Upload tuned PPO LunarLander-v2 trained agent, again,again
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +39 -39
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +1 -1
- ppo-LunarLander-v2/system_info.txt +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 275.82 +/- 19.11
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x782d6f9c8d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x782d6f9c8dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x782d6f9c8e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x782d6f9c8ee0>", "_build": "<function ActorCriticPolicy._build at 0x782d6f9c8f70>", "forward": "<function ActorCriticPolicy.forward at 0x782d6f9c9000>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x782d6f9c9090>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x782d6f9c9120>", "_predict": "<function ActorCriticPolicy._predict at 0x782d6f9c91b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x782d6f9c9240>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x782d6f9c92d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x782d6f9c9360>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x782d6f96d680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1785856, "_total_timesteps": 1771168, "_num_timesteps_at_start": 1671168, "seed": null, "action_noise": null, "start_time": 1729271018271491574, "learning_rate": 0.0008, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM18Bbsju5I/r/1BveY/P79Wyzm9pSaqPQAAAAAAAAAAZq+lPBTCn7oUcUO8FT+CPPsoDzs4FWO9AACAPwAAgD/Aboq9Cft5P4IFdr7bjkW/hRDnvR3a1LwAAAAAAAAAADNz+zmpgUK85mQAvbJpTbwkjtW8C69tvQAAgD8AAIA/M4bSPMunBD/OwFw9ysv4vlkjXT1wNsC8AAAAAAAAAACaVQ099lBDugNut7EM9+muwEwtu3D0BjAAAIA/AACAP+ZiDL2kjAU6A+lxOmT6MTWAJZo6+vmRuQAAgD8AAIA/MxdvvO/CWz2TS2E+9rEZvocakj1EDhY9AAAAAAAAAADN2qi8kcgyPv8ThLyvu4i+/oWGu+6+qTwAAAAAAAAAAI1tYz6JIz0+itPOviB4k77cM2A9JcdGvgAAAAAAAAAA5m6/vU7hij2T23c+URBYvnTP0boLGAe+AAAAAAAAAADaKZ+94SCjul7hVr4AFGgyXuHVuaMqMbIAAIA/AACAP83hxjxSsMa5OSuVvSvGgbK8ioK5PdVosgAAgD8AAIA/gLQFPY+eMrorNIm3QHowshLJhbqGC6I2AACAPwAAgD+zUCw9HhCdP8rTZj7hgiu/fMhaPXtD6TwAAAAAAAAAABo7Db6oxZo/7L2hvkn0Sb8c5WC+sX6zuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.008292832752172519, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHC5t0JWvKWMAWyUS+iMAXSUR0CiPYNBfKISdX2UKGgGR0ByFrPAwfyPaAdL+mgIR0CiPZDzZpSKdX2UKGgGR0BuHzNB4UvgaAdLy2gIR0CiPZwokRjCdX2UKGgGR0Bx7SXqqwQlaAdL+mgIR0CiPbSrHU+cdX2UKGgGR0BxSFdfLLZBaAdLwGgIR0CiPg8vVVghdX2UKGgGR0Byt0D8tPHlaAdLxGgIR0CiPil7MPjGdX2UKGgGR0BxwvGXHBDYaAdLuGgIR0CiPjKyv9tNdX2UKGgGR0BxYjokiUxEaAdLvGgIR0CiPmZUcXFcdX2UKGgGR0ByKuOcUdq+aAdLp2gIR0CiPneYD1XedX2UKGgGR0BwZ32xptaZaAdL62gIR0CiPqu/tY0VdX2UKGgGR