zfh1995 commited on
Commit
582b77e
1 Parent(s): 3e6de5b

Upload tuned PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 258.55 +/- 22.13
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 266.56 +/- 25.23
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d67d739d360>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d67d739d3f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d67d739d480>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d67d739d510>", "_build": "<function ActorCriticPolicy._build at 0x7d67d739d5a0>", "forward": "<function ActorCriticPolicy.forward at 0x7d67d739d630>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d67d739d6c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d67d739d750>", "_predict": "<function ActorCriticPolicy._predict at 0x7d67d739d7e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d67d739d870>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d67d739d900>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d67d739d990>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d67e4d53d80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1724037930009324980, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOqybxA35c+hluBPeQ2bb6BPC89Fc0qvQAAAAAAAAAAkJaCPrxuMz+OsXi+SwK1vhUx9D0m+sc8AAAAAAAAAADN4ig8yFSxPx24Az/cfhS/htcdvJshlL0AAAAAAAAAAI1a9b1+qr0/UWgdv924UL0Dj2g8MCVDvgAAAAAAAAAAZtxHPCG7nz2jjzC7O+l5vi7DDz1s7i2+AAAAAAAAAACgx5++mYv9PutBmzy0/di+TSqsvoKxHD4AAAAAAAAAAE0cST0eMJ8/VKVFPpVlvL7JseQ9kdQGPgAAAAAAAAAAc9OIPvcIaz9OCMq93diUvpBKCD4iZDc8AAAAAAAAAABmocE95fUSP3NHBb5f6be+KwstO8ZGLz0AAAAAAAAAADNjajzgRYc//xTJvHKE2b4fY489JZLyPAAAAAAAAAAAevAlPo55hj89SZQ+cKWZvn0hgD7WEzk+AAAAAAAAAABzhY49uHLFPgnUjLyR9KC+JWHRu4CnMj0AAAAAAAAAAMC4hT2IhJW8y/0MvUS91LyyLfY9EpJUPgAAgD8AAIA/zTrgvHtwvbpFDFM7riGQPJe9ArtSKIA9AACAPwAAgD8zGXa8d8K1P/LuX771sLK87HCBPA2iVT0AAAAAAAAAAOavJT1IK5W6kq10u0AWGzaUdiY5olGNOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGxSERradtmMAWyUTVQBjAF0lEdAkhjfVZs9CHV9lChoBkdAcvk1EE1VHWgHTU4BaAhHQJIZNAZ88cN1fZQoaAZHQHEPB4D9wWFoB00+AWgIR0CSGb0YTCcgdX2UKGgGR0BwUlXxOLzgaAdNGAFoCEdAkhoH7UG3WnV9lChoBkdAcsJyXUpd8mgHTUYBaAhHQJIaGCSRr8B1fZQoaAZHQHFwpsoDxLFoB00OAWgIR0CSGvPbfxc3dX2UKGgGR0Bw9tmVZ9uxaAdNRgFoCEdAkhw5b+tKZnV9lChoBkdAbMYyP+4smWgHTRUBaAhHQJIdUS5AhSt1fZQoaAZHQHDvLSqlxfhoB004AWgIR0CSHfb6guh9dX2UKGgGR0Bzkm1uzhP1aAdNJAFoCEdAkh4SgsbvPXV9lChoBkdAcI82OyVv/GgHTWcBaAhHQJIf3DP4VRF1fZQoaAZHQHCMymuTzNFoB0v+aAhHQJIgsju8brF1fZQoaAZHQHCK1Q66reZoB00EAWgIR0CSITqIJqqPdX2UKGgGR0Bu0vs9jgAIaAdNLgFoCEdAkiG9O6/Zd3V9lChoBkdAcumSsKb8WWgHTR0BaAhHQJIikgyM1j11fZQoaAZHQHAdvmLcbitoB00nAWgIR0CSI5yxA0KrdX2UKGgGR0Bu+3YpUgjhaAdNAQFoCEdAkiUZuqFRHnV9lChoBkdAcUjepXIU8GgHTRUBaAhHQJImNOafBep1fZQoaAZHQHBQ3ymQ8wJoB001AWgIR0CSJkLzf779dX2UKGgGR0BxMZ20Re1KaAdNQgFoCEdAkiZWgam4zHV9lChoBkdAb9jlqagElmgHTTEBaAhHQJImpKkEcKh1fZQoaAZHQHFZKnrIHTtoB00YAWgIR0CSJux2St/4dX2UKGgGR0Bw/w76pHZsaAdNCQFoCEdAkidPdRBNVXV9lChoBkdAciUAz544ZWgHS+1oCEdAkiecM3IdVHV9lChoBkdAPsq02LpA2WgHS9xoCEdAkihftdAxBXV9lChoBkdAchSiRW912mgHTSYBaAhHQJIotgE2YOV1fZQoaAZHQHJekPQOWjZoB00XAWgIR0CSKMuloDgZdX2UKGgGR0Bx5M6DGtITaAdNAgFoCEdAkisfjwQUYnV9lChoBkdAboGjafzz3GgHTSABaAhHQJIrLied07t1fZQoaAZHQHC/27rcCYFoB00eAWgIR0CSK3K/VRUFdX2UKGgGR0A+JeLvTgEVaAdL2WgIR0CSK4AZbY9QdX2UKGgGR0BxGfy+Yc//aAdNPQFoCEdAkiutCRfWtnV9lChoBkdAb0kLx7RfGGgHTSwBaAhHQJItC9qUNa11fZQoaAZHQG45XmNipehoB00VAWgIR0CSLkbfP5YYdX2UKGgGR0BzPiqPwNLEaAdNIgFoCEdAki8qR2bG3nV9lChoBkdAcBdVnmJWNmgHTT0BaAhHQJIvm9ugpSd1fZQoaAZHQG6RS/TLGJhoB00WAWgIR0CSMCSbpeNUdX2UKGgGR0BytwF4cFQmaAdNAwFoCEdAkjCANb1RL3V9lChoBkdAcJuDohY/3WgHTUABaAhHQJIwlbUwztV1fZQoaAZHQG7MpiI+GGpoB00LAWgIR0CSMTO+qR2bdX2UKGgGR0BtTyQxN7BwaAdNHwFoCEdAkjG2ixmkFnV9lChoBkdAciDBdD6WPmgHTYUBaAhHQJIx0H4XXRR1fZQoaAZHQHEIgNsnAqNoB02EAWgIR0CSMwUoa1kUdX2UKGgGR0BPqhfShJyyaAdL8GgIR0CSMw/0dzXCdX2UKGgGR0BukB1V5rxiaAdNEQFoCEdAkjQUVnEl3XV9lChoBkdAcRaSJCSid2gHTR0BaAhHQJJGe6iCaql1fZQoaAZHQHIahAjY7JZoB0vWaAhHQJJH6FTNt651fZQoaAZHQG36pYkmhM9oB00SAWgIR0CSSZNgSeyzdX2UKGgGR0Bs6ablRxcWaAdNkAFoCEdAkkm2VRk3CXV9lChoBkdAcpmR3eN1hmgHTUMBaAhHQJJKdOSGJvZ1fZQoaAZHQHMqT7Q9ic5oB02rAWgIR0CSSrgAIY3vdX2UKGgGR0Bv1e6I3zczaAdNEwFoCEdAkksUI1LrX3V9lChoBkdAcoRONo8IRmgHTR0BaAhHQJJLTHmzSkV1fZQoaAZHQHK5SA6Mir1oB02AAWgIR0CSS1SwnpjddX2UKGgGR0BxSjCwbEP2aAdNGAFoCEdAkkvYXO4XoHV9lChoBkdAb/oa2nbZe2gHTSMBaAhHQJJMvtnf2sd1fZQoaAZHQHCyf+85CF9oB01iAWgIR0CSTQIzWPLgdX2UKGgGR0BtbFRiw0O3aAdL9GgIR0CSTju/k/8mdX2UKGgGR0Bw01VwPy08aAdNFwFoCEdAkk7pSBK+SXV9lChoBkdAcWyTgVGkOGgHTUYBaAhHQJJPcREnb7F1fZQoaAZHQGvZygoPTXtoB01dAWgIR0CSUEoybhFWdX2UKGgGR0BxK7BzmwJPaAdNGQFoCEdAklGmYBvJinV9lChoBkdAcS/lByCFsmgHS/5oCEdAklP5pN9H+nV9lChoBkdAcg6e+VTrFGgHTREBaAhHQJJUj79AHFB1fZQoaAZHQHBAcMqjJuFoB000AWgIR0CSVT8F6iTMdX2UKGgGR0BzrFTn7pFDaAdNOQFoCEdAklVOyu6mO3V9lChoBkdAb/wm/Firk2gHTQ0BaAhHQJJVnomois51fZQoaAZHQHE5Y2bXpW5oB00fAWgIR0CSVhBciW3SdX2UKGgGR0Bw/T8LronsaAdNIwFoCEdAklaJdv863nV9lChoBkdAcXSfmcOLBWgHTQQBaAhHQJJXm+g13t91fZQoaAZHQG/1Hs1KoQ5oB00vAWgIR0CSV7cI7eVLdX2UKGgGR0Bw+V8a4tpVaAdL7WgIR0CSWYpqynk1dX2UKGgGR0BxYPlEJBw/aAdNFgFoCEdAkloNWluWKXV9lChoBkdAcQrO801qFmgHTQIBaAhHQJJbWz0HyEt1fZQoaAZHQHEZn2EkB0ZoB00pAWgIR0CSW4Pu5SWJdX2UKGgGR0ByXyCJ40MxaAdNdAFoCEdAklvAfuCwr3V9lChoBkdAb//J1aGHpWgHTR0BaAhHQJJdFc9nscB1fZQoaAZHQEfMnivPkaNoB0vRaAhHQJJdIaisXBR1fZQoaAZHQHKwVq33HrBoB0v8aAhHQJJdpqASWZ91fZQoaAZHQHDdaFRHf/FoB00FAWgIR0CSXlIN3GGVdX2UKGgGR0Bvnh/wy6+WaAdNHwFoCEdAkmA3zxwyZnV9lChoBkdAcXSHGjsUqWgHTTIBaAhHQJJgSu0TlDF1fZQoaAZHQG71rV4HHFRoB00mAWgIR0CSYNyjYZl4dX2UKGgGR0By+UsTWXkYaAdNDQFoCEdAkmDswg1WKnV9lChoBkdAcXrBD5TIemgHTUEBaAhHQJJg/Uoa1kV1fZQoaAZHQHHh4vexfOVoB00rAWgIR0CSYdR/3FkydX2UKGgGR0BsJm4qgAZLaAdNEQFoCEdAkmK7aIvalHV9lChoBkdAb61IaLn9vWgHTQ8BaAhHQJJjnd8Aq/d1fZQoaAZHQG/+4DTz/ZNoB00iAWgIR0CSZK0A93bFdX2UKGgGR0Bxms/u9eyBaAdNMgFoCEdAkmTr6YVqOHV9lChoBkdAceoGKyfL92gHTWYBaAhHQJJlD2+PBBR1fZQoaAZHQGACTUiILw5oB03oA2gIR0CSZg4BV+7UdX2UKGgGR0BzfA4gieNDaAdNFQFoCEdAkmZdPHktE3V9lChoBkdAcJrG3WnTAmgHTUYBaAhHQJJnWJm/WUd1fZQoaAZHQG0vEzfrKNhoB01lAWgIR0CSaIAFxGUfdX2UKGgGR0Bw6GgAZKnOaAdNPwFoCEdAkmiBMajveHV9lChoBkdAbga+JP69CmgHTRQBaAhHQJJo+31BdD91fZQoaAZHQG90XU6PsAxoB00XAWgIR0CSaSMVUModdX2UKGgGR0BsLGH31zySaAdNEAFoCEdAkmlpNCZ4OnV9lChoBkdAcV8/c32mHmgHS/NoCEdAkmmUNnXd03VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd84f0f1040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd84f0f10d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd84f0f1160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd84f0f11f0>", "_build": "<function ActorCriticPolicy._build at 0x7fd84f0f1280>", "forward": "<function ActorCriticPolicy.forward at 0x7fd84f0f1310>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd84f0f13a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd84f0f1430>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd84f0f14c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd84f0f1550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd84f0f15e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd84f0f1670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd84f0f24c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": 