auto / model.py
zeroMN's picture
Update model.py
2df5d25 verified
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
# 配置类定义
class Config:
def __init__(self):
# 模型架构参数
self.hidden_size = 768
self.num_attention_heads = 12
self.num_hidden_layers = 12
self.intermediate_size = 3072
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0.1
# 图像相关
self.image_size = 224
self.image_channels = 3
self.patch_size = 16
# 文本相关
self.max_position_embeddings = 512
self.vocab_size = 30522
self.type_vocab_size = 2
# 语音相关
self.audio_sample_rate = 16000
self.audio_frame_size = 1024
self.audio_hop_size = 512
# 任务相关
self.enable_vqa = True
self.enable_caption = True
self.enable_retrieval = True
self.enable_asr = True # 语音识别
self.enable_realtime_asr = True # 实时语音识别
# 训练相关
self.batch_size = 32
self.learning_rate = 1e-4
self.weight_decay = 0.01
self.warmup_steps = 10000
self.max_steps = 100000
# 模型相关类定义
class ImageEncoder(nn.Module):
def __init__(self, config):
super(ImageEncoder, self).__init__()
self.config = config
self.encoder_layer = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3),
nn.ReLU(),
nn.MaxPool2d(2, 2),
nn.Flatten(),
nn.Linear(64 * 111 * 111, config.hidden_size)
)
def forward(self, image):
image_features = self.encoder_layer(image)
return image_features
class TextEncoder(nn.Module):
def __init__(self, config):
super(TextEncoder, self).__init__()
self.config = config
self.transformer_layer = nn.TransformerEncoderLayer(
d_model=config.hidden_size,
nhead=config.num_attention_heads,
batch_first=True
)
self.transformer_encoder = nn.TransformerEncoder(
self.transformer_layer,
num_layers=config.num_hidden_layers
)
def forward(self, text):
text_features = self.transformer_encoder(text).mean(dim=1)
return text_features
class AudioEncoder(nn.Module):
def __init__(self, config):
super(AudioEncoder, self).__init__()
self.config = config
self.encoder_layer = nn.Sequential(
nn.Linear(config.audio_sample_rate, config.hidden_size),
nn.ReLU(),
nn.Linear(config.hidden_size, config.hidden_size)
)
def forward(self, audio):
audio_features = self.encoder_layer(audio)
return audio_features
class FusionLayer(nn.Module):
def __init__(self, config):
super(FusionLayer, self).__init__()
self.config = config
self.fusion_layer = nn.Linear(config.hidden_size * 3, config.hidden_size)
def forward(self, image_features, text_features, audio_features):
fused_features = torch.cat((image_features, text_features, audio_features), dim=1)
fused_features = self.fusion_layer(fused_features)
return fused_features
class VQALayer(nn.Module):
def __init__(self, config):
super(VQALayer, self).__init__()
self.config = config
self.vqa_layer = nn.Linear(config.hidden_size, config.vocab_size)
def forward(self, fused_features):
vqa_output = self.vqa_layer(fused_features)
return vqa_output
class CaptionLayer(nn.Module):
def __init__(self, config):
super(CaptionLayer, self).__init__()
self.config = config
self.caption_layer = nn.Linear(config.hidden_size, config.vocab_size)
def forward(self, fused_features):
caption_output = self.caption_layer(fused_features)
return caption_output
class RetrievalLayer(nn.Module):
def __init__(self, config):
super(RetrievalLayer, self).__init__()
self.config = config
self.retrieval_layer = nn.Linear(config.hidden_size, config.vocab_size)
def forward(self, fused_features):
retrieval_output = self.retrieval_layer(fused_features)
return retrieval_output
class ASRLayer(nn.Module):
def __init__(self, config):
super(ASRLayer, self).__init__()
self.config = config
self.asr_layer = nn.Linear(config.hidden_size, config.vocab_size)
def forward(self, fused_features):
asr_output = self.asr_layer(fused_features)
return asr_output
class RealtimeASRLayer(nn.Module):
def __init__(self, config):
super(RealtimeASRLayer, self).__init__()
self.config = config
self.realtime_asr_layer = nn.Linear(config.hidden_size, config.vocab_size)
def forward(self, fused_features):
realtime_asr_output = self.realtime_asr_layer(fused_features)
return realtime_asr_output
class TextOutputLayer(nn.Module):
def __init__(self, config):
super(TextOutputLayer, self).__init__()
self.config = config
self.text_output_layer = nn.Linear(config.hidden_size, config.vocab_size)
def forward(self, fused_features):
text_output = self.text_output_layer(fused_features)
return text_output
# 主模型定义
class AutoModel(nn.Module):
def __init__(self, config):
super(AutoModel, self).__init__()
self.config = config
self.image_encoder = ImageEncoder(config)
self.text_encoder = TextEncoder(config)
self.audio_encoder = AudioEncoder(config)
self.fusion_layer = FusionLayer(config)
self.vqa_layer = VQALayer(config)
self.caption_layer = CaptionLayer(config)
self.retrieval_layer = RetrievalLayer(config)
self.asr_layer = ASRLayer(config)
self.realtime_asr_layer = RealtimeASRLayer(config)
self.text_output_layer = TextOutputLayer(config)
def forward(self, image, text, audio):
image_features = self.image_encoder(image)
text_features = self.text_encoder(text)
audio_features = self.audio_encoder(audio)
fused_features = self.fusion_layer(image_features, text_features, audio_features)
vqa_output = self.vqa_layer(fused_features)
caption_output = self.caption_layer(fused_features)
retrieval_output = self.retrieval_layer(fused_features)
asr_output = self.asr_layer(fused_features)
realtime_asr_output = self.realtime_asr_layer(fused_features)
text_output = self.text_output_layer(fused_features)
return vqa_output, caption_output, retrieval_output, asr_output, realtime_asr_output, text_output
# 测试代码
config = Config()
model = AutoModel(config)
image = torch.randn(1, 3, 224, 224)
text = torch.randn(1, config.max_position_embeddings, config.hidden_size)
audio = torch.randn(1, config.audio_sample_rate)
vqa_output, caption_output, retrieval_output, asr_output, realtime_asr_output, text_output = model(image, text, audio)
# 输出结果
print("VQA output shape:", vqa_output.shape)
print("Caption output shape:", caption_output.shape)
print("Retrieval output shape:", retrieval_output.shape)
print("ASR output shape:", asr_output.shape)
print("Realtime ASR output shape:", realtime_asr_output.shape)
print("Text output shape:", text_output.shape)
# 打印总参数数量
total_params = sum(p.numel() for p in model.parameters())
print(f"\n总参数数量: {total_params}")
# 保存模型权重
save_path = "save.pth"
torch.save(model.state_dict(), save_path)
print(f"模型权重已保存到: {save_path}")