0BvxpTQ3PzGaAdLtGgIR0CiPs32M85kdX2UKGgGR0BIZMGorFwUaAdLlmgIR0CiPvElme18dX2UKGgGR0Bx4TdIoVmBaAdL4mgIR0CiPvwXqJMydX2UKGgGR0ByEZdLQHAzaAdL5mgIR0CiPw3IU8FIdX2UKGgGR0BzETkXDWK/aAdLv2gIR0CiPxmZE2HddX2UKGgGR0BwL4yckMTfaAdLv2gIR0CiPz8vmHQAdX2UKGgGR0BxUQCPp6hQaAdLvmgIR0CiP5dFnZkDdX2UKGgGR0Bwaz5O8CgcaAdLtGgIR0CiP6EC/47BdX2UKGgGR0BxgTghr30xaAdL22gIR0CiP9zBqKxcdX2UKGgGR0A8Y9wFTvRaaAdLVmgIR0CiP/NRekYXdX2UKGgGR0BxA5Gc4HX3aAdL7GgIR0CiQCQvYe1bdX2UKGgGR0Bxsq3d9Dx9aAdL0GgIR0CiQGJYcNpedX2UKGgGR0BwJslByCFsaAdL22gIR0CiQIpGvwEydX2UKGgGR0BzBKuIRAbAaAdL8GgIR0CiQKaC+UQkdX2UKGgGR0BtIGgOBlMAaAdL1WgIR0CiQKk4FRpDdX2UKGgGR0BxOsNDtw71aAdL1mgIR0CiQMATAWSEdX2UKGgGR0ByHSwW3z+WaAdL22gIR0CiSWUvGp++dX2UKGgGR0BxAAUCaJAMaAdLzWgIR0CiSWHPmgandX2UKGgGR0BwQb1+RYA9aAdLtmgIR0CiSWoT4+KTdX2UKGgGR0BxpZ0W/JvHaAdLrWgIR0CiSXnT7VJ+dX2UKGgGR0BwaQmUnogWaAdL2mgIR0CiSauJUHY6dX2UKGgGR0Bv4HmDDjzaaAdL4mgIR0CiSbUE5hjOdX2UKGgGR0BwmxGAkLQYaAdLumgIR0CiSldOZb6hdX2UKGgGR0Bxhsf9xZMdaAdL62gIR0CiSsJqASWadX2UKGgGR0ByV+ol2NedaAdL+mgIR0CiSvKSgXdkdX2UKGgGR0BxezdCVrylaAdL4WgIR0CiSwzNt65YdX2UKGgGR0ByF5C2MKkVaAdL7WgIR0CiS4Ng8bJfdX2UKGgGR0ByLN7x/d6+aAdL2WgIR0CiS49nkDISdX2UKGgGR0Bw7GVfNRm9aAdLxGgIR0CiS7cSoOx0dX2UKGgGR0Bx4/NjbzshaAdL2GgIR0CiS7yBClabdX2UKGgGR0BxFlNg0CRwaAdLuGgIR0CiS+CV0Lc9dX2UKGgGR0BzWdq9GqgiaAdL4GgIR0CiS/5aePJadX2UKGgGR0BwQyaLGaQWaAdLzmgIR0CiTDBPKuB+dX2UKGgGR0BxR04Qz1sdaAdLyGgIR0CiTDxx95QhdX2UKGgGR0BvTliBoVVQaAdL4GgIR0CiTH2hh6SldX2UKGgGR0BxMv6fra/RaAdLwGgIR0CiTHwhwEQodX2UKGgGR0BwNqI55qubaAdL6WgIR0CiTQhisny/dX2UKGgGR0BwVzImw7koaAdL2WgIR0CiTaENnXd1dX2UKGgGR0Bx1z5Jsfq5aAdL0GgIR0CiTe8IJJGwdX2UKGgGR0BxIEzk6tDEaAdL02gIR0CiTkslsxfwdX2UKGgGR0BypUGyHEdeaAdLzGgIR0CiTr6BiCrcdX2UKGgGR0Bw/7nr6ciGaAdLyGgIR0CiTt/95yEMdX2UKGgGR0Btd8OAiFCcaAdL2mgIR0CiTu9y1eBydX2UKGgGR0BwL++23KB/aAdNAAFoCEdAok72HerMknV9lChoBkdAcR6foicG1WgHS+BoCEdAok9L79AHFHV9lChoBkdAcRg5QxesxWgHS9NoCEdAok9k25xzaXV9lChoBkdAcIwvgFX7tWgHS8loCEdAok+GJP69CnV9lChoBkdAcB5aWom5UmgHS9doCEdAok+49HMEBHV9lChoBkdAcydzfrKNhmgHS+1oCEdAok+24I8hcXV9lChoBkdAcJ/D1GsmwGgHS9xoCEdAolAfqLS/kHV9lChoBkdAcUvbYK6WgWgHS+BoCEdAolAntBv733V9lChoBkdAcB7mpVCHAWgHS79oCEdAolCOx4Y773V9lChoBkdAci3hib2DhGgHS+RoCEdAolCT3Cbc5HV9lChoBkdAb6fzZHuqm2gHS71oCEdAolC8QVbiZXV9lChoBkdAcQprVe8f3mgHS8doCEdAolFhxR2r4nV9lChoBkdAcRW7EYO2A2gHS+NoCEdAolFpN21Ul3V9lChoBkdAbcbtqHoHLWgHS8NoCEdAolF3K2a2F3V9lChoBkdAclcWYF7laWgHS9NoCEdAolGaakRBeHV9lChoBkdAcRvGmUGFBmgHS89oCEdAolHebAk9lnV9lChoBkdAcorfDDTBqWgHS7poCEdAolHlYB/7SHV9lChoBkdAcLvHdXT3I2gHS8ZoCEdAolHrXWe6I3V9lChoBkdAcUUb349HMGgHS89oCEdAolHwU+LWJHV9lChoBkdAcKev863iJmgHS+1oCEdAolH4/C66KHV9lChoBkdAbiZR9gF5fWgHS8JoCEdAolH/CMxXXHV9lChoBkdAceVO5J9RaWgHS7JoCEdAolIabc45tHV9lChoBkdAb0KmPYFqz2gHS6loCEdAolJriwSrYHV9lChoBkdAcEEUYKpkw2gHS69oCEdAolJ3jOs1bnV9lChoBkdAdATjLB9Cu2gHS/VoCEdAolLBJ9RaYHV9lChoBkdAcIHj+JgssmgHS8doCEdAolLpqwhW53V9lChoBkdAcZ4Tj/+85GgHS7NoCEdAolOQgDA8CHV9lChoBkdAcWYRtgrpaGgHS8ZoCEdAolOm5SWJJ3V9lChoBkdAccpt8eCCjGgHS9NoCEdAolO9SGahH3V9lChoBkdAcwe1A7gbZWgHS7loCEdAolPxmTTvzHV9lChoBkdAcFUhgmZ3LWgHS+xoCEdAolQRuGbkO3V9lChoBkdAcPTOKO1fFGgHS8RoCEdAolQfCoCMgnV9lChoBkdAb/v7sv7FbWgHS8loCEdAolQo/C66KHV9lChoBkdAbqCgs9SuQ2gHS7hoCEdAolQwCIUJwHV9lChoBkdAcYioybhFVmgHS+FoCEdAolRhnpSrHXV9lChoBkdAcwVd6cAimmgHS+1oCEdAolSfBLwnY3V9lChoBkdAcPvS1E3KjmgHS/RoCEdAolS5rJr+HnV9lChoBkdAcjvl0YCQtGgHS8hoCEdAolS6FVT723V9lChoBkdAcVCrKeTV2GgHS6VoCEdAolTV9roGIXV9lChoBkdAcMB44Ia99WgHS7poCEdAolTp1klNUXV9lChoBkdAc+FVEuxrz2gHTQEBaAhHQKJVXkTYdyV1fZQoaAZHQFWDenQ6ZIBoB0uhaAhHQKJVY/Vy3kR1fZQoaAZHQGRoSeRPoFFoB03oA2gIR0CiVegtOEdvdX2UKGgGR0Bxca0v4/NaaAdLyGgIR0CiVf0v4/NadX2UKGgGR0BNyN0V8CxNaAdLvmgIR0CiVi+3hGYsdX2UKGgGR0B0SoG5c1O1aAdL42gIR0CiVjnnEETydX2UKGgGR0BwsKkcjqwAaAdL0mgIR0CiVkmZE2HddWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 436, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.995, "gae_lambda": 0.985, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9KNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cb4a100cca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cb4a100cd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cb4a100cdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cb4a100ce50>", "_build": "<function ActorCriticPolicy._build at 0x7cb4a100cee0>", "forward": "<function ActorCriticPolicy.forward at 0x7cb4a100cf70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cb4a100d000>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cb4a100d090>", "_predict": "<function ActorCriticPolicy._predict at 0x7cb4a100d120>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cb4a100d1b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cb4a100d240>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cb4a100d2d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cb4a3930400>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1785856, "_total_timesteps": 1771168, "_num_timesteps_at_start": 1671168, "seed": null, "action_noise": null, "start_time": 1729271018271491574, "learning_rate": 0.0, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM18Bbsju5I/r/1BveY/P79Wyzm9pSaqPQAAAAAAAAAAZq+lPBTCn7oUcUO8FT+CPPsoDzs4FWO9AACAPwAAgD/Aboq9Cft5P4IFdr7bjkW/hRDnvR3a1LwAAAAAAAAAADNz+zmpgUK85mQAvbJpTbwkjtW8C69tvQAAgD8AAIA/M4bSPMunBD/OwFw9ysv4vlkjXT1wNsC8AAAAAAAAAACaVQ099lBDugNut7EM9+muwEwtu3D0BjAAAIA/AACAP+ZiDL2kjAU6A+lxOmT6MTWAJZo6+vmRuQAAgD8AAIA/MxdvvO/CWz2TS2E+9rEZvocakj1EDhY9AAAAAAAAAADN2qi8kcgyPv8ThLyvu4i+/oWGu+6+qTwAAAAAAAAAAI1tYz6JIz0+itPOviB4k77cM2A9JcdGvgAAAAAAAAAA5m6/vU7hij2T23c+URBYvnTP0boLGAe+AAAAAAAAAADaKZ+94SCjul7hVr4AFGgyXuHVuaMqMbIAAIA/AACAP83hxjxSsMa5OSuVvSvGgbK8ioK5PdVosgAAgD8AAIA/gLQFPY+eMrorNIm3QHowshLJhbqGC6I2AACAPwAAgD+zUCw9HhCdP8rTZj7hgiu/fMhaPXtD6TwAAAAAAAAAABo7Db6oxZo/7L2hvkn0Sb8c5WC+sX6zuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.008292832752172519, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHC5t0JWvKWMAWyUS+iMAXSUR0CiPYNBfKISdX2UKGgGR0ByFrPAwfyPaAdL+mgIR0CiPZDzZpSKdX2UKGgGR0BuHzNB4UvgaAdLy2gIR0CiPZwokRjCdX2UKGgGR0Bx7SXqqwQlaAdL+mgIR0CiPbSrHU+cdX2UKGgGR0BxSFdfLLZBaAdLwGgIR0CiPg8vVVghdX2UKGgGR0Byt0D8tPHlaAdLxGgIR0CiPil7MPjGdX2UKGgGR0BxwvGXHBDYaAdLuGgIR0CiPjKyv9tNdX2UKGgGR0BxYjokiUxEaAdLvGgIR0CiPmZUcXFcdX2UKGgGR0ByKuOcUdq+aAdLp2gIR0CiPneYD1XedX2UKGgGR0BwZ32xptaZaAdL62gIR0CiPqu/tY0VdX2UKGgGR0BvxpTQ3PzGaAdLtGgIR0CiPs32M85kdX2UKGgGR0BIZMGorFwUaAdLlmgIR0CiPvElme18dX2UKGgGR0Bx4TdIoVmBaAdL4mgIR0CiPvwXqJMydX2UKGgGR0ByEZdLQHAzaAdL5mgIR0CiPw3IU8FIdX2UKGgGR0BzETkXDWK/aAdLv2gIR0CiPxmZE2HddX2UKGgGR0BwL4yckMTfaAdLv2gIR0CiPz8vmHQAdX2UKGgGR0BxUQCPp6hQaAdLvmgIR0CiP5dFnZkDdX2UKGgGR0Bwaz5O8CgcaAdLtGgIR0CiP6EC/47BdX2UKGgGR0BxgTghr30xaAdL22gIR0CiP9zBqKxcdX2UKGgGR0A8Y9wFTvRaaAdLVmgIR0CiP/NRekYXdX2UKGgGR0BxA5Gc4HX3aAdL7GgIR0CiQCQvYe1bdX2UKGgGR0Bxsq3d9Dx9aAdL0GgIR0CiQGJYcNpedX2UKGgGR0BwJslByCFsaAdL22gIR0CiQIpGvwEydX2UKGgGR0BzBKuIRAbAaAdL8GgIR0CiQKaC+UQkdX2UKGgGR0BtIGgOBlMAaAdL1WgIR0CiQKk4FRpDdX2UKGgGR0BxOsNDtw71aAdL1mgIR0CiQMATAWSEdX2UKGgGR0ByHSwW3z+WaAdL22gIR0CiSWUvGp++dX2UKGgGR0BxAAUCaJAMaAdLzWgIR0CiSWHPmgandX2UKGgGR0BwQb1+RYA9aAdLtmgIR0CiSWoT4+KTdX2UKGgGR0BxpZ0W/JvHaAdLrWgIR0CiSXnT7VJ+dX2UKGgGR0BwaQmUnogWaAdL2mgIR0CiSauJUHY6dX2UKGgGR0Bv4HmDDjzaaAdL4mgIR0CiSbUE5hjOdX2UKGgGR0BwmxGAkLQYaAdLumgIR0CiSldOZb6hdX2UKGgGR0Bxhsf9xZMdaAdL62gIR0CiSsJqASWadX2UKGgGR0ByV+ol2NedaAdL+mgIR0CiSvKSgXdkdX2UKGgGR0BxezdCVrylaAdL4WgIR0CiSwzNt65YdX2UKGgGR0ByF5C2MKkVaAdL7WgIR0CiS4Ng8bJfdX2UKGgGR0ByLN7x/d6+aAdL2WgIR0CiS49nkDISdX2UKGgGR0Bw7GVfNRm9aAdLxGgIR0CiS7cSoOx0dX2UKGgGR0Bx4/NjbzshaAdL2GgIR0CiS7yBClabdX2UKGgGR0BxFlNg0CRwaAdLuGgIR0CiS+CV0Lc9dX2UKGgGR0BzWdq9GqgiaAdL4GgIR0CiS/5aePJadX2UKGgGR0BwQyaLGaQWaAdLzmgIR0CiTDBPKuB+dX2UKGgGR0BxR04Qz1sdaAdLyGgIR0CiTDxx95QhdX2UKGgGR0BvTliBoVVQaAdL4GgIR0CiTH2hh6SldX2UKGgGR0BxMv6fra/RaAdLwGgIR0CiTHwhwEQodX2UKGgGR0BwNqI55qubaAdL6WgIR0CiTQhisny/dX2UKGgGR0BwVzImw7koaAdL2WgIR0CiTaENnXd1dX2UKGgGR0Bx1z5Jsfq5aAdL0GgIR0CiTe8IJJGwdX2UKGgGR0BxIEzk6tDEaAdL02gIR0CiTkslsxfwdX2UKGgGR0BypUGyHEdeaAdLzGgIR0CiTr6BiCrcdX2UKGgGR0Bw/7nr6ciGaAdLyGgIR0CiTt/95yEMdX2UKGgGR0Btd8OAiFCcaAdL2mgIR0CiTu9y1eBydX2UKGgGR0BwL++23KB/aAdNAAFoCEdAok72HerMknV9lChoBkdAcR6foicG1WgHS+BoCEdAok9L79AHFHV9lChoBkdAcRg5QxesxWgHS9NoCEdAok9k25xzaXV9lChoBkdAcIwvgFX7tWgHS8loCEdAok+GJP69CnV9lChoBkdAcB5aWom5UmgHS9doCEdAok+49HMEBHV9lChoBkdAcydzfrKNhmgHS+1oCEdAok+24I8hcXV9lChoBkdAcJ/D1GsmwGgHS9xoCEdAolAfqLS/kHV9lChoBkdAcUvbYK6WgWgHS+BoCEdAolAntBv733V9lChoBkdAcB7mpVCHAWgHS79oCEdAolCOx4Y773V9lChoBkdAci3hib2DhGgHS+RoCEdAolCT3Cbc5HV9lChoBkdAb6fzZHuqm2gHS71oCEdAolC8QVbiZXV9lChoBkdAcQprVe8f3mgHS8doCEdAolFhxR2r4nV9lChoBkdAcRW7EYO2A2gHS+NoCEdAolFpN21Ul3V9lChoBkdAbcbtqHoHLWgHS8NoCEdAolF3K2a2F3V9lChoBkdAclcWYF7laWgHS9NoCEdAolGaakRBeHV9lChoBkdAcRvGmUGFBmgHS89oCEdAolHebAk9lnV9lChoBkdAcorfDDTBqWgHS7poCEdAolHlYB/7SHV9lChoBkdAcLvHdXT3I2gHS8ZoCEdAolHrXWe6I3V9lChoBkdAcUUb349HMGgHS89oCEdAolHwU+LWJHV9lChoBkdAcKev863iJmgHS+1oCEdAolH4/C66KHV9lChoBkdAbiZR9gF5fWgHS8JoCEdAolH/CMxXXHV9lChoBkdAceVO5J9RaWgHS7JoCEdAolIabc45tHV9lChoBkdAb0KmPYFqz2gHS6loCEdAolJriwSrYHV9lChoBkdAcEEUYKpkw2gHS69oCEdAolJ3jOs1bnV9lChoBkdAdATjLB9Cu2gHS/VoCEdAolLBJ9RaYHV9lChoBkdAcIHj+JgssmgHS8doCEdAolLpqwhW53V9lChoBkdAcZ4Tj/+85GgHS7NoCEdAolOQgDA8CHV9lChoBkdAcWYRtgrpaGgHS8ZoCEdAolOm5SWJJ3V9lChoBkdAccpt8eCCjGgHS9NoCEdAolO9SGahH3V9lChoBkdAcwe1A7gbZWgHS7loCEdAolPxmTTvzHV9lChoBkdAcFUhgmZ3LWgHS+xoCEdAolQRuGbkO3V9lChoBkdAcPTOKO1fFGgHS8RoCEdAolQfCoCMgnV9lChoBkdAb/v7sv7FbWgHS8loCEdAolQo/C66KHV9lChoBkdAbqCgs9SuQ2gHS7hoCEdAolQwCIUJwHV9lChoBkdAcYioybhFVmgHS+FoCEdAolRhnpSrHXV9lChoBkdAcwVd6cAimmgHS+1oCEdAolSfBLwnY3V9lChoBkdAcPvS1E3KjmgHS/RoCEdAolS5rJr+HnV9lChoBkdAcjvl0YCQtGgHS8hoCEdAolS6FVT723V9lChoBkdAcVCrKeTV2GgHS6VoCEdAolTV9roGIXV9lChoBkdAcMB44Ia99WgHS7poCEdAolTp1klNUXV9lChoBkdAc+FVEuxrz2gHTQEBaAhHQKJVXkTYdyV1fZQoaAZHQFWDenQ6ZIBoB0uhaAhHQKJVY/Vy3kR1fZQoaAZHQGRoSeRPoFFoB03oA2gIR0CiVegtOEdvdX2UKGgGR0Bxca0v4/NaaAdLyGgIR0CiVf0v4/NadX2UKGgGR0BNyN0V8CxNaAdLvmgIR0CiVi+3hGYsdX2UKGgGR0B0SoG5c1O1aAdL42gIR0CiVjnnEETydX2UKGgGR0BwsKkcjqwAaAdL0mgIR0CiVkmZE2HddWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 436, "n_steps": 1024, "gamma": 0.995, "gae_lambda": 0.985, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxgEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMHzxpcHl0aG9uLWlucHV0LTE2LTQ2MDRkYjM3M2I5ZD6UjAg8bGFtYmRhPpRLDUMCBACUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBZ9lH2UKGgTaA2MDF9fcXVhbG5hbWVfX5RoDYwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURwAAAAAAAAAAhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:958a1bfffe4bbfbca98b85e31c3ad162c11e92972d8a31d114606bc4601f2a23
|
3 |
+
size 147792
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,34 +4,34 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
-
"_num_timesteps_at_start":
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
-
"learning_rate": 0.