8, "action_noise": null, "start_time": 1729265827605394989, "learning_rate": 0.0008, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANp/oz32JDC6w2UcunxHg7TjM4A6ows1OQAAAAAAAAAAzd6BPY/qK7q4Xse4t8QStKLsETtLleo3AACAPwAAAABm1os7Mp60P/VVEz7qlsS8rXGfuyIKBL0AAAAAAAAAAPPljr6gpKc+uEoGPpGjlr5trRy+zne5PQAAAAAAAAAAmhqivenJLLwWH1E9LerCvV9FD72wy6O+AACAPwAAgD9m/Lk8uM65uSK5Ezo6CD82FyqDu7HwMbkAAIA/AACAPw0Wvz3PqXG8RXBsPPXLfTzli9A9+9xOvQAAgD8AAIA/QK7MPXuwlbqovXo62tckNQ0R97puGo+5AACAPwAAgD8AlDy8n6uPu9SHyTvp0oE8uaQFvSZnXj0AAIA/AACAPwAowr2PSlm6Ru9/uUtPbbQYeRC79quWOAAAgD8AAAAAKgSNvntU8j0otYs+fzJZvgpHYz1FQNW8AAAAAAAAAACaj4Y+HVQCP8MoED2LE8m+5L/oPU0MybwAAAAAAAAAAE1Trr1YTJo+5hfGPfqSh76PvgE8/XcKPgAAAAAAAAAAmuGxPa6dproPDoU56Rs2Ny1fizpyh4i4AACAPwAAgD8zs+W8O68CP+tMd70FS5m+nisGvbBaPT0AAAAAAAAAAPMjxb3s8o48sjIPPknTIb4fMKg8EO2lPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKx5pi7TUmMAWyUTVcBjAF0lEdAoHUmiYb833V9lChoBkdAcGQKk2xY72gHTf4CaAhHQKB1RK5kK/p1fZQoaAZHQHI+AxSHdoFoB00sAmgIR0CgdY9WIXTFdX2UKGgGR0BkD//NqxkeaAdN6ANoCEdAoHX2eBg/knV9lChoBkdAcTKtXxOLzmgHTZgBaAhHQKB2M90zTF51fZQoaAZHQHCVP5LytmtoB033AWgIR0Cgdl/Q8fV7dX2UKGgGR0BvqOXC0ngHaAdNxwFoCEdAoHaE/SpiqnV9lChoBkdAcNSEIgNgB2gHTTABaAhHQKB2lBZ6lch1fZQoaAZHQHGOKGtZFG5oB022A2gIR0Cgd8sBIWgwdX2UKGgGR0BzJAXP7el9aAdNFwJoCEdAoHfn+l0o0HV9lChoBkdAbnp6Z6Uqx2gHTTYCaAhHQKB4UGZ/kNp1fZQoaAZHQEBXcqvvBrNoB0vvaAhHQKB4lkhib2F1fZQoaAZHQHJVzcqOLixoB03AAWgIR0CgeJoKD017dX2UKGgGR0BuxrVvuPV/aAdNEwJoCEdAoHkWNrCWNXV9lChoBkdAcZMmtyPuHGgHTXEBaAhHQKB6VHeaa1F1fZQoaAZHQGzHo0qH449oB00yAWgIR0CgfAlmvnr6dX2UKGgGR0BwhADvE0iyaAdNoQJoCEdAoHwzFwT/Q3V9lChoBkdAbwd4L1EmY2gHTf8BaAhHQKCB53/Pw/h1fZQoaAZHQHCJJH7P6bhoB02jAmgIR0Cggl27OE/TdX2UKGgGR0BwvEJu2qkuaAdNsQFoCEdAoIJ1R51Ng3V9lChoBkdAcEXUpd8iOmgHTXcBaAhHQKCCf3nIQvp1fZQoaAZHQHB8jHXEqDtoB02PAmgIR0CggohpQDV6dX2UKGgGR0Bh7jG1hLGraAdN6ANoCEdAoILAnDziCXV9lChoBkdAZRSI3zcynGgHTegDaAhHQKCCzz1bqyJ1fZQoaAZHQG/g1SflIVdoB019AmgIR0CggwH3cpLFdX2UKGgGR0BwfslhPTG6aAdNEQJoCEdAoIPZzV+ZxHV9lChoBkdAcTRTgl4TsmgHTUcDaAhHQKCD70mtyPx1fZQoaAZHQG/JDDjzZpVoB00JAWgIR0CghB9L6DXfdX2UKGgGR0BxRyXJHRTkaAdNBgFoCEdAoIRaMir1d3V9lChoBkdActWqO938oGgHTVgBaAhHQKCEtB8hLXd1fZQoaAZHQHDocpsoDxNoB00vAWgIR0CghT9rXUYsdX2UKGgGR0BwnBK+SKWLaAdNIQJoCEdAoIVq//NqxnV9lChoBkdAcW2iRnvlVGgHTUMBaAhHQKCFet3fQ8h1fZQoaAZHQHAC2q1gH/toB01kAWgIR0CghbbT+ee4dX2UKGgGR0BwuEJb+tKaaAdNSgFoCEdAoIXVfmcOLHV9lChoBkdAcbc9TxXnyWgHTY0BaAhHQKCGBSflIVd1fZQoaAZHQGawKwQlKK5oB03oA2gIR0CghosRxtHhdX2UKGgGR0BxCX6dlNDdaAdNcwFoCEdAoIdkS26TXHV9lChoBkdAch0xhUipvWgHTUsBaAhHQKCHjMwDeTF1fZQoaAZHQGhcvYWcjJNoB03oA2gIR0Cgh6/rrxAjdX2UKGgGR0Btddke6qbSaAdNegFoCEdAoIfCPjn3c3V9lChoBkdAcV5xQizLOmgHTRQBaAhHQKCILTpgTh51fZQoaAZHQG+aduYQarFoB01qAmgIR0CgiJqd6LOzdX2UKGgGR0BlfJnFo+OfaAdN6ANoCEdAoIjYA+6iCnV9lChoBkdAcAQokRjBmGgHTR4CaAhHQKCJJtjTa0x1fZQoaAZHQHBaZezD4xloB010AWgIR0CgiVzGgi/xdX2UKGgGR0Bws0iMYMvzaAdNZwFoCEdAoIlc274BWHV9lChoBkdAckPeQdS2pmgHTakBaAhHQKCJZi+cpb51fZQoaAZHQHDPjwx33YdoB02wAmgIR0CgiYurZJ05dX2UKGgGR0BtyqdvsJIEaAdNrgFoCEdAoImSSX+l03V9lChoBkdAcYF6+36RAGgHTVQBaAhHQKCJ1zXBgu11fZQoaAZHQG16HR1HOKRoB01CAmgIR0Cgijd4mkWRdX2UKGgGR0BwNcwUQCjlaAdNBAFoCEdAoIqHAwfyPXV9lChoBkdAcZXJd0JWvWgHTUUBaAhHQKCKingHeJp1fZQoaAZHQCo4p+c6Nl1oB0ukaAhHQKCK8zTnaFp1fZQoaAZHQHGEkfcN6PdoB01MAmgIR0CgkQlrl/6PdX2UKGgGR0Bwuo9r433paAdNGQFoCEdAoJEkUuctoXV9lChoBkdAbA9bnoxHoWgHTQcBaAhHQKCRL5i3G4t1fZQoaAZHQHHE4/NZ/1BoB037AWgIR0CgkX5DRc/udX2UKGgGR0BwAgSlFc6eaAdNUQFoCEdAoJG74k/r0XV9lChoBkdAcMLiA2AG0WgHTSoBaAhHQKCR4QmNR3x1fZQoaAZHQG23MLF4s3BoB00hAmgIR0CgkgYdp7C0dX2UKGgGR0BvoquZCv5haAdNGwJoCEdAoJIIfp2U0XV9lChoBkdAcg1UiY9gW2gHTbMBaAhHQKCSEj1PFeh1fZQoaAZHQG+txt52QnxoB00dAWgIR0Cgkh7TDwYtdX2UKGgGR0BvSWmR/3FlaAdNsgFoCEdAoJKaufVZtHV9lChoBkdAcKwB1s+FDmgHTUMBaAhHQKCSoR/3Fkx1fZQoaAZHQEOm9M9KVY9oB0vbaAhHQKCSzLzwtrd1fZQoaAZHQHBflB2OhkBoB039AWgIR0CgkvIZAIIGdX2UKGgGR0ByWdsLv1DjaAdNYgFoCEdAoJMoCKaXr3V9lChoBkdAcB4BF/hESmgHTQ4BaAhHQKCTbLVWjoJ1fZQoaAZHQHB/jcuanaZoB01KAWgIR0Cgk291EE1VdX2UKGgGR0BxSvBzmwJPaAdNRwFoCEdAoJOAT9KmK3V9lChoBkdAbO+2XLNfPWgHTToBaAhHQKCUQ1IiC8R1fZQoaAZHQHAVc+aBqbloB00+AWgIR0CglE9HlOoHdX2UKGgGR0BxJqHHmzSkaAdNOAFoCEdAoJRO5vtMPHV9lChoBkdAcouoZydWhmgHTVoBaAhHQKCUX9FWn0l1fZQoaAZHQHIa9fXwsoVoB00lAWgIR0CglQgi/wiJdX2UKGgGR0Bvzs0m+j/NaAdNRgFoCEdAoJUW3z+WGHV9lChoBkdAbaUeeWfK6mgHTUgBaAhHQKCVIbLEDQt1fZQoaAZHQHBZrr5ZbINoB00iAWgIR0CglTFRHf/FdX2UKGgGR0BxPo8JUo8ZaAdL9WgIR0CglV7VSXMRdX2UKGgGR0Buwp2U0Nz9aAdNHgFoCEdAoJVj0jC53HV9lChoBkdARhbEzfrKNmgHS6loCEdAoJWXiBGx2XV9lChoBkdAclKuDBdld2gHTQ8BaAhHQKCVnHPNVzZ1fZQoaAZHQGMmY8lolD5oB03oA2gIR0CglgvvBrN4dX2UKGgGR0BvmlsLv1DjaAdNCwFoCEdAoJZu3rleW3V9lChoBkdAcgsR+BpYcWgHTSIBaAhHQKCWkIDYAbR1fZQoaAZHQAOabF0gbIdoB0uqaAhHQKCWpY5DJEJ1fZQoaAZHQHKopTMqz7doB00+AWgIR0CgltDDTBqLdX2UKGgGR0BM9ZAyEcsEaAdL12gIR0CglxiSzPa+dX2UKGgGR0BxJEniNsFdaAdNoAJoCEdAoJdET8HfM3V9lChoBkfAFpf2bobGWGgHS9toCEdAoJdrblA/s3V9lChoBkdAbzbmQKa5PWgHTRkBaAhHQKCXdIOpbUx1fZQoaAZHQHDb3QY1pCdoB00bAmgIR0Cgl8r92ovSdX2UKGgGR0BxRAH+qBEsaAdNYAFoCEdAoJfvSDyvtHV9lChoBkdAcR4P9UCJXWgHTR4DaAhHQKCX9/WlMyt1fZQoaAZHQGTyo8hcJMRoB03oA2gIR0CgmABFd9lVdX2UKGgGR0BxJuLrHEMtaAdNKQFoCEdAoJglD4QBgnV9lChoBkdASp4zch1TzmgHS9xoCEdAoJkYrxy4nXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVZgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVnwEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooR208eUmNGd8tL7tbX81Yq7wCMA2luY5SKEC0YjB/rjXswD7v7nC+Gvi11jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "n_steps": 1024, "gamma": 0.995, "gae_lambda": 0.985, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "rollout_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNgAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwNUm9sbG91dEJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'advantages': <class 'numpy.ndarray'>, 'returns': <class 'numpy.ndarray'>, 'episode_starts': <class 'numpy.ndarray'>, 'log_probs': <class 'numpy.ndarray'>, 'values': <class 'numpy.ndarray'>}", "__doc__": "\n Rollout buffer used in on-policy algorithms like A2C/PPO.\n It corresponds to ``buffer_size`` transitions collected\n using the current policy.\n This experience will be discarded after the policy update.\n In order to use PPO objective, we also store the current value of each state\n and the log probability of each taken action.\n\n The term rollout here refers to the model-free notion and should not\n be used with the concept of rollout used in model-based RL or planning.\n Hence, it is only involved in policy and value function training but not action selection.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator\n Equivalent to classic advantage when set to 1.\n :param gamma: Discount factor\n :param n_envs: Number of parallel environments\n ", "__init__": "<function RolloutBuffer.