zezafa commited on
Commit
a4a41ad
1 Parent(s): 222edea

First model

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - BipedalWalker-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 80.95 +/- 9.81
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: BipedalWalker-v3
20
+ type: BipedalWalker-v3
21
+ ---
22
+
23
+ # **PPO** Agent playing **BipedalWalker-v3**
24
+ This is a trained model of a **PPO** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f45e950add0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f45e950ae60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f45e950aef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f45e950af80>", "_build": "<function ActorCriticPolicy._build at 0x7f45e9510050>", "forward": "<function ActorCriticPolicy.forward at 0x7f45e95100e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f45e9510170>", "_predict": "<function ActorCriticPolicy._predict at 0x7f45e9510200>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f45e9510290>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f45e9510320>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f45e95103b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f45e9564210>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [24], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652810301.284047, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAAjdgj4MTEe9b3XwPZ2yprzwqJY/pLt/P6AP7T5cCoC/AAAAANOeVb8AAKM3QHTFvPHifD4AAAAAefeAPjSRgT70bYU+VwCNPsIimj7sca0+5vXKPp5S/T4snis/AACAP+NTGz/sMrU93aaJPchZWL3of1A/dmfGvsA3T749XZA/AAAAAHYGW78AAIC/pJLXvt3Acz8AAAAAbViuPv+SsT5zrbY+TeO/PrAFzj5eJ+g+MmcEP12pHT9pCE8/AACAP0FlK70SSh+9hB9nPgYtCj6JKpI/4N3APJlvbz9VtpI7AACAP4eaVb8sZtM9NNb4PpjlBD4AAIA/Hu+XPseMmT5uKJ4+pemmPhb+tD5FDMw+2gDwPuTsET8r9UQ/AACAP+4W4T78HGS8pr5DPeTEbb2wRJE/AAAgs1DiLD///38/AAAAAPiVLL/c7U89oB9KvgO/sb0AAAAA32KlPl5ppz5kEa0+4oG3PsoWyD75N+A+Mtv/PqZsGj8ez00/AACAP9jZHT/z5JK9No1sPlMqez2Ia4o/x0AXP/hQ8D7h/3+/AAAAAORJVb8AAEC0MPatvtM30D4AAIA/43qOPgWLjT5VI48+wr2TPtyPnD6Wy6o+OPHBPqab6z5YZCA/AACAP82MpD6WP6Q99D3nPdSTpL3gaIQ/+/9/P+CDhL25bgzAAACAP72RRr+Q7zk9AHGVOwEAgL8AAAAARuqwPsO2sT5FDbc+K3G/Pv3mzT6BheU+jo0GP3IqKD8CcmA/AACAP3ncLL0cT549y3NkPlvcjD1UWoA/LM95v3sAHz9/xRI/AAAAABABA70y8Hg/XKeEvgAAgL8AAAAAsy+9PrMMwT7l48k+lM3ZPibQ8D5WEwg/oQ8eP5ePPj89pG0/AACAPwoQJT7/Tuk8Z8BSPsa2ur0lmGM/sQ46PiBQTD8BAIA/AAAAAH2x+L4AAIC/AMMkO/v/fz8AAAAA+A23PrBEuj5MlcI+RaXQPlzi5j6zhwQ/RIQcP3x5Qj8AAIA/AACAP4xr/T5TEWG95ndcPgJrFbzUmpA/AACHNqA2Qj/rOC6/AAAAAOJMUb8AABi1EOo0vsTicz4AAIA/q8acPqqVnT44E6E+z0mpPpzytj7xqsg+MbDkPpctBz9HtyU/9sJ/P8rLVj7tHaE8StKGPu00FL6ODYk/8uObPrIY6j4AAIC/AAAAAHe8Vb8AAAAAOAzSPjRccj8AAAAAzgmqPif4qz7l/LE+cNa8PvIFzj48ZOg+d4kHP8l/Jz+cEWY/AACAPyDyXr32bke9dPnVPeYYOz7kjI8/ANZuugg3aD8AQI65AACAP4C3Vb8AAK83JiGAPysGgD8AAAAAgZ2mPpIqpj521Ks+3D+1PqgxwT6MJdg+HL//PsTCID+QmVs/AACAPz/3Fj9jfQy7nk2yPei5gDyQbpU/BpOAP7ikGb8X+pK+AACAPzRCVr8AG8K4qJryvoExgL8AAAAAdeKGPg6ohj5pa4o+aMiRPs/3nD5lyK0+Y0nGPpSi8j6ZViA/AACAP3T7qj57iKU9yDZFPG2X3b2KKI4/AACgNDDbij0BAIA/AAAAAGvgDL8GGYC/EE+Qvv3/f78AAAAAYYHqPiYr7T4JePU+UjcCPxMRDj/YPyA/oKA8P3Gmaz8AAIA/AACAP4HuAT6t0ZI9wFhFPi5iu7sejI8/AAAAANAiyj37/3+/AAAAAPsUDb8AIp081L2Avv3/f78AAAAATWC2Pnk3uT7xy8E+m3TOPitq4T7oIv8+KikXP/X5Oj/hOnw/AACAP8WvCj9s25M9aMMlPZmUmL00o28/uPI5P9hq/z0BAIC/AACAP3eMRr+MDUQ/tgAOvyim6D4AAIA/7DiJPt+Hiz4WKJI+QrKcPi2JrD54xMI+3oHqPnb2Fj+AnE8/AACAPwGMnT5GRIA90v01Pieqkr22o40/wKdIvcCZx7z7PIa+AAAAAJezR79l+xy+gNhyPPz/f78AAAAAL+21PucyuD4NQ78+zorLPhP43z7UKQA/k20XP7ODQz8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxf8dUaFUVECUhpRSlIwBbJRNQAaMAXSUR0CEaL11W8yvdX2UKGgGaAloD0MIBwlRvqDgUkCUhpRSlGgVTUAGaBZHQIRpJS3solV1fZQoaAZoCWgPQwj9vKlIhb9SQJSGlFKUaBVNQAZoFkdAhJyIDYAbQ3V9lChoBmgJaA9DCHsS2JyDc0XAlIaUUpRoFU1aA2gWR0CEnM31BdD6dX2UKGgGaAloD0MIJnMs76qEVECUhpRSlGgVTUAGaBZHQISem5OJtSB1fZQoaAZoCWgPQwi+ofDZOlhaQJSGlFKUaBVNQAZoFkdAhKOO8scyWXV9lChoBmgJaA9DCL4z2qokqELAlIaUUpRoFU3iA2gWR0CEpt99c8kldX2UKGgGaAloD0MISL99HTgJU8CUhpRSlGgVTcUBaBZHQISnHpyIYWN1fZQoaAZoCWgPQwhhi90+q8dZQJSGlFKUaBVNQAZoFkdAhLR3PRiPQ3V9lChoBmgJaA9DCDJWm/9XxVdAlIaUUpRoFU1ABmgWR0CEvMmfoRqXdX2UKGgGaAloD0MI5rFmZJCzScCUhpRSlGgVTW8DaBZHQIS9UaAFxGV1fZQoaAZoCWgPQwiID+z4L0pVQJSGlFKUaBVNQAZoFkdAhL/c3EQ5FXV9lChoBmgJaA9DCJRnXg67U1NAlIaUUpRoFU1ABmgWR0CEyZa24NI9dX2UKGgGaAloD0MInkSEfxHjUUCUhpRSlGgVTUAGaBZHQITPho/Rmbt1fZQoaAZoCWgPQwgQ6EzaVKRWQJSGlFKUaBVNQAZoFkdAhPl9Tgl4T3V9lChoBmgJaA9DCJSilXuBEUDAlIaUUpRoFU1iBGgWR0CE/Z6/IsAedX2UKGgGaAloD0MIHeVgNgEfVkCUhpRSlGgVTUAGaBZHQIT/g+jdpIt1fZQoaAZoCWgPQwh0C12JQIxTwJSGlFKUaBVNXgJoFkdAhQIrT6SDAnV9lChoBmgJaA9DCPFmDd5XC1ZAlIaUUpRoFU1ABmgWR0CFBQ20AtFsdX2UKGgGaAloD0MIZAYq499AVECUhpRSlGgVTUAGaBZHQIUFROafBep1fZQoaAZoCWgPQwj7PhwkRDhbQJSGlFKUaBVNQAZoFkdAhRd70WdmQXV9lChoBmgJaA9DCNdOlIREtldAlIaUUpRoFU1ABmgWR0CFGYjKPn0TdX2UKGgGaAloD0MIGTc10HyNWUCUhpRSlGgVTUAGaBZHQIUefzvqkdp1fZQoaAZoCWgPQwgKLev+sbRbQJSGlFKUaBVNQAZoFkdAhSHIkAxSHnV9lChoBmgJaA9DCPW8GwsKPVZAlIaUUpRoFU1ABmgWR0CFIgjFhodudX2UKGgGaAloD0MIFmu4yD3fWcCUhpRSlGgVS31oFkdAhSie9Jz1b3V9lChoBmgJaA9DCEGbHD7pRBfAlIaUUpRoFU01BmgWR0CFVBaFmFrVdX2UKGgGaAloD0MI0LcFS3XVVcCUhpRSlGgVS6VoFkdAhVa5zHS4OXV9lChoBmgJaA9DCGOYE7TJBVZAlIaUUpRoFU1ABmgWR0CFXXoyKvV3dX2UKGgGaAloD0MIrTHohNB3W0CUhpRSlGgVTUAGaBZHQIVgCxJNCZ51fZQoaAZoCWgPQwh4exAC8nRaQJSGlFKUaBVNQAZoFkdAhWnMWO6un3V9lChoBmgJaA9DCFhYcD/gjVFAlIaUUpRoFU1ABmgWR0CFcClANXo1dX2UKGgGaAloD0MIfHxCdt5QV8CUhpRSlGgVS3NoFkdAhXBh0Qsf73V9lChoBmgJaA9DCMxAZfz7qlVAlIaUUpRoFU1ABmgWR0CFdO3/giu/dX2UKGgGaAloD0MI0Xr4MlFVV0CUhpRSlGgVTUAGaBZHQIV5Dm6oVEd1fZQoaAZoCWgPQwjAsWfPZY5AwJSGlFKUaBVNdwRoFkdAhXntix3V1HV9lChoBmgJaA9DCLGLogc+yFhAlIaUUpRoFU1ABmgWR0CFeuW5Yoy9dX2UKGgGaAloD0MIzhq8r0opYMCUhpRSlGgVS3RoFkdAhXsjWsijcnV9lChoBmgJaA9DCOknnN1a2VhAlIaUUpRoFU1ABmgWR0CFfZUpd8iOdX2UKGgGaAloD0MIca5hhsYhXcCUhpRSlGgVSzZoFkdAhX3KREF4cHV9lChoBmgJaA9DCHVyhuKOo1ZAlIaUUpRoFU1ABmgWR0CFgI4iosI3dX2UKGgGaAloD0MIcQFolC5rWUCUhpRSlGgVTUAGaBZHQIWAxamoBJZ1fZQoaAZoCWgPQwj/zYsTX7BZwJSGlFKUaBVLUGgWR0CFgfoOhCdCdX2UKGgGaAloD0MIxyk6kstwWcCUhpRSlGgVSzhoFkdAhYO3uNPxhHV9lChoBmgJaA9DCJFkVu9wRFZAlIaUUpRoFU1ABmgWR0CFuTY7q6e5dX2UKGgGaAloD0MIUwQ4vYtPXECUhpRSlGgVTUAGaBZHQIW+B2OhkAh1fZQoaAZoCWgPQwiasz7lmCBOwJSGlFKUaBVNTgJoFkdAhb4hwuM+/3V9lChoBmgJaA9DCKWfcHZreFpAlIaUUpRoFU1ABmgWR0CFwUPwuuifdX2UKGgGaAloD0MInkXvVMDsWMCUhpRSlGgVS21oFkdAhcPipWFN+XV9lChoBmgJaA9DCHxfXKrS71RAlIaUUpRoFU1ABmgWR0CFzjUp/gBLdX2UKGgGaAloD0MIi1BsBU2oVECUhpRSlGgVTUAGaBZHQIXQ1O2y9mJ1fZQoaAZoCWgPQwipF3yak11QQJSGlFKUaBVNQAZoFkdAhdeFINEw4HV9lChoBmgJaA9DCKGEmbZ/4lZAlIaUUpRoFU1ABmgWR0CF2jKp1ie/dX2UKGgGaAloD0MIGXEBaJQzW8CUhpRSlGgVS0NoFkdAhdtdic5Ke3V9lChoBmgJaA9DCCUgJuFCtFRAlIaUUpRoFU1ABmgWR0CGD0HGCI1tdX2UKGgGaAloD0MInN1aJsOlWUCUhpRSlGgVTUAGaBZHQIYPdQVKwpx1fZQoaAZoCWgPQwg7NCxGXesbwJSGlFKUaBVNqgVoFkdAhhI5J9RaYHV9lChoBmgJaA9DCEc6AyMvpldAlIaUUpRoFU1ABmgWR0CGGBQVsUItdX2UKGgGaAloD0MIhq3ZykuMWECUhpRSlGgVTUAGaBZHQIYc2SW7e2x1fZQoaAZoCWgPQwhlUdhF0aVUQJSGlFKUaBVNQAZoFkdAhh+NO2y9mHV9lChoBmgJaA9DCOZXc4BgaFdAlIaUUpRoFU1ABmgWR0CGIPPXTVlPdX2UKGgGaAloD0MIP8QGCydcVkCUhpRSlGgVTUAGaBZHQIYixfv4M4N1fZQoaAZoCWgPQwh6ibFMv1JTQJSGlFKUaBVNQAZoFkdAhjNnctXgcnV9lChoBmgJaA9DCIJzRpT29jvAlIaUUpRoFU0DBmgWR0CGNSL5RCQcdX2UKGgGaAloD0MIxO47hseKVkCUhpRSlGgVTUAGaBZHQIY7pVfeDWd1fZQoaAZoCWgPQwg2zqYjgH5XQJSGlFKUaBVNQAZoFkdAhj5YkE9t/HV9lChoBmgJaA9DCKeyKOyiV1VAlIaUUpRoFU1ABmgWR0CGbpHAh0QsdX2UKGgGaAloD0MIYYpyafwxVECUhpRSlGgVTUAGaBZHQIZxJ1Ng0CR1fZQoaAZoCWgPQwiB64oZ4epVQJSGlFKUaBVNQAZoFkdAhnpxiXpnpXV9lChoBmgJaA9DCCpTzEHQ+FBAlIaUUpRoFU1ABmgWR0CGe5x/d69kdX2UKGgGaAloD0MICks8oGxCWsCUhpRSlGgVS2NoFkdAhoDlLWZqmHV9lChoBmgJaA9DCEhwI2WLeFdAlIaUUpRoFU1ABmgWR0CGikXokiUxdX2UKGgGaAloD0MIayi1F9GvUUCUhpRSlGgVTUAGaBZHQIaKeCVbA1x1fZQoaAZoCWgPQwggQfFjzF9RQJSGlFKUaBVNQAZoFkdAho1FxwQ18HV9lChoBmgJaA9DCCIYB5eOBVRAlIaUUpRoFU1ABmgWR0CGkxVBlcyFdX2UKGgGaAloD0MIlkG1wYlsUUCUhpRSlGgVTUAGaBZHQIaX3va11GN1fZQoaAZoCWgPQwjHgy12++9XwJSGlFKUaBVLgGgWR0CGmg1pj+aSdX2UKGgGaAloD0MI6C0e3nPdUUCUhpRSlGgVTUAGaBZHQIaap2r4nF51fZQoaAZoCWgPQwi4IjFBDXdRQJSGlFKUaBVNQAZoFkdAhpwYJVsDXHV9lChoBmgJaA9DCIcXRKSmoVzAlIaUUpRoFUssaBZHQIadFonKGL11fZQoaAZoCWgPQwi0xwvp8PNQQJSGlFKUaBVNQAZoFkdAhp3uk+HJtHV9lChoBmgJaA9DCHsy/+ibaFdAlIaUUpRoFU1ABmgWR0CG06qYJE6UdX2UKGgGaAloD0MIARdky/JjV0CUhpRSlGgVTUAGaBZHQIbVbbQC0Wx1fZQoaAZoCWgPQwgk1Xd+UZBZwJSGlFKUaBVLe2gWR0CG2iGFBY3edX2UKGgGaAloD0MIX7cIjPUdUUCUhpRSlGgVTUAGaBZHQIbbvlEJBxB1fZQoaAZoCWgPQwjlJ9U+HSlRQJSGlFKUaBVNQAZoFkdAht5qE384xXV9lChoBmgJaA9DCEChnj4C6lVAlIaUUpRoFU1ABmgWR0CG6K4DLbHqdX2UKGgGaAloD0MIdvpBXaSIVkCUhpRSlGgVTUAGaBZHQIbrWfTTfBN1fZQoaAZoCWgPQwhi9UcYBkhVQJSGlFKUaBVNQAZoFkdAhvSj7655JXV9lChoBmgJaA9DCC5x5IHIrFFAlIaUUpRoFU1ABmgWR0CHIFr+HaexdX2UKGgGaAloD0MIUDqRYKp4V0CUhpRSlGgVTUAGaBZHQIcpyBTXJ5p1fZQoaAZoCWgPQwgbuAN1yilbQJSGlFKUaBVNQAZoFkdAhyn6L4vexnV9lChoBmgJaA9DCDbknxnEF1VAlIaUUpRoFU1ABmgWR0CHLLy4FzMidX2UKGgGaAloD0MI/DbEeM0/V0CUhpRSlGgVTUAGaBZHQIc3Sc3EQ5F1fZQoaAZoCWgPQwiUoL/QI7RaQJSGlFKUaBVNQAZoFkdAhzlp1aGHpXV9lChoBmgJaA9DCKetEcE4EFVAlIaUUpRoFU1ABmgWR0CHO16zE74jdX2UKGgGaAloD0MI6/6xEB1VVECUhpRSlGgVTUAGaBZHQIc8X8VHnU51fZQoaAZoCWgPQwi7nX3lQexZQJSGlFKUaBVNQAZoFkdAhz1GEPDpDHV9lChoBmgJaA9DCNV5VPzfzVVAlIaUUpRoFU1ABmgWR0CHT6pZwGW2dX2UKGgGaAloD0MIbD6uDRWmVECUhpRSlGgVTUAGaBZHQIdUb0+TvAp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-BipedalWalker-v3-test.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8cc45ec71590959a0ecd894795940cf86dd481150d937041704a3f6003696791
3
+ size 171925
ppo-BipedalWalker-v3-test/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-BipedalWalker-v3-test/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f45e950add0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f45e950ae60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f45e950aef0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f45e950af80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f45e9510050>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f45e95100e0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f45e9510170>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f45e9510200>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f45e9510290>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f45e9510320>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f45e95103b0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f45e9564210>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 24
