zhang94 commited on
Commit
e209fca
1 Parent(s): 24d8306

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -72.19 +/- 112.58
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f06ade03e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f06ade03ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f06ade03f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f06ade07040>", "_build": "<function ActorCriticPolicy._build at 0x7f06ade070d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f06ade07160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f06ade071f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f06ade07280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f06ade07310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f06ade073a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f06ade07430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f06ade074c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f06ade05840>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686297525447673479, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr9c72isa8/M6auvm9bXr5vH8I9ToW9PQAAAAAAAAAAWnpyPp/vuj9MBTk/DBqBvoPivr78hKq+AAAAAAAAAACaacc7/obbPnsD5T25qYu/219wvvLJoL4AAAAAAAAAAMaXmL4A/dM/5fFNv2qBbT0Roy4+CRYNPQAAAAAAAAAAjf85Pyg+yT6n2KU/FLy4vwA5pL9wPIe+AAAAAAAAAAA29wu/wk+UP01SpL+/FT2/fiqTP22x4z4AAAAAAAAAADNbWj5iCpU/F5VHP+MeJb9WVX29TdWKvQAAAAAAAAAAZmG3PSRJxj+I1uY+H3sePtx3Lz1KvTA+AAAAAAAAAACQTdi+20YzPwA/bL8uHou/kkkyP56B+T4AAAAAAAAAAEJ8gr7a04s+70+LvQpepL/O8BC//mCwvAAAAAAAAAAAXkcyv2iD8j54nqy/m2STvywFTz/bka88AAAAAAAAAAAA1cU9zTefP7Zp0T50xgy/JIUcvrF8nL4AAAAAAAAAAM1EWrxrQlc/9awrvpEaer962JU+cMOjPgAAAAAAAAAAbta/vhLU7D41cyy/y+mUv/4GgbyfWA2+AAAAAAAAAAAmWZU9hS2aP4gucj6T1Au/w9NuvipbBr4AAAAAAAAAABq2Sz4k0BA/vnjuPhZVkr+br4W+Kp14vgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.6384000000000001, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwG1POQZGax6MAWyUS1yMAXSUR0Am0CyQgcLjdX2UKGgGR8BbthAB1cMWaAdLT2gIR0Am0ZbY9Pk8dX2UKGgGR8BZS9qYZ2pyaAdLc2gIR0Am6lgtvn8sdX2UKGgGR8BaNvuG9HtnaAdLT2gIR0Am+6e5Fw1jdX2UKGgGR8BWw2iUPhAGaAdLU2gIR0AnBGEwnH/+dX2UKGgGR8BXdPEfkmx/aAdLUWgIR0AnCO2iL2pRdX2UKGgGR8Bih0Xk5p8GaAdLcGgIR0AnMi8FpwjudX2UKGgGR8Bez65kK/mDaAdLWGgIR0AnRRTjvNNbdX2UKGgGR8BtO9wDNhVmaAdLX2gIR0AnSTWXkYGddX2UKGgGR8B0uctcv/R3aAdLY2gIR0AnQUGmk30gdX2UKGgGR8B0ZTx+az/qaAdLcmgIR0AnUTZg5R0mdX2UKGgGR8BqjP9m6GxmaAdLV2gIR0AnU7CiyprDdX2UKGgGR8BcbFmOEM9baAdLe2gIR0AnU0OVgQYldX2UKGgGR8Bm2nsTnJT3aAdLaWgIR0AnV8iOearndX2UKGgGR8B4jQHv+fh/aAdLd2gIR0AnYXZXdTHbdX2UKGgGR8BtSaZnctXgaAdLVmgIR0Anb4SHuZ1FdX2UKGgGR8BeIwRwqAjIaAdLeWgIR0AneCnP3SKFdX2UKGgGR8BbLj7MxGlRaAdLUmgIR0AngYE4ecQRdX2UKGgGR8BnzvkDIRywaAdLSGgIR0AngRoysS00dX2UKGgGR8B14zhaTwDvaAdLcmgIR0AnnVwPy08edX2UKGgGR8BPQI7V8Ti9aAdLQGgIR0AntPwd8zAOdX2UKGgGR8BrJfVI7NjcaAdLX2gIR0Ans2ETQE6ldX2UKGgGR8BRPbFCLMs6aAdLPGgIR0Anus8PnSv1dX2UKGgGR8BditxZMcp9aAdLSGgIR0Anx3bmEGqxdX2UKGgGR8BZpIp+c6NmaAdLbWgIR0AnyJzkp7TldX2UKGgGR8BxZ9Brvb48aAdLQWgIR0An4OH31zySdX2UKGgGR8Bho1qnFYMfaAdLYGgIR0An+CKaXrt3dX2UKGgGR8BgjTp5eJHiaAdLb2gIR0An9eruIAOsdX2UKGgGR8Bl0nMyJsO5aAdLSWgIR0An9pqREF4cdX2UKGgGR8BemFOwgTysaAdLeWgIR0AoC8UVSGahdX2UKGgGR8BjqsPYnOSoaAdLXWgIR0AoGOcUdq+KdX2UKGgGR8Bd9IcebNKRaAdLdWgIR0AoIBQvYe1bdX2UKGgGR8B8doRGtp22aAdLgGgIR0AoImXw9aEBdX2UKGgGR8BhNxR4yGi6aAdLhGgIR0AoKh2W6bvxdX2UKGgGR8BQsFOsT37DaAdLSmgIR0AoNbnoxHoYdX2UKGgGR8BwpGFXaJyiaAdLUGgIR0AoMuKXOW0JdX2UKGgGR8BE3MNDtw71aAdLXWgIR0AoQcqe9SMtdX2UKGgGR8B0rDa0x/NJaAdLfmgIR0AoQj9GZuyedX2UKGgGR8B6FBNxlxwRaAdLY2gIR0AoQvM8ox5+dX2UKGgGR8Bihqtga3qiaAdLWWgIR0AoRcAzYVZcdX2UKGgGR8BHGxlQMx46aAdLhWgIR0AoYNDtw71adX2UKGgGR8BS+NH+ZPVNaAdLPmgIR0AoWPFNtZV5dX2UKGgGR8Bgl3Y4ACGOaAdLUWgIR0AoXLvCuU2UdX2UKGgGR8BZRdzwMH8kaAdLXGgIR0Aoa7q6e5FxdX2UKGgGR8BTYgm7aqS6aAdLQmgIR0AocGOdXko4dX2UKGgGR8BURyzcAR02aAdLb2gIR0AocfJ3gUDddX2UKGgGR8BccFUhmoR7aAdLbmgIR0AofQ9ic5KfdX2UKGgGR8BjQOC04R29aAdLZmgIR0AokwpON5t4dX2UKGgGR8B9OH2bobGWaAdLYWgIR0AolZKWcBludX2UKGgGR8BgzvIyTINmaAdLWmgIR0Aon7TDwYtQdX2UKGgGR8Bjt1K/VRUFaAdLSWgIR0AomtOEdvKmdX2UKGgGR8B0ujZsbedkaAdLWmgIR0Aoq593KSxJdX2UKGgGR8Bcy4Qrc0tRaAdLYGgIR0AopCrtE5QxdX2UKGgGR8Bg0QIfKZDzaAdLWWgIR0AoqsZpBX0YdX2UKGgGR8BcBgbQ1JlKaAdLXGgIR0Aorpqynk1edX2UKGgGR8BUBgjQiRnwaAdLQ2gIR0AouifxtpEhdX2UKGgGR8BYA5qIrOJMaAdLUWgIR0Aot2rXDm8vdX2UKGgGR8BQDqRMewLWaAdLQ2gIR0AowGY8dPtVdX2UKGgGR8BYy18LKFIvaAdLWGgIR0Aox8stkFwDdX2UKGgGR8BZN66WgOBlaAdLT2gIR0AozJe3QUpNdX2UKGgGR8BzfxX9zfaYaAdLj2gIR0Ao0ig00m+kdX2UKGgGR8BZl86RyOrAaAdLb2gIR0Ao3QgLZzxPdX2UKGgGR8BlHR0r9VFQaAdLQmgIR0Ao4jcmBvrGdX2UKGgGR8BccjMmnfl7aAdLPWgIR0Ao8Xa8Hv+gdX2UKGgGR8BgK4qXnhbXaAdLZGgIR0Ao8PyTY/VzdX2UKGgGR8BVWqt9x6v8aAdLSmgIR0Ao/uogmqo7dX2UKGgGR8Bpirgn+hoNaAdLSmgIR0ApDvGZNO/MdX2UKGgGR8Bge8rNGEwnaAdLamgIR0ApDnEl3QlbdX2UKGgGR8BohmgJ1JUYaAdLa2gIR0ApG/JNj9XLdX2UKGgGR8ByxUpmVZ9vaAdLZWgIR0ApGRB/qgRLdX2UKGgGR8BYxumNzbN9aAdLUGgIR0ApHTHbRF7VdX2UKGgGR8BXNcuez2OAaAdLTmgIR0ApIm8/UvwmdX2UKGgGR8B2HpD4QBgeaAdLSmgIR0ApIsCDEm6YdX2UKGgGR8Beg6IznA6/aAdLP2gIR0ApHAwfyPMjdX2UKGgGR8B0Wvm3fAKwaAdLaWgIR0ApJ4REnb7CdX2UKGgGR8BzVzHU+cH4aAdLgWgIR0ApL7+kxh2GdX2UKGgGR8BPVsTnJT2naAdLTGgIR0ApNQY1pCa7dX2UKGgGR8Bqf0t03fhuaAdLbGgIR0ApM79ycTakdX2UKGgGR8BWZjsMRYigaAdLVWgIR0ApQ+lCTlkpdX2UKGgGR8B1yhJrcj7iaAdLW2gIR0ApWcNH6MzedX2UKGgGR8BglEkpqh11aAdLRGgIR0ApW/CZWq95dX2UKGgGR8BYYPgvUSZjaAdLQGgIR0Apahib2Dg7dX2UKGgGR8BYiGXHBDXwaAdLUGgIR0Apd0dzXBgvdX2UKGgGR8BdpfrB0p3HaAdLYWgIR0Apf44ZMtbtdX2UKGgGR8BilLk2gnMMaAdLeWgIR0Apfmg8KXv6dX2UKGgGR8BoTeIdlum8aAdLcGgIR0ApglfqoqCpdX2UKGgGR8BTbZ/Tb349aAdLO2gIR0ApihmoR7JGdX2UKGgGR8BpPCS1Vo6CaAdLamgIR0Apl7fpD/lydX2UKGgGR8Ab4MVk+X7caAdLaWgIR0Apl2U0Nz8xdX2UKGgGR8Bxy0PRRdhRaAdLV2gIR0ApmkB0ZFXrdX2UKGgGR8B25wEidJ8OaAdLeWgIR0AppkcS5AhTdX2UKGgGR8Bi0nalDWsjaAdLa2gIR0AppV8Ti83/dX2UKGgGR8BiLq90zTF3aAdLZmgIR0ApqDHOryUcdX2UKGgGR8BWIlXeWOZLaAdLhWgIR0ApvXXiBGx2dX2UKGgGR8BYJ1ymygPFaAdLTWgIR0ApxrdnCfpVdX2UKGgGR8BWfHkT6BRRaAdLQGgIR0ApxDSgGr0bdX2UKGgGR8BumACCBf8eaAdLXmgIR0ApzNVR1oxpdX2UKGgGR8AVM1UEPlMiaAdLfWgIR0ApyPhAGB4EdX2UKGgGR8BX0A35vcagaAdLR2gIR0Ap1mOEM9bHdX2UKGgGR8B1XOJVKf4AaAdLcGgIR0Ap36oESuhcdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVzAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFgvaG9tZS96aGFuZ2ppYW4vbWluaWNvbmRhMy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxYL2hvbWUvemhhbmdqaWFuL21pbmljb25kYTMvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAowIQ2VsbFR5cGWUhZRSlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoHUc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVzAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFgvaG9tZS96aGFuZ2ppYW4vbWluaWNvbmRhMy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxYL2hvbWUvemhhbmdqaWFuL21pbmljb25kYTMvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAowIQ2VsbFR5cGWUhZRSlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoHUc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.4.0-144-generic-x86_64-with-glibc2.31 # 161-Ubuntu SMP Fri Feb 3 14:49:04 UTC 2023", "Python": "3.9.16", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cpu", "GPU Enabled": "False", "Numpy": "1.24.3", "Cloudpickle": "1.3.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.17.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0603d255ab2198b9b1e35cb40c4701971c05ad81ec369588492c5677cbd0f203
3
+ size 146141