__init__ at 0x7fd84f3849d0>", "reset": "<function RolloutBuffer.reset at 0x7fd84f384a60>", "compute_returns_and_advantage": "<function RolloutBuffer.compute_returns_and_advantage at 0x7fd84f384af0>", "add": "<function RolloutBuffer.add at 0x7fd84f384b80>", "get": "<function RolloutBuffer.get at 0x7fd84f384c10>", "_get_samples": "<function RolloutBuffer._get_samples at 0x7fd84f384ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd84f382f40>"}, "rollout_buffer_kwargs": {}, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVpQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjFsvaG9tZS96ZmgvbWluaWNvbmRhMy9lbnZzL2RybC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwIPGxhbWJkYT6US2FDAJSMDnZhbHVlX3NjaGVkdWxllIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMWy9ob21lL3pmaC9taW5pY29uZGEzL2VudnMvZHJsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA+MDF9fcXVhbG5hbWVfX5SMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RoAihoByhLAUsASwBLAUsBSxNDBIgAUwCUaAkpjAFflIWUaA6MBGZ1bmOUS4VDAgABlIwDdmFslIWUKXSUUpRoFU5OaB0pUpSFlHSUUpRoI2g9fZR9lChoGGg0aCaMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUaCh9lGgqTmgrTmgsaBloLU5oLmgwRz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjCFlFKUhZRoRV2UaEd9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVpQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjFsvaG9tZS96ZmgvbWluaWNvbmRhMy9lbnZzL2RybC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwIPGxhbWJkYT6US2FDAJSMDnZhbHVlX3NjaGVkdWxllIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMWy9ob21lL3pmaC9taW5pY29uZGEzL2VudnMvZHJsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA+MDF9fcXVhbG5hbWVfX5SMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RoAihoByhLAUsASwBLAUsBSxNDBIgAUwCUaAkpjAFflIWUaA6MBGZ1bmOUS4VDAgABlIwDdmFslIWUKXSUUpRoFU5OaB0pUpSFlHSUUpRoI2g9fZR9lChoGGg0aCaMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUaCh9lGgqTmgrTmgsaBloLU5oLmgwRz9KNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjCFlFKUhZRoRV2UaEd9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.15.153.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Mar 29 23:14:13 UTC 2024", "Python": "3.9.19", "Stable-Baselines3": "2.4.0a7", "PyTorch": "2.4.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.1", "OpenAI Gym": "0.26.2"}}
ppo-tuned-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7432264f040af2d717f46bda9e3f6001bac664bb391cdddacbdf3b3d51091648
3
+ size 151175
ppo-tuned-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.4.0a7
ppo-tuned-LunarLander-v2/data ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd84f0f1040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd84f0f10d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd84f0f1160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd84f0f11f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd84f0f1280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd84f0f1310>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd84f0f13a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd84f0f1430>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd84f0f14c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd84f0f1550>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd84f0f15e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd84f0f1670>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fd84f0f24c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000.0,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": 8,