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.box.Box'>",
38
+ ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
39
+ "dtype": "float32",
40
+ "_shape": [
41
+ 4
42
+ ],
43
+ "low": "[-1. -1. -1. -1.]",
44
+ "high": "[1. 1. 1. 1.]",
45
+ "bounded_below": "[ True True True True]",
46
+ "bounded_above": "[ True True True True]",
47
+ "_np_random": null
48
+ },
49
+ "n_envs": 16,
50
+ "num_timesteps": 1015808,
51
+ "_total_timesteps": 1000000,
52
+ "_num_timesteps_at_start": 0,
53
+ "seed": null,
54
+ "action_noise": null,
55
+ "start_time": 1652810301.284047,
56
+ "learning_rate": 0.0003,
57
+ "tensorboard_log": null,
58
+ "lr_schedule": {
59
+ ":type:": "<class 'function'>",
60
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
61
+ },
62
+ "_last_obs": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAAjdgj4MTEe9b3XwPZ2yprzwqJY/pLt/P6AP7T5cCoC/AAAAANOeVb8AAKM3QHTFvPHifD4AAAAAefeAPjSRgT70bYU+VwCNPsIimj7sca0+5vXKPp5S/T4snis/AACAP+NTGz/sMrU93aaJPchZWL3of1A/dmfGvsA3T749XZA/AAAAAHYGW78AAIC/pJLXvt3Acz8AAAAAbViuPv+SsT5zrbY+TeO/PrAFzj5eJ+g+MmcEP12pHT9pCE8/AACAP0FlK70SSh+9hB9nPgYtCj6JKpI/4N3APJlvbz9VtpI7AACAP4eaVb8sZtM9NNb4PpjlBD4AAIA/Hu+XPseMmT5uKJ4+pemmPhb+tD5FDMw+2gDwPuTsET8r9UQ/AACAP+4W4T78HGS8pr5DPeTEbb2wRJE/AAAgs1DiLD///38/AAAAAPiVLL/c7U89oB9KvgO/sb0AAAAA32KlPl5ppz5kEa0+4oG3PsoWyD75N+A+Mtv/PqZsGj8ez00/AACAP9jZHT/z5JK9No1sPlMqez2Ia4o/x0AXP/hQ8D7h/3+/AAAAAORJVb8AAEC0MPatvtM30D4AAIA/43qOPgWLjT5VI48+wr2TPtyPnD6Wy6o+OPHBPqab6z5YZCA/AACAP82MpD6WP6Q99D3nPdSTpL3gaIQ/+/9/P+CDhL25bgzAAACAP72RRr+Q7zk9AHGVOwEAgL8AAAAARuqwPsO2sT5FDbc+K3G/Pv3mzT6BheU+jo0GP3IqKD8CcmA/AACAP3ncLL0cT549y3NkPlvcjD1UWoA/LM95v3sAHz9/xRI/AAAAABABA70y8Hg/XKeEvgAAgL8AAAAAsy+9PrMMwT7l48k+lM3ZPibQ8D5WEwg/oQ8eP5ePPj89pG0/AACAPwoQJT7/Tuk8Z8BSPsa2ur0lmGM/sQ46PiBQTD8BAIA/AAAAAH2x+L4AAIC/AMMkO/v/fz8AAAAA+A23PrBEuj5MlcI+RaXQPlzi5j6zhwQ/RIQcP3x5Qj8AAIA/AACAP4xr/T5TEWG95ndcPgJrFbzUmpA/AACHNqA2Qj/rOC6/AAAAAOJMUb8AABi1EOo0vsTicz4AAIA/q8acPqqVnT44E6E+z0mpPpzytj7xqsg+MbDkPpctBz9HtyU/9sJ/P8rLVj7tHaE8StKGPu00FL6ODYk/8uObPrIY6j4AAIC/AAAAAHe8Vb8AAAAAOAzSPjRccj8AAAAAzgmqPif4qz7l/LE+cNa8PvIFzj48ZOg+d4kHP8l/Jz+cEWY/AACAPyDyXr32bke9dPnVPeYYOz7kjI8/ANZuugg3aD8AQI65AACAP4C3Vb8AAK83JiGAPysGgD8AAAAAgZ2mPpIqpj521Ks+3D+1PqgxwT6MJdg+HL//PsTCID+QmVs/AACAPz/3Fj9jfQy7nk2yPei5gDyQbpU/BpOAP7ikGb8X+pK+AACAPzRCVr8AG8K4qJryvoExgL8AAAAAdeKGPg6ohj5pa4o+aMiRPs/3nD5lyK0+Y0nGPpSi8j6ZViA/AACAP3T7qj57iKU9yDZFPG2X3b2KKI4/AACgNDDbij0BAIA/AAAAAGvgDL8GGYC/EE+Qvv3/f78AAAAAYYHqPiYr7T4JePU+UjcCPxMRDj/YPyA/oKA8P3Gmaz8AAIA/AACAP4HuAT6t0ZI9wFhFPi5