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -41,17 +41,32 @@
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
@@ -69,7 +84,7 @@
|
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
-
":serialized:": "
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
@@ -77,23 +92,8 @@
|
|
77 |
"_np_random": null
|
78 |
},
|
79 |
"n_envs": 16,
|
80 |
-
"n_steps": 1024,
|
81 |
-
"gamma": 0.999,
|
82 |
-
"gae_lambda": 0.98,
|
83 |
-
"ent_coef": 0.01,
|
84 |
-
"vf_coef": 0.5,
|
85 |
-
"max_grad_norm": 0.5,
|
86 |
-
"batch_size": 64,
|
87 |
-
"n_epochs": 4,
|
88 |
-
"clip_range": {
|
89 |
-
":type:": "<class 'function'>",
|
90 |
-
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
-
},
|
92 |
-
"clip_range_vf": null,
|
93 |
-
"normalize_advantage": true,
|
94 |
-
"target_kl": null,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
-
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+
|
98 |
}
|
99 |
}
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7cb4a100cca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cb4a100cd30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cb4a100cdc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cb4a100ce50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7cb4a100cee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7cb4a100cf70>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7cb4a100d000>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cb4a100d090>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7cb4a100d120>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cb4a100d1b0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cb4a100d240>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7cb4a100d2d0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7cb4a3930400>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1785856,
|
25 |
+
"_total_timesteps": 1771168,
|
26 |
+
"_num_timesteps_at_start": 1671168,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1729271018271491574,
|
30 |
+
"learning_rate": 0.0,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM18Bbsju5I/r/1BveY/P79Wyzm9pSaqPQAAAAAAAAAAZq+lPBTCn7oUcUO8FT+CPPsoDzs4FWO9AACAPwAAgD/Aboq9Cft5P4IFdr7bjkW/hRDnvR3a1LwAAAAAAAAAADNz+zmpgUK85mQAvbJpTbwkjtW8C69tvQAAgD8AAIA/M4bSPMunBD/OwFw9ysv4vlkjXT1wNsC8AAAAAAAAAACaVQ099lBDugNut7EM9+muwEwtu3D0BjAAAIA/AACAP+ZiDL2kjAU6A+lxOmT6MTWAJZo6+vmRuQAAgD8AAIA/MxdvvO/CWz2TS2E+9rEZvocakj1EDhY9AAAAAAAAAADN2qi8kcgyPv8ThLyvu4i+/oWGu+6+qTwAAAAAAAAAAI1tYz6JIz0+itPOviB4k77cM2A9JcdGvgAAAAAAAAAA5m6/vU7hij2T23c+URBYvnTP0boLGAe+AAAAAAAAAADaKZ+94SCjul7hVr4AFGgyXuHVuaMqMbIAAIA/AACAP83hxjxSsMa5OSuVvSvGgbK8ioK5PdVosgAAgD8AAIA/gLQFPY+eMrorNIm3QHowshLJhbqGC6I2AACAPwAAgD+zUCw9HhCdP8rTZj7hgiu/fMhaPXtD6TwAAAAAAAAAABo7Db6oxZo/7L2hvkn0Sb8c5WC+sX6zuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.008292832752172519,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHC5t0JWvKWMAWyUS+iMAXSUR0CiPYNBfKISdX2UKGgGR0ByFrPAwfyPaAdL+mgIR0CiPZDzZpSKdX2UKGgGR0BuHzNB4UvgaAdLy2gIR