zeyefkey commited on
Commit
e0bc8af
1 Parent(s): 861c47b

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 248.23 +/- 23.44
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f152f461a60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f152f461af0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f152f461b80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f152f461c10>", "_build": "<function ActorCriticPolicy._build at 0x7f152f461ca0>", "forward": "<function ActorCriticPolicy.forward at 0x7f152f461d30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f152f461dc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f152f461e50>", "_predict": "<function ActorCriticPolicy._predict at 0x7f152f461ee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f152f461f70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f152f464040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f152f4640d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f152f460e00>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678718394482367895, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAaKCT79QB8/CODoveGaLr5B0bo8DtiYPAAAAAAAAAAAs6QLPvB7nj61+H29f65RvhdVOD1ghOy9AAAAAAAAAABmVue7w2lNugINIrtlCYG2QOmhORWTPjoAAIA/AACAP0BKiL10rwM+EFvRPI3rfb7UHQA967pCuQAAAAAAAAAAzbBNva4RlroOb4u5t10stk4VN7qa2qE4AACAPwAAgD/mZD+9XKNNum30l7pV2UWzFBQ6uz55rzkAAIA/AACAP5rlRLwpMHS6fkyxuQ4Zh7ZpPro6M5bNOAAAgD8AAIA/QCbSva6hgbohTrK4ehnIszwNTrq9Ys83AACAPwAAgD8z+Uc94xURPWosPr6SpkC+YmVVu+DjcL0AAAAAAAAAAMBDqb172IK6Xm/atx5xnLJw0uy69fL9NgAAgD8AAIA/Zm+YPI8eZLqIRdc2ZFXcMTFUpDoDev+1AACAPwAAgD+a/M48j4J4umWE6Dqrw8A1LRfrOkTTB7oAAIA/AACAP6bMlr0pxDq6+W2RO0QiNDYtXyy7OhesugAAgD8AAIA/zXC1u/aENrpyeXk5QRWANLfKZjsy2pO4AACAPwAAgD+zG3w9w2ETugB+C7zil8q1m1+rOt02NjUAAIA/AACAP4D/u71cG3K6BkJSuoB45bS53OE6S2ZzOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/ffgtUsrWECUhpRSlIwBbJRN6AOMAXSUR0CRtsUdJaq0dX2UKGgGaAloD0MI/YNIhhwpZECUhpRSlGgVTegDaBZHQJHBvJA+pwV1fZQoaAZoCWgPQwijj/mAQABZQJSGlFKUaBVN6ANoFkdAkcPDho/RmnV9lChoBmgJaA9DCII65dGNhWJAlIaUUpRoFU3oA2gWR0CRxiuaWom5dX2UKGgGaAloD0MIaLEUyVdpW0CUhpRSlGgVTegDaBZHQJHN8nssxwh1fZQoaAZoCWgPQwhfQgWHF65pQJSGlFKUaBVNZwJoFkdAkc6C39aUzXV9lChoBmgJaA9DCEJ5H0dzMl5AlIaUUpRoFU3oA2gWR0CR0RWMju8cdX2UKGgGaAloD0MIqI5VSs9UYkCUhpRSlGgVTegDaBZHQJHR7Q5WBBl1fZQoaAZoCWgPQwiR71LqkvReQJSGlFKUaBVN6ANoFkdAkdk79VFQVXV9lChoBmgJaA9DCNumeFzUjWNAlIaUUpRoFU3oA2gWR0CR3o87IT4+dX2UKGgGaAloD0MIZhNgWP4SR0CUhpRSlGgVTSsBaBZHQJHiDnied091fZQoaAZoCWgPQwiR7Xw/tfFkQJSGlFKUaBVN6ANoFkdAkeRdK28Zk3V9lChoBmgJaA9DCCEgX0KFl2JAlIaUUpRoFU3oA2gWR0CR6VLDAJswdX2UKGgGaAloD0MIQfLOoQz3XUCUhpRSlGgVTegDaBZHQJHrFbt7a7F1fZQoaAZoCWgPQwiZuFUQgyhjQJSGlFKUaBVN6ANoFkdAkezyQ5myxHV9lChoBmgJaA9DCAbYR6eugWBAlIaUUpRoFU3oA2gWR0CR7SATZg5SdX2UKGgGaAloD0MIoYZvYV1nYECUhpRSlGgVTegDaBZHQJIUh5v99+h1fZQoaAZoCWgPQwhP54pSQh5CQJSGlFKUaBVNIAFoFkdAkhVCidrftXV9lChoBmgJaA9DCJeQD3o2KllAlIaUUpRoFU3oA2gWR0CSGOp6hQFcdX2UKGgGaAloD0MIvB+3X75uZUCUhpRSlGgVTegDaBZHQJIeNGc4HX51fZQoaAZoCWgPQwitFW2Oc2FjQJSGlFKUaBVN6ANoFkdAkh81X3g1nHV9lChoBmgJaA9DCO61oPfGh15AlIaUUpRoFU3oA2gWR0CSIFhHLA58dX2UKGgGaAloD0MItkdvuA92YUCUhpRSlGgVTegDaBZHQJIlnMr3Cbd1fZQoaAZoCWgPQwg5e2e0VQBcQJSGlFKUaBVN6ANoFkdAkid/c32mHnV9lChoBmgJaA9DCAd96e3PLmNAlIaUUpRoFU3oA2gWR0CSKBjY7JXAdX2UKGgGaAloD0MI4iGMn8Z9IkCUhpRSlGgVTSUBaBZHQJIujbj94u91fZQoaAZoCWgPQwhtjQjGweNkQJSGlFKUaBVN6ANoFkdAki91iKBNEnV9lChoBmgJaA9DCFlqvd9oj11AlIaUUpRoFU3oA2gWR0CSNXLOAy2ydX2UKGgGaAloD0MIG55eKUtrY0CUhpRSlGgVTegDaBZHQJI5bxgAp8Z1fZQoaAZoCWgPQwgvibMiapdlQJSGlFKUaBVN6ANoFkdAkjwVF2FFlXV9lChoBmgJaA9DCPNYMzLIX2FAlIaUUpRoFU3oA2gWR0CSQDOkcjqwdX2UKGgGaAloD0MII028AzxrXUCUhpRSlGgVTegDaBZHQJJDrH7xd6d1fZQoaAZoCWgPQwiGN2vwPmJgQJSGlFKUaBVN6ANoFkdAkkPekUKzA3V9lChoBmgJaA9DCMGtu3kqKmFAlIaUUpRoFU3oA2gWR0CSZxWKuSwGdX2UKGgGaAloD0MIk4sxsI6hYUCUhpRSlGgVTegDaBZHQJJoJkbxVhl1fZQoaAZoCWgPQwh8CoDxjKZiQJSGlFKUaBVN6ANoFkdAkm2yd4FA3XV9lChoBmgJaA9DCBcSMLq8wl9AlIaUUpRoFU3oA2gWR0CSd2IIF/x2dX2UKGgGaAloD0MIm6+Sj112YECUhpRSlGgVTegDaBZHQJJ44Tj/+851fZQoaAZoCWgPQwgjopi8ASRiQJSGlFKUaBVN6ANoFkdAkn99hy8zynV9lChoBmgJaA9DCAAapUv/fGBAlIaUUpRoFU3oA2gWR0CSgf0ihWYGdX2UKGgGaAloD0MI+pekMsXDW0CUhpRSlGgVTegDaBZHQJKCy+7Dl5p1fZQoaAZoCWgPQwgJwD+lyn1lQJSGlFKUaBVN6ANoFkdAkojeMMqjJ3V9lChoBmgJaA9DCG+9pgcFoF5AlIaUUpRoFU3oA2gWR0CSiaCDVYp2dX2UKGgGaAloD0MIBr03hoACYECUhpRSlGgVTegDaBZHQJKOL1mJ3xF1fZQoaAZoCWgPQwjqWnufqstkQJSGlFKUaBVN6ANoFkdAkpJL/CIk7nV9lChoBmgJaA9DCEkqU8xBAl9AlIaUUpRoFU3oA2gWR0CSlR6tT1kEdX2UKGgGaAloD0MIm1Wfq63/XUCUhpRSlGgVTegDaBZHQJKbIF7laKV1fZQoaAZoCWgPQwjlmCzuv6RkQJSGlFKUaBVN6ANoFkdAkqBuQ2dd3XV9lChoBmgJaA9DCAX4bvPG3l9AlIaUUpRoFU3oA2gWR0CSoLfF72L6dX2UKGgGaAloD0MIXvWAecgLYECUhpRSlGgVTegDaBZHQJLH9S1maph1fZQoaAZoCWgPQwhVoBaDB9RhQJSGlFKUaBVN6ANoFkdAksiyvHLidnV9lChoBmgJaA9DCEsfuqA+PWVAlIaUUpRoFU3oA2gWR0CSzJZTyauwdX2UKGgGaAloD0MI4o+izlz2ZECUhpRSlGgVTegDaBZHQJLT9YaHbh51fZQoaAZoCWgPQwirIXGPpVBeQJSGlFKUaBVN6ANoFkdAktVbNwBHTnV9lChoBmgJaA9DCKOSOgFNbWJAlIaUUpRoFU3oA2gWR0CS3MiQDFIedX2UKGgGaAloD0MIrrt5qkOuM8CUhpRSlGgVTUUBaBZHQJLe1sO5J9R1fZQoaAZoCWgPQwhKfVnaqd9aQJSGlFKUaBVN6ANoFkdAkt/8X7+DOHV9lChoBmgJaA9DCFAcQL/vbl9AlIaUUpRoFU3oA2gWR0CS4Qb+Lm6odX2UKGgGaAloD0MIBYvDmd9KYkCUhpRSlGgVTegDaBZHQJLpQl9jPOZ1fZQoaAZoCWgPQwijIeNRKrNhQJSGlFKUaBVN6ANoFkdAkupQBtDUmXV9lChoBmgJaA9DCOdTxyqlF11AlIaUUpRoFU3oA2gWR0CS7438n/kvdX2UKGgGaAloD0MITmA6rVsrYkCUhpRSlGgVTegDaBZHQJLyfgeii7F1fZQoaAZoCWgPQwgDCvX0kShiQJSGlFKUaBVN6ANoFkdAkvSGjTKDCnV9lChoBmgJaA9DCFjnGJC9rEJAlIaUUpRoFU09AWgWR0CS90ubI91VdX2UKGgGaAloD0MIYFs//WdGY0CUhpRSlGgVTegDaBZHQJL5OkHlfZ51fZQoaAZoCWgPQwhJRzmYTZtjQJSGlFKUaBVN6ANoFkdAkv0V9fCyhXV9lChoBmgJaA9DCJ7wEpz6f19AlIaUUpRoFU3oA2gWR0CS/UMhX8wYdX2UKGgGaAloD0MIMZqV7cObYUCUhpRSlGgVTegDaBZHQJMnc2UB4lh1fZQoaAZoCWgPQwiOWmH6XsJgQJSGlFKUaBVN6ANoFkdAkyvpgPVd5nV9lChoBmgJaA9DCDW0AdgAs29AlIaUUpRoFU3yAmgWR0CTLJri2lVMdX2UKGgGaAloD0MIryE4LmMSbUCUhpRSlGgVTcABaBZHQJMvBUvPC2t1fZQoaAZoCWgPQwj5E5UN665jQJSGlFKUaBVN6ANoFkdAkzK1SsKb8XV9lChoBmgJaA9DCMoYH2YvnG5AlIaUUpRoFU07AmgWR0CTM9u3trsTdX2UKGgGaAloD0MIAtaqXRNiYkCUhpRSlGgVTegDaBZHQJMz6YF7laN1fZQoaAZoCWgPQwiWsaGb/c5jQJSGlFKUaBVN6ANoFkdAkzj7sa86FXV9lChoBmgJaA9DCPCICtVNVGFAlIaUUpRoFU3oA2gWR0CTOtQuVX3hdX2UKGgGaAloD0MI+N7foL0XW0CUhpRSlGgVTegDaBZHQJNAkX2ugYh1fZQoaAZoCWgPQwinAu55/mhcQJSGlFKUaBVN6ANoFkdAk0E6jSG8EnV9lChoBmgJaA9DCN2XM9sVB2RAlIaUUpRoFU3oA2gWR0CTRX8A7xNJdX2UKGgGaAloD0MIaEEo7+McYkCUhpRSlGgVTegDaBZHQJNIOYD1XeZ1fZQoaAZoCWgPQwisb2ByozxyQJSGlFKUaBVNsgFoFkdAk0k3yup0fnV9lChoBmgJaA9DCDqRYKqZTVtAlIaUUpRoFU3oA2gWR0CTTeltj0+UdX2UKGgGaAloD0MIh/4JLtZEYUCUhpRSlGgVTegDaBZHQJNSCl67dzp1fZQoaAZoCWgPQwjTMecZe9xiQJSGlFKUaBVN6ANoFkdAk1JCFXaJynV9lChoBmgJaA9DCCQNbmuLwGJAlIaUUpRoFU3oA2gWR0CTeaEMb3oLdX2UKGgGaAloD0MIk40HW+wOOkCUhpRSlGgVTSkBaBZHQJN8RnL7oB91fZQoaAZoCWgPQwgaTwRxHt1dQJSGlFKUaBVN6ANoFkdAk31tg4Otn3V9lChoBmgJaA9DCNoc5zbhiGZAlIaUUpRoFU3oA2gWR0CTfhFrEcbSdX2UKGgGaAloD0MI2nIuxdVoY0CUhpRSlGgVTegDaBZHQJOAQAMlTm51fZQoaAZoCWgPQwhbe5+qQqpfQJSGlFKUaBVN6ANoFkdAk4TNIwudw3V9lChoBmgJaA9DCP/NixPfw2BAlIaUUpRoFU3oA2gWR0CThNp7TlT4dX2UKGgGaAloD0MIFTlE3Jy5YkCUhpRSlGgVTegDaBZHQJOKPJmukk91fZQoaAZoCWgPQwhPCB10ichgQJSGlFKUaBVN6ANoFkdAk40kf5k9U3V9lChoBmgJaA9DCBKI1/WLoGFAlIaUUpRoFU3oA2gWR0CTlkVHFxXGdX2UKGgGaAloD0MIXcKht3j0XUCUhpRSlGgVTegDaBZHQJOXT+fh/Al1fZQoaAZoCWgPQwhbCd0lcfhkQJSGlFKUaBVN6ANoFkdAk52BtxdY4nV9lChoBmgJaA9DCLYPecvVMGBAlIaUUpRoFU3oA2gWR0CToIp84PwvdX2UKGgGaAloD0MIhQZi2cyjY0CUhpRSlGgVTegDaBZHQJOhol3Qla91fZQoaAZoCWgPQwgpzeZxmMtsQJSGlFKUaBVNbQNoFkdAk6LgEhaC+XV9lChoBmgJaA9DCNF3t7LENGFAlIaUUpRoFU3oA2gWR0CTpgt4A0bcdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:786ac242470f1156341abbf9f0a4485d3e25db5ffa316a15486cc326badf8466
3
+ size 147429
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f152f461a60>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f152f461af0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f152f461b80>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f152f461c10>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f152f461ca0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f152f461d30>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f152f461dc0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f152f461e50>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f152f461ee0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f152f461f70>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f152f464040>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f152f4640d0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f152f460e00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678718394482367895,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAaKCT79QB8/CODoveGaLr5B0bo8DtiYPAAAAAAAAAAAs6QLPvB7nj61+H29f65RvhdVOD1ghOy9AAAAAAAAAABmVue7w2lNugINIrtlCYG2QOmhORWTPjoAAIA/AACAP0BKiL10rwM+EFvRPI3rfb7UHQA967pCuQAAAAAAAAAAzbBNva4RlroOb4u5t10stk4VN7qa2qE4AACAPwAAgD/mZD+9XKNNum30l7pV2UWzFBQ6uz55rzkAAIA/AACAP5rlRLwpMHS6fkyxuQ4Zh7ZpPro6M5bNOAAAgD8AAIA/QCbSva6hgbohTrK4ehnIszwNTrq9Ys83AACAPwAAgD8z+Uc94xURPWosPr6SpkC+YmVVu+DjcL0AAAAAAAAAAMBDqb172IK6Xm/atx5xnLJw0uy69fL9NgAAgD8AAIA/Zm+YPI8eZLqIRdc2ZFXcMTFUpDoDev+1AACAPwAAgD+a/M48j4J4umWE6Dqrw8A1LRfrOkTTB7oAAIA/AACAP6bMlr0pxDq6+W2RO0QiNDYtXyy7OhesugAAgD8AAIA/zXC1u/aENrpyeXk5QRWANLfKZjsy2pO4AACAPwAAgD+zG3w9w2ETugB+C7zil8q1m1+rOt02NjUAAIA/AACAP4D/u71cG3K6BkJSuoB45bS53OE6S2ZzOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/ffgtUsrWECUhpRSlIwBbJRN6AOMAXSUR0CRtsUdJaq0dX2UKGgGaAloD0MI/YNIhhwpZECUhpRSlGgVTegDaBZHQJHBvJA+pwV1fZQoaAZoCWgPQwijj/mAQABZQJSGlFKUaBVN6ANoFkdAkcPDho/RmnV9lChoBmgJaA9DCII65dGNhWJAlIaUUpRoFU3oA2gWR0CRxiuaWom5dX2UKGgGaAloD0MIaLEUyVdpW0CUhpRSlGgVTegDaBZHQJHN8nssxwh1fZQoaAZoCWgPQwhfQgWHF65pQJSGlFKUaBVNZwJoFkdAkc6C39aUzXV9lChoBmgJaA9DCEJ5H0dzMl5AlIaUUpRoFU3oA2gWR0CR0RWMju8cdX2UKGgGaAloD0MIqI5VSs9UYkCUhpRSlGgVTegDaBZHQJHR7Q5WBBl1fZQoaAZoCWgPQwiR71LqkvReQJSGlFKUaBVN6ANoFkdAkdk79VFQVXV9lChoBmgJaA9DCNumeFzUjWNAlIaUUpRoFU3oA2gWR0CR3o87IT4+dX2UKGgGaAloD0MIZhNgWP4SR0CUhpRSlGgVTSsBaBZHQJHiDnied091fZQoaAZoCWgPQwiR7Xw/tfFkQJSGlFKUaBVN6ANoFkdAkeRdK28Zk3V9lChoBmgJaA9DCCEgX0KFl2JAlIaUUpRoFU3oA2gWR0CR6VLDAJswdX2UKGgGaAloD0MIQfLOoQz3XUCUhpRSlGgVTegDaBZHQJHrFbt7a7F1fZQoaAZoCWgPQwiZuFUQgyhjQJSGlFKUaBVN6ANoFkdAkezyQ5myxHV9lChoBmgJaA9DCAbYR6eugWBAlIaUUpRoFU3oA2gWR0CR7SATZg5SdX2UKGgGaAloD0MIoYZvYV1nYECUhpRSlGgVTegDaBZHQJIUh5v99+h1fZQoaAZoCWgPQwhP54pSQh5CQJSGlFKUaBVNIAFoFkdAkhVCidrftXV9lChoBmgJaA9DCJeQD3o2KllAlIaUUpRoFU3oA2gWR0CSGOp6hQFcdX2UKGgGaAloD0MIvB+3X75uZUCUhpRSlGgVTegDaBZHQJIeNGc4HX51fZQoaAZoCWgPQwitFW2Oc2FjQJSGlFKUaBVN6ANoFkdAkh81X3g1nHV9lChoBmgJaA9DCO61oPfGh15AlIaUUpRoFU3oA2gWR0CSIFhHLA58dX2UKGgGaAloD0MItkdvuA92YUCUhpRSlGgVTegDaBZHQJIlnMr3Cbd1fZQoaAZoCWgPQwg5e2e0VQBcQJSGlFKUaBVN6ANoFkdAkid/c32mHnV9lChoBmgJaA9DCAd96e3PLmNAlIaUUpRoFU3oA2gWR0CSKBjY7JXAdX2UKGgGaAloD0MI4iGMn8Z9IkCUhpRSlGgVTSUBaBZHQJIujbj94u91fZQoaAZoCWgPQwhtjQjGweNkQJSGlFKUaBVN6ANoFkdAki91iKBNEnV9lChoBmgJaA9DCFlqvd9oj11AlIaUUpRoFU3oA2gWR0CSNXLOAy2ydX2UKGgGaAloD0MIG55eKUtrY0CUhpRSlGgVTegDaBZHQJI5bxgAp8Z1fZQoaAZoCWgPQwgvibMiapdlQJSGlFKUaBVN6ANoFkdAkjwVF2FFlXV9lChoBmgJaA9DCPNYMzLIX2FAlIaUUpRoFU3oA2gWR0CSQDOkcjqwdX2UKGgGaAloD0MII028AzxrXUCUhpRSlGgVTegDaBZHQJJDrH7xd6d1fZQoaAZoCWgPQwiGN2vwPmJgQJSGlFKUaBVN6ANoFkdAkkPekUKzA3V9lChoBmgJaA9DCMGtu3kqKmFAlIaUUpRoFU3oA2gWR0CSZxWKuSwGdX2UKGgGaAloD0MIk4sxsI6hYUCUhpRSlGgVTegDaBZHQJJoJkbxVhl1fZQoaAZoCWgPQwh8CoDxjKZiQJSGlFKUaBVN6ANoFkdAkm2yd4FA3XV9lChoBmgJaA9DCBcSMLq8wl9AlIaUUpRoFU3oA2gWR0CSd2IIF/x2dX2UKGgGaAloD0MIm6+Sj112YECUhpRSlGgVTegDaBZHQJJ44Tj/+851fZQoaAZoCWgPQwgjopi8ASRiQJSGlFKUaBVN6ANoFkdAkn99hy8zynV9lChoBmgJaA9DCAAapUv/fGBAlIaUUpRoFU3oA2gWR0CSgf0ihWYGdX2UKGgGaAloD0MI+pekMsXDW0CUhpRSlGgVTegDaBZHQJKCy+7Dl5p1fZQoaAZoCWgPQwgJwD+lyn1lQJSGlFKUaBVN6ANoFkdAkojeMMqjJ3V9lChoBmgJaA9DCG+9pgcFoF5AlIaUUpRoFU3oA2gWR0CSiaCDVYp2dX2UKGgGaAloD0MIBr03hoACYECUhpRSlGgVTegDaBZHQJKOL1mJ3xF1fZQoaAZoCWgPQwjqWnufqstkQJSGlFKUaBVN6ANoFkdAkpJL/CIk7nV9lChoBmgJaA9DCEkqU8xBAl9AlIaUUpRoFU3oA2gWR0CSlR6tT1kEdX2UKGgGaAloD0MIm1Wfq63/XUCUhpRSlGgVTegDaBZHQJKbIF7laKV1fZQoaAZoCWgPQwjlmCzuv6RkQJSGlFKUaBVN6ANoFkdAkqBuQ2dd3XV9lChoBmgJaA9DCAX4bvPG3l9AlIaUUpRoFU3oA2gWR0CSoLfF72L6dX2UKGgGaAloD0MIXvWAecgLYECUhpRSlGgVTegDaBZHQJLH9S1maph1fZQoaAZoCWgPQwhVoBaDB9RhQJSGlFKUaBVN6ANoFkdAksiyvHLidnV9lChoBmgJaA9DCEsfuqA+PWVAlIaUUpRoFU3oA2gWR0CSzJZTyauwdX2UKGgGaAloD0MI4o+izlz2ZECUhpRSlGgVTegDaBZHQJLT9YaHbh51fZQoaAZoCWgPQwirIXGPpVBeQJSGlFKUaBVN6ANoFkdAktVbNwBHTnV9lChoBmgJaA9DCKOSOgFNbWJAlIaUUpRoFU3oA2gWR0CS3MiQDFIedX2UKGgGaAloD0MIrrt5qkOuM8CUhpRSlGgVTUUBaBZHQJLe1sO5J9R1fZQoaAZoCWgPQwhKfVnaqd9aQJSGlFKUaBVN6ANoFkdAkt/8X7+DOHV9lChoBmgJaA9DCFAcQL/vbl9AlIaUUpRoFU3oA2gWR0CS4Qb+Lm6odX2UKGgGaAloD0MIBYvDmd9KYkCUhpRSlGgVTegDaBZHQJLpQl9jPOZ1fZQoaAZoCWgPQwijIeNRKrNhQJSGlFKUaBVN6ANoFkdAkupQBtDUmXV9lChoBmgJaA9DCOdTxyqlF11AlIaUUpRoFU3oA2gWR0CS7438n/kvdX2UKGgGaAloD0MITmA6rVsrYkCUhpRSlGgVTegDaBZHQJLyfgeii7F1fZQoaAZoCWgPQwgDCvX0kShiQJSGlFKUaBVN6ANoFkdAkvSGjTKDCnV9lChoBmgJaA9DCFjnGJC9rEJAlIaUUpRoFU09AWgWR0CS90ubI91VdX2UKGgGaAloD0MIYFs//WdGY0CUhpRSlGgVTegDaBZHQJL5OkHlfZ51fZQoaAZoCWgPQwhJRzmYTZtjQJSGlFKUaBVN6ANoFkdAkv0V9fCyhXV9lChoBmgJaA9DCJ7wEpz6f19AlIaUUpRoFU3oA2gWR0CS/UMhX8wYdX2UKGgGaAloD0MIMZqV7cObYUCUhpRSlGgVTegDaBZHQJMnc2UB4lh1fZQoaAZoCWgPQwiOWmH6XsJgQJSGlFKUaBVN6ANoFkdAkyvpgPVd5nV9lChoBmgJaA9DCDW0AdgAs29AlIaUUpRoFU3yAmgWR0CTLJri2lVMdX2UKGgGaAloD0MIryE4LmMSbUCUhpRSlGgVTcABaBZHQJMvBUvPC2t1fZQoaAZoCWgPQwj5E5UN665jQJSGlFKUaBVN6ANoFkdAkzK1SsKb8XV9lChoBmgJaA9DCMoYH2YvnG5AlIaUUpRoFU07AmgWR0CTM9u3trsTdX2UKGgGaAloD0MIAtaqXRNiYkCUhpRSlGgVTegDaBZHQJMz6YF7laN1fZQoaAZoCWgPQwiWsaGb/c5jQJSGlFKUaBVN6ANoFkdAkzj7sa86FXV9lChoBmgJaA9DCPCICtVNVGFAlIaUUpRoFU3oA2gWR0CTOtQuVX3hdX2UKGgGaAloD0MI+N7foL0XW0CUhpRSlGgVTegDaBZHQJNAkX2ugYh1fZQoaAZoCWgPQwinAu55/mhcQJSGlFKUaBVN6ANoFkdAk0E6jSG8EnV9lChoBmgJaA9DCN2XM9sVB2RAlIaUUpRoFU3oA2gWR0CTRX8A7xNJdX2UKGgGaAloD0MIaEEo7+McYkCUhpRSlGgVTegDaBZHQJNIOYD1XeZ1fZQoaAZoCWgPQwisb2ByozxyQJSGlFKUaBVNsgFoFkdAk0k3yup0fnV9lChoBmgJaA9DCDqRYKqZTVtAlIaUUpRoFU3oA2gWR0CTTeltj0+UdX2UKGgGaAloD0MIh/4JLtZEYUCUhpRSlGgVTegDaBZHQJNSCl67dzp1fZQoaAZoCWgPQwjTMecZe9xiQJSGlFKUaBVN6ANoFkdAk1JCFXaJynV9lChoBmgJaA9DCCQNbmuLwGJAlIaUUpRoFU3oA2gWR0CTeaEMb3oLdX2UKGgGaAloD0MIk40HW+wOOkCUhpRSlGgVTSkBaBZHQJN8RnL7oB91fZQoaAZoCWgPQwgaTwRxHt1dQJSGlFKUaBVN6ANoFkdAk31tg4Otn3V9lChoBmgJaA9DCNoc5zbhiGZAlIaUUpRoFU3oA2gWR0CTfhFrEcbSdX2UKGgGaAloD0MI2nIuxdVoY0CUhpRSlGgVTegDaBZHQJOAQAMlTm51fZQoaAZoCWgPQwhbe5+qQqpfQJSGlFKUaBVN6ANoFkdAk4TNIwudw3V9lChoBmgJaA9DCP/NixPfw2BAlIaUUpRoFU3oA2gWR0CThNp7TlT4dX2UKGgGaAloD0MIFTlE3Jy5YkCUhpRSlGgVTegDaBZHQJOKPJmukk91fZQoaAZoCWgPQwhPCB10ichgQJSGlFKUaBVN6ANoFkdAk40kf5k9U3V9lChoBmgJaA9DCBKI1/WLoGFAlIaUUpRoFU3oA2gWR0CTlkVHFxXGdX2UKGgGaAloD0MIXcKht3j0XUCUhpRSlGgVTegDaBZHQJOXT+fh/Al1fZQoaAZoCWgPQwhbCd0lcfhkQJSGlFKUaBVN6ANoFkdAk52BtxdY4nV9lChoBmgJaA9DCLYPecvVMGBAlIaUUpRoFU3oA2gWR0CToIp84PwvdX2UKGgGaAloD0MIhQZi2cyjY0CUhpRSlGgVTegDaBZHQJOhol3Qla91fZQoaAZoCWgPQwgpzeZxmMtsQJSGlFKUaBVNbQNoFkdAk6LgEhaC+XV9lChoBmgJaA9DCNF3t7LENGFAlIaUUpRoFU3oA2gWR0CTpgt4A0bcdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a6a4b6dbd2a587fe524d2393bac9c164b9b88b0af1ba339a658b471233de351
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9badb76772929f4ea104e2367493080668742299c796cec0742277b47162cd3b
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (236 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 248.23210819474215, "std_reward": 23.43800111610898, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-13T15:04:47.910992"}