28
+ "action_noise": null,
29
+ "start_time": 1729265827605394989,
30
+ "learning_rate": 0.0008,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANp/oz32JDC6w2UcunxHg7TjM4A6ows1OQAAAAAAAAAAzd6BPY/qK7q4Xse4t8QStKLsETtLleo3AACAPwAAAABm1os7Mp60P/VVEz7qlsS8rXGfuyIKBL0AAAAAAAAAAPPljr6gpKc+uEoGPpGjlr5trRy+zne5PQAAAAAAAAAAmhqivenJLLwWH1E9LerCvV9FD72wy6O+AACAPwAAgD9m/Lk8uM65uSK5Ezo6CD82FyqDu7HwMbkAAIA/AACAPw0Wvz3PqXG8RXBsPPXLfTzli9A9+9xOvQAAgD8AAIA/QK7MPXuwlbqovXo62tckNQ0R97puGo+5AACAPwAAgD8AlDy8n6uPu9SHyTvp0oE8uaQFvSZnXj0AAIA/AACAPwAowr2PSlm6Ru9/uUtPbbQYeRC79quWOAAAgD8AAAAAKgSNvntU8j0otYs+fzJZvgpHYz1FQNW8AAAAAAAAAACaj4Y+HVQCP8MoED2LE8m+5L/oPU0MybwAAAAAAAAAAE1Trr1YTJo+5hfGPfqSh76PvgE8/XcKPgAAAAAAAAAAmuGxPa6dproPDoU56Rs2Ny1fizpyh4i4AACAPwAAgD8zs+W8O68CP+tMd70FS5m+nisGvbBaPT0AAAAAAAAAAPMjxb3s8o48sjIPPknTIb4fMKg8EO2lPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKx5pi7TUmMAWyUTVcBjAF0lEdAoHUmiYb833V9lChoBkdAcGQKk2xY72gHTf4CaAhHQKB1RK5kK/p1fZQoaAZHQHI+AxSHdoFoB00sAmgIR0CgdY9WIXTFdX2UKGgGR0BkD//NqxkeaAdN6ANoCEdAoHX2eBg/knV9lChoBkdAcTKtXxOLzmgHTZgBaAhHQKB2M90zTF51fZQoaAZHQHCVP5LytmtoB033AWgIR0Cgdl/Q8fV7dX2UKGgGR0BvqOXC0ngHaAdNxwFoCEdAoHaE/SpiqnV9lChoBkdAcNSEIgNgB2gHTTABaAhHQKB2lBZ6lch1fZQoaAZHQHGOKGtZFG5oB022A2gIR0Cgd8sBIWgwdX2UKGgGR0BzJAXP7el9aAdNFwJoCEdAoHfn+l0o0HV9lChoBkdAbnp6Z6Uqx2gHTTYCaAhHQKB4UGZ/kNp1fZQoaAZHQEBXcqvvBrNoB0vvaAhHQKB4lkhib2F1fZQoaAZHQHJVzcqOLixoB03AAWgIR0CgeJoKD017dX2UKGgGR0BuxrVvuPV/aAdNEwJoCEdAoHkWNrCWNXV9lChoBkdAcZMmtyPuHGgHTXEBaAhHQKB6VHeaa1F1fZQoaAZHQGzHo0qH449oB00yAWgIR0CgfAlmvnr6dX2UKGgGR0BwhADvE0iyaAdNoQJoCEdAoHwzFwT/Q3V9lChoBkdAbwd4L1EmY2gHTf8BaAhHQKCB53/Pw/h1fZQoaAZHQHCJJH7P6bhoB02jAmgIR0Cggl27OE/TdX2UKGgGR0BwvEJu2qkuaAdNsQFoCEdAoIJ1R51Ng3V9lChoBkdAcEXUpd8iOmgHTXcBaAhHQKCCf3nIQvp1fZQoaAZHQHB8jHXEqDtoB02PAmgIR0CggohpQDV6dX2UKGgGR0Bh7jG1hLGraAdN6ANoCEdAoILAnDziCXV9lChoBkdAZRSI3zcynGgHTegDaAhHQKCCzz1bqyJ1fZQoaAZHQG/g1SflIVdoB019AmgIR0CggwH3cpLFdX2UKGgGR0BwfslhPTG6aAdNEQJoCEdAoIPZzV+ZxHV9lChoBkdAcTRTgl4TsmgHTUcDaAhHQKCD70mtyPx1fZQoaAZHQG/JDDjzZpVoB00JAWgIR0CghB9L6DXfdX2UKGgGR0BxRyXJHRTkaAdNBgFoCEdAoIRaMir1d3V9lChoBkdActWqO938oGgHTVgBaAhHQKCEtB8hLXd1fZQoaAZHQHDocpsoDxNoB00vAWgIR0CghT9rXUYsdX2UKGgGR0BwnBK+SKWLaAdNIQJoCEdAoIVq//NqxnV9lChoBkdAcW2iRnvlVGgHTUMBaAhHQKCFet3fQ8h1fZQoaAZHQHAC2q1gH/toB01kAWgIR0CghbbT+ee4dX2UKGgGR0BwuEJb+tKaaAdNSgFoCEdAoIXVfmcOLHV9lChoBkdAcbc9TxXnyWgHTY0BaAhHQKCGBSflIVd1fZQoaAZHQGawKwQlKK5oB03oA2gIR0CghosRxtHhdX2UKGgGR0BxCX6dlNDdaAdNcwFoCEdAoIdkS26TXHV9lChoBkdAch0xhUipvWgHTUsBaAhHQKCHjMwDeTF1fZQoaAZHQGhcvYWcjJNoB03oA2gIR0Cgh6/rrxAjdX2UKGgGR0Btddke6qbSaAdNegFoCEdAoIfCPjn3c3V9lChoBkdAcV5xQizLOmgHTRQBaAhHQKCILTpgTh51fZQoaAZHQG+aduYQarFoB01qAmgIR0CgiJqd6LOzdX2UKGgGR0BlfJnFo+OfaAdN6ANoCEdAoIjYA+6iCnV9lChoBkdAcAQokRjBmGgHTR4CaAhHQKCJJtjTa0x1fZQoaAZHQHBaZezD4xloB010AWgIR0CgiVzGgi/xdX2UKGgGR0Bws0iMYMvzaAdNZwFoCEdAoIlc274BWHV9lChoBkdAckPeQdS2pmgHTakBaAhHQKCJZi+cpb51fZQoaAZHQHDPjwx33YdoB02wAmgIR0CgiYurZJ05dX2UKGgGR0BtyqdvsJIEaAdNrgFoCEdAoImSSX+l03V9lChoBkdAcYF6+36RAGgHTVQBaAhHQKCJ1zXBgu11fZQoaAZHQG16HR1HOKRoB01CAmgIR0Cgijd4mkWRdX2UKGgGR0BwNcwUQCjlaAdNBAFoCEdAoIqHAwfyPXV9lChoBkdAcZXJd0JWvWgHTUUBaAhHQKCKingHeJp1fZQoaAZHQCo4p+c6Nl1oB0ukaAhHQKCK8zTnaFp1fZQoaAZHQHGEkfcN6PdoB01MAmgIR0CgkQlrl/6PdX2UKGgGR0Bwuo9r433paAdNGQFoCEdAoJEkUuctoXV9lChoBkdAbA9bnoxHoWgHTQcBaAhHQKCRL5i3G4t1fZQoaAZHQHHE4/NZ/1BoB037AWgIR0CgkX5DRc/udX2UKGgGR0BwAgSlFc6eaAdNUQFoCEdAoJG74k/r0XV9lChoBkdAcMLiA2AG0WgHTSoBaAhHQKCR