iu7sejI8/AAAAANAiyj37/3+/AAAAAPsUDb8AIp081L2Avv3/f78AAAAATWC2Pnk3uT7xy8E+m3TOPitq4T7oIv8+KikXP/X5Oj/hOnw/AACAP8WvCj9s25M9aMMlPZmUmL00o28/uPI5P9hq/z0BAIC/AACAP3eMRr+MDUQ/tgAOvyim6D4AAIA/7DiJPt+Hiz4WKJI+QrKcPi2JrD54xMI+3oHqPnb2Fj+AnE8/AACAPwGMnT5GRIA90v01Pieqkr22o40/wKdIvcCZx7z7PIa+AAAAAJezR79l+xy+gNhyPPz/f78AAAAAL+21PucyuD4NQ78+zorLPhP43z7UKQA/k20XP7ODQz8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="
65
+ },
66
+ "_last_episode_starts": {
67
+ ":type:": "<class 'numpy.ndarray'>",
68
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
69
+ },
70
+ "_last_original_obs": null,
71
+ "_episode_num": 0,
72
+ "use_sde": false,
73
+ "sde_sample_freq": -1,
74
+ "_current_progress_remaining": -0.015808000000000044,
75
+ "ep_info_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxf8dUaFUVECUhpRSlIwBbJRNQAaMAXSUR0CEaL11W8yvdX2UKGgGaAloD0MIBwlRvqDgUkCUhpRSlGgVTUAGaBZHQIRpJS3solV1fZQoaAZoCWgPQwj9vKlIhb9SQJSGlFKUaBVNQAZoFkdAhJyIDYAbQ3V9lChoBmgJaA9DCHsS2JyDc0XAlIaUUpRoFU1aA2gWR0CEnM31BdD6dX2UKGgGaAloD0MIJnMs76qEVECUhpRSlGgVTUAGaBZHQISem5OJtSB1fZQoaAZoCWgPQwi+ofDZOlhaQJSGlFKUaBVNQAZoFkdAhKOO8scyWXV9lChoBmgJaA9DCL4z2qokqELAlIaUUpRoFU3iA2gWR0CEpt99c8kldX2UKGgGaAloD0MISL99HTgJU8CUhpRSlGgVTcUBaBZHQISnHpyIYWN1fZQoaAZoCWgPQwhhi90+q8dZQJSGlFKUaBVNQAZoFkdAhLR3PRiPQ3V9lChoBmgJaA9DCDJWm/9XxVdAlIaUUpRoFU1ABmgWR0CEvMmfoRqXdX2UKGgGaAloD0MI5rFmZJCzScCUhpRSlGgVTW8DaBZHQIS9UaAFxGV1fZQoaAZoCWgPQwiID+z4L0pVQJSGlFKUaBVNQAZoFkdAhL/c3EQ5FXV9lChoBmgJaA9DCJRnXg67U1NAlIaUUpRoFU1ABmgWR0CEyZa24NI9dX2UKGgGaAloD0MInkSEfxHjUUCUhpRSlGgVTUAGaBZHQITPho/Rmbt1fZQoaAZoCWgPQwgQ6EzaVKRWQJSGlFKUaBVNQAZoFkdAhPl9Tgl4T3V9lChoBmgJaA9DCJSilXuBEUDAlIaUUpRoFU1iBGgWR0CE/Z6/IsAedX2UKGgGaAloD0MIHeVgNgEfVkCUhpRSlGgVTUAGaBZHQIT/g+jdpIt1fZQoaAZoCWgPQwh0C12JQIxTwJSGlFKUaBVNXgJoFkdAhQIrT6SDAnV9lChoBmgJaA9DCPFmDd5XC1ZAlIaUUpRoFU1ABmgWR0CFBQ20AtFsdX2UKGgGaAloD0MIZAYq499AVECUhpRSlGgVTUAGaBZHQIUFROafBep1fZQoaAZoCWgPQwj7PhwkRDhbQJSGlFKUaBVNQAZoFkdAhRd70WdmQXV9lChoBmgJaA9DCNdOlIREtldAlIaUUpRoFU1ABmgWR0CFGYjKPn0TdX2UKGgGaAloD0MIGTc10HyNWUCUhpRSlGgVTUAGaBZHQIUefzvqkdp1fZQoaAZoCWgPQwgKLev+sbRbQJSGlFKUaBVNQAZoFkdAhSHIkAxSHnV9lChoBmgJaA9DCPW8GwsKPVZAlIaUUpRoFU1ABmgWR0CFIgjFhodudX2UKGgGaAloD0MIFmu4yD3fWcCUhpRSlGgVS31oFkdAhSie9Jz1b3V9lChoBmgJaA9DCEGbHD7pRBfAlIaUUpRoFU01BmgWR0CFVBaFmFrVdX2UKGgGaAloD0MI0LcFS3XVVcCUhpRSlGgVS6VoFkdAhVa5zHS4OXV9lChoBmgJaA9DCGOYE7TJBVZAlIaUUpRoFU1ABmgWR0CFXXoyKvV3dX2UKGgGaAloD0MIrTHohNB3W0CUhpRSlGgVTUAGaBZHQIVgCxJNCZ51fZQoaAZoCWgPQwh4exAC8nRaQJSGlFKUaBVNQAZoFkdAhWnMWO6un3V9lChoBmgJaA9DCFhYcD/gjVFAlIaUUpRoFU1ABmgWR0CFcClANXo1dX2UKGgGaAloD0MIfHxCdt5QV8CUhpRSlGgVS3NoFkdAhXBh0Qsf73V9lChoBmgJaA9DCMxAZfz7qlVAlIaUUpRoFU1ABmgWR0CFdO3/giu/dX2UKGgGaAloD0MI0Xr4MlFVV0CUhpRSlGgVTUAGaBZHQIV5Dm6oVEd1fZQoaAZoCWgPQwjAsWfPZY5AwJSGlFKUaBVNdwRoFkdAhXntix3V1HV9lChoBmgJaA9DCLGLogc+yFhAlIaUUpRoFU1ABmgWR0CFeuW5Yoy9dX2UKGgGaAloD0MIzhq8r0opYMCUhpRSlGgVS3RoFkdAhXsjWsijcnV9lChoBmgJaA9DCOknnN1a2VhAlIaUUpRoFU1ABmgWR0CFfZUpd8iOdX2UKGgGaAloD0MIca5hhsYhXcCUhpRSlGgVSzZoFkdAhX3KREF4cHV9lChoBmgJaA9DCHVyhuKOo1ZAlIaUUpRoFU1ABmgWR0CFgI4iosI3dX2UKGgGaAloD0MIcQFolC5rWUCUhpRSlGgVTUAGaBZHQIWAxamoBJZ1fZQoaAZoCWgPQwj/zYsTX7BZwJSGlFKUaBVLUGgWR0CFgfoOhCdCdX2UKGgGaAloD0MIxyk6kstwWcCUhpRSlGgVSzhoFkdAhYO3uNPxhHV9lChoBmgJaA9DCJFkVu9wRFZAlIaUUpRoFU1ABmgWR0CFuTY7q6e5dX2UKGgGaAloD0MIUwQ4vYtPXECUhpRSlGgVTUAGaBZHQIW+B2OhkAh1fZQoaAZoCWgPQwiasz7lmCBOwJSGlFKUaBVNTgJoFkdAhb4hwuM+/3V9lChoBmgJaA9DCKWfcHZreFpAlIaUUpRoFU1ABmgWR0CFwUPwuuifdX2UKGgGaAloD0MInkXvVMDsWMCUhpRSlGgVS21oFkdAhcPipWFN+XV9lChoBmgJaA9DCHxfXKrS71RAlIaUUpRoFU1ABmgWR0CFzjUp/gBLdX2UKGgGaAloD0MIi1BsBU2oVECUhpRSlGgVTUAGaBZHQIXQ1O2y9mJ1fZQoaAZoCWgPQwipF3yak11QQJSGlFKUaBVNQAZoFkdAhdeFINEw4HV9lChoBmgJaA9DCKGEmbZ/4lZAlIaUUpRoFU1ABmgWR0CF2jKp1ie/dX2UKGgGaAloD0MIGXEBaJQzW8CUhpRSlGgVS0NoFkdAhdtdic5Ke3V9lChoBmgJaA9DCCUgJuFCtFRAlIaUUpRoFU1ABmgWR0CGD0HGCI1tdX2UKGgGaAloD0MInN1aJsOlWUCUhpRSlGgVTUAGaBZHQIYPdQVKwpx1fZQoaAZoCWgPQwg7NCxGXesbwJSGlFKUaBVNqgVoFkdAhhI5J9RaYHV9lChoBmgJaA9DCEc6AyMvpldAlIaUUpRoFU1ABmgWR0CGGBQVsUItdX2UKGgGaAloD0MIhq3ZykuMWECUhpRSlGgVTUAGaBZHQIYc2SW7e2x1fZQoaAZoCWgPQwhlUdhF0aVUQJSGlFKUaBVNQAZoFkdAhh+NO2y9mHV9lChoBmgJaA9DCOZXc4BgaFdAlIaUUpRoFU1ABmgWR0CGIPPXTVlPdX2UKGgGaAloD0MIP8QGCydcVkCUhpRSlGgVTUAGaBZHQIYixfv4M4N1fZQoaAZoCWgPQwh6ibFMv1JTQJSGlFKUaBVNQAZoFkdAhjNnctXgcnV9lChoBmgJaA9DCIJzRpT29jvAlIaUUpRoFU0DBmgWR0CGNSL5RCQcdX2UKGgGaAloD0MIxO47hseKVkCUhpRSlGgVTUAGaBZHQIY7pVfeDWd1fZQoaAZoCWgPQwg2zqYjgH5XQJSGlFKUaBVNQAZoFkdAhj5YkE9t/HV9lChoBmgJaA9DCKeyKOyiV1VAlIaUUpRoFU1ABmgWR0CGbpHAh0QsdX2UKGgGaAloD0MIYYpyafwxVECUhpRSlGgVTUAGaBZHQIZxJ1Ng0CR1fZQoaAZoCWgPQwiB64oZ4epVQJSGlFKUaBVNQAZoFkdAhnpxiXpnpXV9lChoBmgJaA9DCCpTzEHQ+FBAlIaUUpRoFU1ABmgWR0CGe5x/d69kdX2UKGgGaAloD0MICks8oGxCWsCUhpRSlGgVS2NoFkdAhoDlLWZqmHV9lChoBmgJaA9DCEhwI2WLeFdAlIaUUpRoFU1ABmgWR0CGikXokiUxdX2UKGgGaAloD0MIayi1F9GvUUCUhpRSlGgVTUAGaBZHQIaKeCVbA1x1fZQoaAZoCWgPQwggQfFjzF9RQJSGlFKUaBVNQAZoFkdAho1FxwQ18HV9lChoBmgJaA9DCCIYB5eOBVRAlIaUUpRoFU1ABmgWR0CGkxVBlcyFdX2UKGgGaAloD0MIlkG1wYlsUUCUhpRSlGgVTUAGaBZHQIaX3va11GN1fZQoaAZoCWgPQwjHgy12++9XwJSGlFKUaBVLgGgWR0CGmg1pj+aSdX2UKGgGaAloD0MI6C0e3nPdUUCUhpRSlGgVTUAGaBZHQIaap2