0CiPZwokRjCdX2UKGgGR0Bx7SXqqwQlaAdL+mgIR0CiPbSrHU+cdX2UKGgGR0BxSFdfLLZBaAdLwGgIR0CiPg8vVVghdX2UKGgGR0Byt0D8tPHlaAdLxGgIR0CiPil7MPjGdX2UKGgGR0BxwvGXHBDYaAdLuGgIR0CiPjKyv9tNdX2UKGgGR0BxYjokiUxEaAdLvGgIR0CiPmZUcXFcdX2UKGgGR0ByKuOcUdq+aAdLp2gIR0CiPneYD1XedX2UKGgGR0BwZ32xptaZaAdL62gIR0CiPqu/tY0VdX2UKGgGR0BvxpTQ3PzGaAdLtGgIR0CiPs32M85kdX2UKGgGR0BIZMGorFwUaAdLlmgIR0CiPvElme18dX2UKGgGR0Bx4TdIoVmBaAdL4mgIR0CiPvwXqJMydX2UKGgGR0ByEZdLQHAzaAdL5mgIR0CiPw3IU8FIdX2UKGgGR0BzETkXDWK/aAdLv2gIR0CiPxmZE2HddX2UKGgGR0BwL4yckMTfaAdLv2gIR0CiPz8vmHQAdX2UKGgGR0BxUQCPp6hQaAdLvmgIR0CiP5dFnZkDdX2UKGgGR0Bwaz5O8CgcaAdLtGgIR0CiP6EC/47BdX2UKGgGR0BxgTghr30xaAdL22gIR0CiP9zBqKxcdX2UKGgGR0A8Y9wFTvRaaAdLVmgIR0CiP/NRekYXdX2UKGgGR0BxA5Gc4HX3aAdL7GgIR0CiQCQvYe1bdX2UKGgGR0Bxsq3d9Dx9aAdL0GgIR0CiQGJYcNpedX2UKGgGR0BwJslByCFsaAdL22gIR0CiQIpGvwEydX2UKGgGR0BzBKuIRAbAaAdL8GgIR0CiQKaC+UQkdX2UKGgGR0BtIGgOBlMAaAdL1WgIR0CiQKk4FRpDdX2UKGgGR0BxOsNDtw71aAdL1mgIR0CiQMATAWSEdX2UKGgGR0ByHSwW3z+WaAdL22gIR0CiSWUvGp++dX2UKGgGR0BxAAUCaJAMaAdLzWgIR0CiSWHPmgandX2UKGgGR0BwQb1+RYA9aAdLtmgIR0CiSWoT4+KTdX2UKGgGR0BxpZ0W/JvHaAdLrWgIR0CiSXnT7VJ+dX2UKGgGR0BwaQmUnogWaAdL2mgIR0CiSauJUHY6dX2UKGgGR0Bv4HmDDjzaaAdL4mgIR0CiSbUE5hjOdX2UKGgGR0BwmxGAkLQYaAdLumgIR0CiSldOZb6hdX2UKGgGR0Bxhsf9xZMdaAdL62gIR0CiSsJqASWadX2UKGgGR0ByV+ol2NedaAdL+mgIR0CiSvKSgXdkdX2UKGgGR0BxezdCVrylaAdL4WgIR0CiSwzNt65YdX2UKGgGR0ByF5C2MKkVaAdL7WgIR0CiS4Ng8bJfdX2UKGgGR0ByLN7x/d6+aAdL2WgIR0CiS49nkDISdX2UKGgGR0Bw7GVfNRm9aAdLxGgIR0CiS7cSoOx0dX2UKGgGR0Bx4/NjbzshaAdL2GgIR0CiS7yBClabdX2UKGgGR0BxFlNg0CRwaAdLuGgIR0CiS+CV0Lc9dX2UKGgGR0BzWdq9GqgiaAdL4GgIR0CiS/5aePJadX2UKGgGR0BwQyaLGaQWaAdLzmgIR0CiTDBPKuB+dX2UKGgGR0BxR04Qz1sdaAdLyGgIR0CiTDxx95QhdX2UKGgGR0BvTliBoVVQaAdL4GgIR0CiTH2hh6SldX2UKGgGR0BxMv6fra/RaAdLwGgIR0CiTHwhwEQodX2UKGgGR0BwNqI55qubaAdL6WgIR0CiTQhisny/dX2UKGgGR0BwVzImw7koaAdL2WgIR0CiTaENnXd1dX2UKGgGR0Bx1z5Jsfq5aAdL0GgIR0CiTe8IJJGwdX2UKGgGR0BxIEzk6tDEaAdL02gIR0CiTkslsxfwdX2UKGgGR0BypUGyHEdeaAdLzGgIR0CiTr6BiCrcdX2UKGgGR0Bw/7nr6ciGaAdLyGgIR0CiTt/95yEMdX2UKGgGR0Btd8OAiFCcaAdL2mgIR0CiTu9y1eBydX2UKGgGR0BwL++23KB/aAdNAAFoCEdAok72HerMknV9lChoBkdAcR6foicG1WgHS+BoCEdAok9L79AHFHV9lChoBkdAcRg5QxesxWgHS9NoCEdAok9k25xzaXV9lChoBkdAcIwvgFX7tWgHS8loCEdAok+GJP69CnV9lChoBkdAcB5aWom5UmgHS9doCEdAok+49HMEBHV9lChoBkdAcydzfrKNhmgHS+1oCEdAok+24I8hcXV9lChoBkdAcJ/D1GsmwGgHS9xoCEdAolAfqLS/kHV9lChoBkdAcUvbYK6WgWgHS+BoCEdAolAntBv733V9lChoBkdAcB7mpVCHAWgHS79oCEdAolCOx4Y773V9lChoBkdAci3hib2DhGgHS+RoCEdAolCT3Cbc5HV9lChoBkdAb6fzZHuqm2gHS71oCEdAolC8QVbiZXV9lChoBkdAcQprVe8f3mgHS8doCEdAolFhxR2r4nV9lChoBkdAcRW7EYO2A2gHS+NoCEdAolFpN21Ul3V9lChoBkdAbcbtqHoHLWgHS8NoCEdAolF3K2a2F3V9lChoBkdAclcWYF7laWgHS9NoCEdAolGaakRBeHV9lChoBkdAcRvGmUGFBmgHS89oCEdAolHebAk9lnV9lChoBkdAcorfDDTBqWgHS7poCEdAolHlYB/7SHV9lChoBkdAcLvHdXT3I2gHS8ZoCEdAolHrXWe6I3V9lChoBkdAcUUb349HMGgHS89oCEdAolHwU+LWJHV9lChoBkdAcKev863iJmgHS+1oCEdAolH4/C66KHV9lChoBkdAbiZR9gF5fWgHS8JoCEdAolH/CMxXXHV9lChoBkdAceVO5J9RaWgHS7JoCEdAolIabc45tHV9lChoBkdAb0KmPYFqz2gHS6loCEdAolJriwSrYHV9lChoBkdAcEEUYKpkw2gHS69oCEdAolJ3jOs