4QmNR3x1fZQoaAZHQG23MLF4s3BoB00hAmgIR0CgkgYdp7C0dX2UKGgGR0BvoquZCv5haAdNGwJoCEdAoJIIfp2U0XV9lChoBkdAcg1UiY9gW2gHTbMBaAhHQKCSEj1PFeh1fZQoaAZHQG+txt52QnxoB00dAWgIR0Cgkh7TDwYtdX2UKGgGR0BvSWmR/3FlaAdNsgFoCEdAoJKaufVZtHV9lChoBkdAcKwB1s+FDmgHTUMBaAhHQKCSoR/3Fkx1fZQoaAZHQEOm9M9KVY9oB0vbaAhHQKCSzLzwtrd1fZQoaAZHQHBflB2OhkBoB039AWgIR0CgkvIZAIIGdX2UKGgGR0ByWdsLv1DjaAdNYgFoCEdAoJMoCKaXr3V9lChoBkdAcB4BF/hESmgHTQ4BaAhHQKCTbLVWjoJ1fZQoaAZHQHB/jcuanaZoB01KAWgIR0Cgk291EE1VdX2UKGgGR0BxSvBzmwJPaAdNRwFoCEdAoJOAT9KmK3V9lChoBkdAbO+2XLNfPWgHTToBaAhHQKCUQ1IiC8R1fZQoaAZHQHAVc+aBqbloB00+AWgIR0CglE9HlOoHdX2UKGgGR0BxJqHHmzSkaAdNOAFoCEdAoJRO5vtMPHV9lChoBkdAcouoZydWhmgHTVoBaAhHQKCUX9FWn0l1fZQoaAZHQHIa9fXwsoVoB00lAWgIR0CglQgi/wiJdX2UKGgGR0Bvzs0m+j/NaAdNRgFoCEdAoJUW3z+WGHV9lChoBkdAbaUeeWfK6mgHTUgBaAhHQKCVIbLEDQt1fZQoaAZHQHBZrr5ZbINoB00iAWgIR0CglTFRHf/FdX2UKGgGR0BxPo8JUo8ZaAdL9WgIR0CglV7VSXMRdX2UKGgGR0Buwp2U0Nz9aAdNHgFoCEdAoJVj0jC53HV9lChoBkdARhbEzfrKNmgHS6loCEdAoJWXiBGx2XV9lChoBkdAclKuDBdld2gHTQ8BaAhHQKCVnHPNVzZ1fZQoaAZHQGMmY8lolD5oB03oA2gIR0CglgvvBrN4dX2UKGgGR0BvmlsLv1DjaAdNCwFoCEdAoJZu3rleW3V9lChoBkdAcgsR+BpYcWgHTSIBaAhHQKCWkIDYAbR1fZQoaAZHQAOabF0gbIdoB0uqaAhHQKCWpY5DJEJ1fZQoaAZHQHKopTMqz7doB00+AWgIR0CgltDDTBqLdX2UKGgGR0BM9ZAyEcsEaAdL12gIR0CglxiSzPa+dX2UKGgGR0BxJEniNsFdaAdNoAJoCEdAoJdET8HfM3V9lChoBkfAFpf2bobGWGgHS9toCEdAoJdrblA/s3V9lChoBkdAbzbmQKa5PWgHTRkBaAhHQKCXdIOpbUx1fZQoaAZHQHDb3QY1pCdoB00bAmgIR0Cgl8r92ovSdX2UKGgGR0BxRAH+qBEsaAdNYAFoCEdAoJfvSDyvtHV9lChoBkdAcR4P9UCJXWgHTR4DaAhHQKCX9/WlMyt1fZQoaAZHQGTyo8hcJMRoB03oA2gIR0CgmABFd9lVdX2UKGgGR0BxJuLrHEMtaAdNKQFoCEdAoJglD4QBgnV9lChoBkdASp4zch1TzmgHS9xoCEdAoJkYrxy4nXVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVZgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]",
66
+ "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWVnwEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooR208eUmNGd8tL7tbX81Yq7wCMA2luY5SKEC0YjB/rjXswD7v7nC+Gvi11jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": "Generator(PCG64)"
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.995,
82
+ "gae_lambda": 0.985,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "rollout_buffer_class": {
87
+ ":type:": "<class 'abc.ABCMeta'>",
88
+ ":serialized:": "gAWVNgAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwNUm9sbG91dEJ1ZmZlcpSTlC4=",
89
+ "__module__": "stable_baselines3.common.buffers",
90
+ "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'advantages': <class 'numpy.ndarray'>, 'returns': <class 'numpy.ndarray'>, 'episode_starts': <class 'numpy.ndarray'>, 'log_probs': <class 'numpy.ndarray'>, 'values': <class 'numpy.ndarray'>}",
91
+ "__doc__": "\n Rollout buffer used in on-policy algorithms like A2C/PPO.\n It corresponds to ``buffer_size`` transitions collected\n using the current policy.\n This experience will be discarded after the policy update.\n In order to use PPO objective, we also store the current value of each state\n and the log probability of each taken action.\n\n The term rollout here refers to the model-free notion and should not\n be used with the concept of rollout used in model-based RL or planning.\n Hence, it is only involved in policy and value function training but not action selection.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator\n Equivalent to classic advantage when set to 1.\n :param gamma: Discount factor\n :param n_envs: Number of parallel environments\n ",
92