r4nF51fZQoaAZoCWgPQwi4IjFBDXdRQJSGlFKUaBVNQAZoFkdAhpwYJVsDXHV9lChoBmgJaA9DCIcXRKSmoVzAlIaUUpRoFUssaBZHQIadFonKGL11fZQoaAZoCWgPQwi0xwvp8PNQQJSGlFKUaBVNQAZoFkdAhp3uk+HJtHV9lChoBmgJaA9DCHsy/+ibaFdAlIaUUpRoFU1ABmgWR0CG06qYJE6UdX2UKGgGaAloD0MIARdky/JjV0CUhpRSlGgVTUAGaBZHQIbVbbQC0Wx1fZQoaAZoCWgPQwgk1Xd+UZBZwJSGlFKUaBVLe2gWR0CG2iGFBY3edX2UKGgGaAloD0MIX7cIjPUdUUCUhpRSlGgVTUAGaBZHQIbbvlEJBxB1fZQoaAZoCWgPQwjlJ9U+HSlRQJSGlFKUaBVNQAZoFkdAht5qE384xXV9lChoBmgJaA9DCEChnj4C6lVAlIaUUpRoFU1ABmgWR0CG6K4DLbHqdX2UKGgGaAloD0MIdvpBXaSIVkCUhpRSlGgVTUAGaBZHQIbrWfTTfBN1fZQoaAZoCWgPQwhi9UcYBkhVQJSGlFKUaBVNQAZoFkdAhvSj7655JXV9lChoBmgJaA9DCC5x5IHIrFFAlIaUUpRoFU1ABmgWR0CHIFr+HaexdX2UKGgGaAloD0MIUDqRYKp4V0CUhpRSlGgVTUAGaBZHQIcpyBTXJ5p1fZQoaAZoCWgPQwgbuAN1yilbQJSGlFKUaBVNQAZoFkdAhyn6L4vexnV9lChoBmgJaA9DCDbknxnEF1VAlIaUUpRoFU1ABmgWR0CHLLy4FzMidX2UKGgGaAloD0MI/DbEeM0/V0CUhpRSlGgVTUAGaBZHQIc3Sc3EQ5F1fZQoaAZoCWgPQwiUoL/QI7RaQJSGlFKUaBVNQAZoFkdAhzlp1aGHpXV9lChoBmgJaA9DCKetEcE4EFVAlIaUUpRoFU1ABmgWR0CHO16zE74jdX2UKGgGaAloD0MI6/6xEB1VVECUhpRSlGgVTUAGaBZHQIc8X8VHnU51fZQoaAZoCWgPQwi7nX3lQexZQJSGlFKUaBVNQAZoFkdAhz1GEPDpDHV9lChoBmgJaA9DCNV5VPzfzVVAlIaUUpRoFU1ABmgWR0CHT6pZwGW2dX2UKGgGaAloD0MIbD6uDRWmVECUhpRSlGgVTUAGaBZHQIdUb0+TvAp1ZS4="
78
+ },
79
+ "ep_success_buffer": {
80
+ ":type:": "<class 'collections.deque'>",
81
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
82
+ },
83
+ "_n_updates": 248,
84
+ "n_steps": 1024,
85
+ "gamma": 0.999,
86
+ "gae_lambda": 0.98,
87
+ "ent_coef": 0.01,
88
+ "vf_coef": 0.5,
89
+ "max_grad_norm": 0.5,
90
+ "batch_size": 64,
91
+ "n_epochs": 4,
92
+ "clip_range": {
93
+ ":type:": "<class 'function'>",
94
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
95
+ },
96
+ "clip_range_vf": null,
97
+ "normalize_advantage": true,
98
+ "target_kl": null
99
+ }
ppo-BipedalWalker-v3-test/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:250eaf4e1512ae8392b65d008560212d54a0fd0d288bbb6705297efc45cac94a
3
+ size 101783
ppo-BipedalWalker-v3-test/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d24efe64575fa5b252b2309462573a244d3a3e134f5339bccba7384d84770ccc
3
+ size 51710
ppo-BipedalWalker-v3-test/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-BipedalWalker-v3-test/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c4dec2761efc226b4ec9c95ec05e46cb95d5a6093be567b3f5855d9b872e69f
3
+ size 432747
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 80.9542779488299, "std_reward": 9.812950029532301, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-17T18:15:44.350467"}