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f06ade03e50>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f06ade03ee0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f06ade03f70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f06ade07040>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f06ade070d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f06ade07160>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f06ade071f0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f06ade07280>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f06ade07310>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f06ade073a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f06ade07430>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f06ade074c0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f06ade05840>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 16384,
25
+ "_total_timesteps": 10000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1686297525447673479,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr9c72isa8/M6auvm9bXr5vH8I9ToW9PQAAAAAAAAAAWnpyPp/vuj9MBTk/DBqBvoPivr78hKq+AAAAAAAAAACaacc7/obbPnsD5T25qYu/219wvvLJoL4AAAAAAAAAAMaXmL4A/dM/5fFNv2qBbT0Roy4+CRYNPQAAAAAAAAAAjf85Pyg+yT6n2KU/FLy4vwA5pL9wPIe+AAAAAAAAAAA29wu/wk+UP01SpL+/FT2/fiqTP22x4z4AAAAAAAAAADNbWj5iCpU/F5VHP+MeJb9WVX29TdWKvQAAAAAAAAAAZmG3PSRJxj+I1uY+H3sePtx3Lz1KvTA+AAAAAAAAAACQTdi+20YzPwA/bL8uHou/kkkyP56B+T4AAAAAAAAAAEJ8gr7a04s+70+LvQpepL/O8BC//mCwvAAAAAAAAAAAXkcyv2iD8j54nqy/m2STvywFTz/bka88AAAAAAAAAAAA1cU9zTefP7Zp0T50xgy/JIUcvrF8nL4AAAAAAAAAAM1EWrxrQlc/9awrvpEaer962JU+cMOjPgAAAAAAAAAAbta/vhLU7D41cyy/y+mUv/4GgbyfWA2+AAAAAAAAAAAmWZU9hS2aP4gucj6T1Au/w9NuvipbBr4AAAAAAAAAABq2Sz4k0BA/vnjuPhZVkr+br4W+Kp14vgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.6384000000000001,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwG1POQZGax6MAWyUS1yMAXSUR0Am0CyQgcLjdX2UKGgGR8BbthAB1cMWaAdLT2gIR0Am0ZbY9Pk8dX2UKGgGR8BZS9qYZ2pyaAdLc2gIR0Am6lgtvn8sdX2UKGgGR8BaNvuG9HtnaAdLT2gIR0Am+6e5Fw1jdX2UKGgGR8BWw2iUPhAGaAdLU2gIR0AnBGEwnH/+dX2UKGgGR8BXdPEfkmx/aAdLUWgIR0AnCO2iL2pRdX2UKGgGR8Bih0Xk5p8GaAdLcGgIR0AnMi8FpwjudX2UKGgGR8Bez65kK/mDaAdLWGgIR0AnRRTjvNNbdX2UKGgGR8BtO9wDNhVmaAdLX2gIR0AnSTWXkYGddX2UKGgGR8B0uctcv/R3aAdLY2gIR0AnQUGmk30gdX2UKGgGR8B0ZTx+az/qaAdLcmgIR0AnUTZg5R0mdX2UKGgGR8BqjP9m6GxmaAdLV2gIR0AnU7CiyprDdX2UKGgGR8BcbFmOEM9baAdLe2gIR0AnU0OVgQYldX2UKGgGR8Bm2nsTnJT3aAdLaWgIR0AnV8iOearndX2UKGgGR8B4jQHv+fh/aAdLd2gIR0AnYXZXdTHbdX2UKGgGR8BtSaZnctXgaAdLVmgIR0Anb4SHuZ1FdX2UKGgGR8BeIwRwqAjIaAdLeWgIR0AneCnP3SKFdX2UKGgGR8BbLj7MxGlRaAdLUmgIR0AngYE4ecQRdX2UKGgGR8BnzvkDIRywaAdLSGgIR0AngRoysS00dX2UKGgGR8B14zhaTwDvaAdLcmgIR0AnnVwPy08edX2UKGgGR8BPQI7V8Ti9aAdLQGgIR0AntPwd8zAOdX2UKGgGR8BrJfVI7NjcaAdLX2gIR0Ans2ETQE6ldX2UKGgGR8BRPbFCLMs6aAdLPGgIR0Anus8PnSv1dX2UKGgGR8BditxZMcp9aAdLSGgIR0Anx3bmEGqxdX2UKGgGR8BZpIp+c6NmaAdLbWgIR0AnyJzkp7TldX2UKGgGR8BxZ9Brvb48aAdLQWgIR0An4OH31zySdX2UKGgGR8Bho1qnFYMfaAdLYGgIR0An+CKaXrt3dX2UKGgGR8BgjTp5eJHiaAdLb2gIR0An9eruIAOsdX2UKGgGR8Bl0nMyJsO5aAdLSWgIR0An9pqREF4cdX2UKGgGR8BemFOwgTysaAdLeWgIR0AoC8UVSGahdX2UKGgGR8BjqsPYnOSoaAdLXWgIR0AoGOcUdq+KdX2UKGgGR8Bd9IcebNKRaAdLdWgIR0AoIBQvYe1bdX2UKGgGR8B8doRGtp22aAdLgGgIR0AoImXw9aEBdX2UKGgGR8BhNxR4yGi6aAdLhGgIR0AoKh2W6bvxdX2UKGgGR8BQsFOsT37DaAdLSmgIR0AoNbnoxHoYdX2UKGgGR8BwpGFXaJyiaAdLUGgIR0AoMuKXOW0JdX2UKGgGR8BE3MNDtw71aAdLXWgIR0AoQcqe9SMtdX2UKGgGR8B0rDa0x/NJaAdLfmgIR0AoQj9GZuyedX2UKGgGR8B6FBNxlxwRaAdLY2gIR0AoQvM8ox5+dX2UKGgGR8Bihqtga3qiaAdLWWgIR0AoRcAzYVZcdX2UKGgGR8BHGxlQMx46aAdLhWgIR0AoYNDtw71adX2UKGgGR8BS+NH+ZPVNaAdLPmgIR0AoWPFNtZV5dX2UKGgGR8Bgl3Y4ACGOaAdLUWgIR0AoXLvCuU2UdX2UKGgGR8BZRdzwMH8kaAdLXGgIR0Aoa7q6e5FxdX2UKGgGR8BTYgm7aqS6aAdLQmgIR0AocGOdXko4dX2UKGgGR8BURyzcAR02aAdLb2gIR0AocfJ3gUDddX2UKGgGR8BccFUhmoR7aAdLbmgIR0AofQ9ic5KfdX2UKGgGR8BjQOC04R29aAdLZmgIR0AokwpON5t4dX2UKGgGR8B9OH2bobGWaAdLYWgIR0AolZKWcBludX2UKGgGR8BgzvIyTINmaAdLWmgIR0Aon7TDwYtQdX2UKGgGR8Bjt1K/VRUFaAdLSWgIR0AomtOEdvKmdX2UKGgGR8B0ujZsbedkaAdLWmgIR0Aoq593KSxJdX2UKGgGR8Bcy4Qrc0tRaAdLYGgIR0AopCrtE5QxdX2UKGgGR8Bg0QIfKZDzaAdLWWgIR0AoqsZpBX0YdX2UKGgGR8BcBgbQ1JlKaAdLXGgIR0Aorpqynk1edX2UKGgGR8BUBgjQiRnwaAdLQ2gIR0AouifxtpEhdX2UKGgGR8BYA5qIrOJMaAdLUWgIR0Aot2rXDm8vdX2UKGgGR8BQDqRMewLWaAdLQ2gIR0AowGY8dPtVdX2UKGgGR8BYy18LKFIvaAdLWGgIR0Aox8stkFwDdX2UKGgGR8BZN66WgOBlaAdLT2gIR0AozJe3QUpNdX2UKGgGR8BzfxX9zfaYaAdLj2gIR0Ao0ig00m+kdX2UKGgGR8BZl86RyOrAaAdLb2gIR0Ao3QgLZzxPdX2UKGgGR8BlHR0r9VFQaAdLQmgIR0Ao4jcmBvrGdX2UKGgGR8BccjMmnfl7aAdLPWgIR0Ao8Xa8Hv+gdX2UKGgGR8BgK4qXnhbXaAdLZGgIR0Ao8PyTY/VzdX2UKGgGR8BVWqt9x6v8aAdLSmgIR0Ao/uogmqo7dX2UKGgGR8Bpirgn+hoNaAdLSmgIR0ApDvGZNO/MdX2UKGgGR8Bge8rNGEwnaAdLamgIR0ApDnEl3QlbdX2UKGgGR8BohmgJ1JUYaAdLa2gIR0ApG/JNj9XLdX2UKGgGR8ByxUpmVZ9vaAdLZWgIR0ApGRB/qgRLdX2UKGgGR8BYxumNzbN9aAdLUGgIR0ApHTHbRF7VdX2UKGgGR8BXNcuez2OAaAdLTmgIR0ApIm8/UvwmdX2UKGgGR8B2HpD4QBgeaAdLSmgIR0ApIsCDEm6YdX2UKGgGR8Beg6IznA6/aAdLP2gIR0ApHAwfyPMjdX2UKGgGR8B0Wvm3fAKwaAdLaWgIR0ApJ4REnb7CdX2UKGgGR8BzVzHU+cH4aAdLgWgIR0ApL7+kxh2GdX2UKGgGR8BPVsTnJT2naAdLTGgIR0ApNQY1pCa7dX2UKGgGR8Bqf0t03fhuaAdLbGgIR0ApM79ycTakdX2UKGgGR8BWZjsMRYigaAdLVWgIR0ApQ+lCTlkpdX2UKGgGR8B1yhJrcj7iaAdLW2gIR0ApWcNH6MzedX2UKGgGR8BglEkpqh11aAdLRGgIR0ApW/CZWq95dX2UKGgGR8BYYPgvUSZjaAdLQGgIR0Apahib2Dg7dX2UKGgGR8BYiGXHBDXwaAdLUGgIR0Apd0dzXBgvdX2UKGgGR8BdpfrB0p3HaAdLYWgIR0Apf44ZMtbtdX2UKGgGR8BilLk2gnMMaAdLeWgIR0Apfmg8KXv6dX2UKGgGR8BoTeIdlum8aAdLcGgIR0ApglfqoqCpdX2UKGgGR8BTbZ/Tb349aAdLO2gIR0ApihmoR7JGdX2UKGgGR8BpPCS1Vo6CaAdLamgIR0Apl7fpD/lydX2UKGgGR8Ab4MVk+X7caAdLaWgIR0Apl2U0Nz8xdX2UKGgGR8Bxy0PRRdhRaAdLV2gIR0ApmkB0ZFXrdX2UKGgGR8B25wEidJ8OaAdLeWgIR0AppkcS5AhTdX2UKGgGR8Bi0nalDWsjaAdLa2gIR0AppV8Ti83/dX2UKGgGR8BiLq90zTF3aAdLZmgIR0ApqDHOryUcdX2UKGgGR8BWIlXeWOZLaAdLhWgIR0ApvXXiBGx2dX2UKGgGR8BYJ1ymygPFaAdLTWgIR0ApxrdnCfpVdX2UKGgGR8BWfHkT6BRRaAdLQGgIR0ApxDSgGr0bdX2UKGgGR8BumACCBf8eaAdLXmgIR0ApzNVR1oxpdX2UKGgGR8AVM1UEPlMiaAdLfWgIR0ApyPhAGB4EdX2UKGgGR8BX0A35vcagaAdLR2gIR0Ap1mOEM9bHdX2UKGgGR8B1XOJVKf4AaAdLcGgIR0Ap36oESuhcdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 4,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVzAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFgvaG9tZS96aGFuZ2ppYW4vbWluaWNvbmRhMy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxYL2hvbWUvemhhbmdqaWFuL21pbmljb25kYTMvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAowIQ2VsbFR5cGWUhZRSlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoHUc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVzAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFgvaG9tZS96aGFuZ2ppYW4vbWluaWNvbmRhMy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxYL2hvbWUvemhhbmdqaWFuL21pbmljb25kYTMvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAowIQ2VsbFR5cGWUhZRSlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoHUc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b25f5053e6795d3ee50793f94917116b0b868a4b1da1b9e4e824604c4a834303
3
+ size 87545
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e097d3ef594b460f37d142941f5acc6b22169ad5c44f4a55169f1f5a6201592
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.4.0-144-generic-x86_64-with-glibc2.31 # 161-Ubuntu SMP Fri Feb 3 14:49:04 UTC 2023
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.0+cpu
5
+ - GPU Enabled: False
6
+ - Numpy: 1.24.3
7
+ - Cloudpickle: 1.3.0
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.17.0
results.json ADDED
@@ -0,0 +1 @@
 
1
+ {"mean_reward": -72.19311582478694, "std_reward": 112.58172866598541, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-09T08:08:37.471274"}