+ "__init__": "<function RolloutBuffer.__init__ at 0x7fd84f3849d0>",
93
+ "reset": "<function RolloutBuffer.reset at 0x7fd84f384a60>",
94
+ "compute_returns_and_advantage": "<function RolloutBuffer.compute_returns_and_advantage at 0x7fd84f384af0>",
95
+ "add": "<function RolloutBuffer.add at 0x7fd84f384b80>",
96
+ "get": "<function RolloutBuffer.get at 0x7fd84f384c10>",
97
+ "_get_samples": "<function RolloutBuffer._get_samples at 0x7fd84f384ca0>",
98
+ "__abstractmethods__": "frozenset()",
99
+ "_abc_impl": "<_abc._abc_data object at 0x7fd84f382f40>"
100
+ },
101
+ "rollout_buffer_kwargs": {},
102
+ "batch_size": 64,
103
+ "n_epochs": 4,
104
+ "clip_range": {
105
+ ":type:": "<class 'function'>",
106
+ ":serialized:": "gAWVpQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjFsvaG9tZS96ZmgvbWluaWNvbmRhMy9lbnZzL2RybC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwIPGxhbWJkYT6US2FDAJSMDnZhbHVlX3NjaGVkdWxllIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMWy9ob21lL3pmaC9taW5pY29uZGEzL2VudnMvZHJsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA+MDF9fcXVhbG5hbWVfX5SMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RoAihoByhLAUsASwBLAUsBSxNDBIgAUwCUaAkpjAFflIWUaA6MBGZ1bmOUS4VDAgABlIwDdmFslIWUKXSUUpRoFU5OaB0pUpSFlHSUUpRoI2g9fZR9lChoGGg0aCaMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUaCh9lGgqTmgrTmgsaBloLU5oLmgwRz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjCFlFKUhZRoRV2UaEd9lHWGlIZSMC4="
107
+ },
108
+ "clip_range_vf": null,
109
+ "normalize_advantage": true,
110
+ "target_kl": null,
111
+ "lr_schedule": {
112
+ ":type:": "<class 'function'>",
113
+ ":serialized:": "gAWVpQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjFsvaG9tZS96ZmgvbWluaWNvbmRhMy9lbnZzL2RybC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwIPGxhbWJkYT6US2FDAJSMDnZhbHVlX3NjaGVkdWxllIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMWy9ob21lL3pmaC9taW5pY29uZGEzL2VudnMvZHJsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA+MDF9fcXVhbG5hbWVfX5SMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RoAihoByhLAUsASwBLAUsBSxNDBIgAUwCUaAkpjAFflIWUaA6MBGZ1bmOUS4VDAgABlIwDdmFslIWUKXSUUpRoFU5OaB0pUpSFlHSUUpRoI2g9fZR9lChoGGg0aCaMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUaCh9lGgqTmgrTmgsaBloLU5oLmgwRz9KNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjCFlFKUhZRoRV2UaEd9lHWGlIZSMC4="
114
+ }
115
+ }
ppo-tuned-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97c641904d78573a4e1c190b5a40425b3fb27df66f90026d1f47225a2effc1c9
3
+ size 88362
ppo-tuned-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b585929ce393c85c0c790667cfb917e8205378fe931266ed359e3f047682cc5c
3
+ size 43762
ppo-tuned-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-tuned-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.153.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Mar 29 23:14:13 UTC 2024
2
+ - Python: 3.9.19
3
+ - Stable-Baselines3: 2.4.0a7
4
+ - PyTorch: 2.4.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.0.0
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.26.2
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 258.55356446732947, "std_reward": 22.133242957150586, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-08-19T04:18:14.366664"}
 
1
+ {"mean_reward": 266.56133718365413, "std_reward": 25.232209562353496, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-10-19T00:00:43.742852"}