output, self.gt)
l_total += l_pix
loss_dict['l_pix'] = l_pix
# perceptual loss
if self.cri_perceptual:
l_percep, l_style = self.cri_perceptual(self.output, self.gt)
if l_percep is not None:
l_total += l_percep
loss_dict['l_percep'] = l_percep
if l_style is not None:
l_total += l_style
loss_dict['l_style'] = l_style
l_total.backward()
self.optimizer_g.step()
self.log_dict = self.reduce_loss_dict(loss_dict)
if self.ema_decay > 0:
self.model_ema(decay=self.ema_decay)
def test(self):
if hasattr(self, 'ema_decay'):
self.net_g_ema.eval()
with torch.no_grad():
self.output = self.net_g_ema(self.lq)
else:
self.net_g.eval()
with torch.no_grad():
self.output = self.net_g(self.lq)
self.net_g.train()
def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
if self.opt['rank'] == 0:
self.nondist_validation(dataloader, current_iter, tb_logger, save_img)
def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
dataset_name = dataloader.dataset.opt['name']
with_metrics = self.opt['val'].get('metrics') is not None
if with_metrics:
self.metric_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()}
pbar = tqdm(total=len(dataloader), unit='image')
for idx, val_data in enumerate(dataloader):
img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0]
self.feed_data(val_data)
self.test()
visuals = self.get_current_visuals()
sr_img = tensor2img([visuals['result']])
if 'gt' in visuals:
gt_img = tensor2img([visuals['gt']])
del self.gt
# tentative for out of GPU memory
del self.lq
del self.output
torch.cuda.empty_cache()
if save_img:
if self.opt['is_train']:
save_img_path = osp.join(self.opt['path']['visualization'], img_name,
f'{img_name}_{current_iter}.png')
else:
if self.opt['val']['suffix']:
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
f'{img_name}_{self.opt["val"]["suffix"]}.png')
else:
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
f'{img_name}_{self.opt["name"]}.png')
imwrite(sr_img, save_img_path)
if with_metrics:
# calculate metrics
for name, opt_ in self.opt['val']['metrics'].items():
metric_data = dict(img1=sr_img, img2=gt_img)
self.metric_results[name] += calculate_metric(metric_data, opt_)
pbar.update(1)
pbar.set_description(f'Test {img_name}')
pbar.close()
if with_metrics:
for metric in self.metric_results.keys():
self.metric_results[metric] /= (idx + 1)
self._log_validation_metric_values(current_iter, dataset_name, tb_logger)
def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger):
log_str = f'Validation {dataset_name}\n'
for metric, value in self.metric_results.items():
log_str += f'\t # {metric}: {value:.4f}\n'
logger = get_root_logger()
logger.info(log_str)
if tb_logger:
for metric, value in self.metric_results.items():
tb_logger.add_scalar(f'metrics/{metric}', value, current_iter)
def get_current_visuals(self):
out_dict = OrderedDict()
out_dict['lq'] = self.lq.detach().cpu()
out_dict['result'] = self.output.detach().cpu()
if hasattr(self, 'gt'):
out_dict['gt'] = self.gt.detach().cpu()
return out_dict
def save(self, epoch, current_iter):
if hasattr(self, 'ema_decay'):
self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema'])
else:
self.save_network(self.net_g, 'net_g', current_iter)
self.save_training_state(epoch, current_iter)