1bnV9lChoBkdAdATjLB9Cu2gHS/VoCEdAolLBJ9RaYHV9lChoBkdAcIHj+JgssmgHS8doCEdAolLpqwhW53V9lChoBkdAcZ4Tj/+85GgHS7NoCEdAolOQgDA8CHV9lChoBkdAcWYRtgrpaGgHS8ZoCEdAolOm5SWJJ3V9lChoBkdAccpt8eCCjGgHS9NoCEdAolO9SGahH3V9lChoBkdAcwe1A7gbZWgHS7loCEdAolPxmTTvzHV9lChoBkdAcFUhgmZ3LWgHS+xoCEdAolQRuGbkO3V9lChoBkdAcPTOKO1fFGgHS8RoCEdAolQfCoCMgnV9lChoBkdAb/v7sv7FbWgHS8loCEdAolQo/C66KHV9lChoBkdAbqCgs9SuQ2gHS7hoCEdAolQwCIUJwHV9lChoBkdAcYioybhFVmgHS+FoCEdAolRhnpSrHXV9lChoBkdAcwVd6cAimmgHS+1oCEdAolSfBLwnY3V9lChoBkdAcPvS1E3KjmgHS/RoCEdAolS5rJr+HnV9lChoBkdAcjvl0YCQtGgHS8hoCEdAolS6FVT723V9lChoBkdAcVCrKeTV2GgHS6VoCEdAolTV9roGIXV9lChoBkdAcMB44Ia99WgHS7poCEdAolTp1klNUXV9lChoBkdAc+FVEuxrz2gHTQEBaAhHQKJVXkTYdyV1fZQoaAZHQFWDenQ6ZIBoB0uhaAhHQKJVY/Vy3kR1fZQoaAZHQGRoSeRPoFFoB03oA2gIR0CiVegtOEdvdX2UKGgGR0Bxca0v4/NaaAdLyGgIR0CiVf0v4/NadX2UKGgGR0BNyN0V8CxNaAdLvmgIR0CiVi+3hGYsdX2UKGgGR0B0SoG5c1O1aAdL42gIR0CiVjnnEETydX2UKGgGR0BwsKkcjqwAaAdL0mgIR0CiVkmZE2HddWUu"
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 436,
|
55 |
+
"n_steps": 1024,
|
56 |
+
"gamma": 0.995,
|
57 |
+
"gae_lambda": 0.985,
|
58 |
+
"ent_coef": 0.01,
|
59 |
+
"vf_coef": 0.5,
|
60 |
+
"max_grad_norm": 0.5,
|
61 |
+
"batch_size": 64,
|
62 |
+
"n_epochs": 4,
|
63 |
+
"clip_range": {
|
64 |
+
":type:": "<class 'function'>",
|
65 |
+
":serialized:": "gAWVxgEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMHzxpcHl0aG9uLWlucHV0LTE2LTQ2MDRkYjM3M2I5ZD6UjAg8bGFtYmRhPpRLDUMCBACUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBZ9lH2UKGgTaA2MDF9fcXVhbG5hbWVfX5RoDYwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
66 |
+
},
|
67 |
+
"clip_range_vf": null,
|
68 |
+
"normalize_advantage": true,
|
69 |
+
"target_kl": null,
|
70 |
"observation_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
84 |
},
|
85 |
"action_space": {
|
86 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
87 |
+
":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
88 |
"n": "4",
|
89 |
"start": "0",
|
90 |
"_shape": [],
|
|
|
92 |
"_np_random": null
|
93 |
},
|
94 |
"n_envs": 16,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURwAAAAAAAAAAhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
}
|
99 |
}
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:308d82f484e387609fe51491de3bb692c1326bc322e782c928bbd00e518a9590
|
3 |
+
size 88490
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43762
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86f6edd5dd7dac5b480753cd500008acdbed631a11dcc38c09a471cc18874f26
|
3 |
size 43762
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
-
- PyTorch: 2.
|
5 |
- GPU Enabled: True
|
6 |
- Numpy: 1.26.4
|
7 |
- Cloudpickle: 2.2.1
|
|
|
1 |
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.4.1+cu121
|
5 |
- GPU Enabled: True
|
6 |
- Numpy: 1.26.4
|
7 |
- Cloudpickle: 2.2.1
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 275.81656201543234, "std_reward": 19.109306077338843, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-10-18T17:37:27.858037"}
|