Update README.md
Browse files
README.md
CHANGED
@@ -118,74 +118,13 @@ Users (both direct and downstream) should be made aware of the following risks,
|
|
118 |
|
119 |
## How to Get Started with the Model
|
120 |
```python
|
121 |
-
|
122 |
-
import
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
Wav2Vec2Model,
|
131 |
-
CLIPModel,
|
132 |
-
AutoTokenizer
|
133 |
-
)
|
134 |
-
|
135 |
-
class MultiModalModel(nn.Module):
|
136 |
-
def __init__(self):
|
137 |
-
super(MultiModalModel, self).__init__()
|
138 |
-
# 初始化子模型
|
139 |
-
self.text_generator = BartForConditionalGeneration.from_pretrained('facebook/bart-base')
|
140 |
-
self.code_generator = AutoModelForCausalLM.from_pretrained('gpt2')
|
141 |
-
self.nlp_encoder = BertModel.from_pretrained('bert-base-uncased')
|
142 |
-
self.speech_encoder = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h')
|
143 |
-
self.vision_encoder = CLIPModel.from_pretrained('openai/clip-vit-base-patch32')
|
144 |
-
|
145 |
-
# 初始化分词器和处理器
|
146 |
-
self.text_tokenizer = AutoTokenizer.from_pretrained('facebook/bart-base')
|
147 |
-
self.code_tokenizer = AutoTokenizer.from_pretrained('gpt2')
|
148 |
-
self.nlp_tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
149 |
-
self.speech_processor = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h')
|
150 |
-
self.vision_processor = AutoTokenizer.from_pretrained('openai/clip-vit-base-patch32')
|
151 |
-
|
152 |
-
def forward(self, task, inputs):
|
153 |
-
if task == 'text_generation':
|
154 |
-
attention_mask = inputs.get('attention_mask')
|
155 |
-
outputs = self.text_generator.generate(
|
156 |
-
inputs['input_ids'],
|
157 |
-
max_new_tokens=100,
|
158 |
-
pad_token_id=self.text_tokenizer.eos_token_id,
|
159 |
-
attention_mask=attention_mask,
|
160 |
-
top_p=0.9,
|
161 |
-
top_k=50,
|
162 |
-
temperature=0.8,
|
163 |
-
do_sample=True
|
164 |
-
)
|
165 |
-
return self.text_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
166 |
-
elif task == 'code_generation':
|
167 |
-
attention_mask = inputs.get('attention_mask')
|
168 |
-
outputs = self.code_generator.generate(
|
169 |
-
inputs['input_ids'],
|
170 |
-
max_new_tokens=50,
|
171 |
-
pad_token_id=self.code_tokenizer.eos_token_id,
|
172 |
-
attention_mask=attention_mask,
|
173 |
-
top_p=0.95,
|
174 |
-
top_k=50,
|
175 |
-
temperature=1.2,
|
176 |
-
do_sample=True
|
177 |
-
)
|
178 |
-
return self.code_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
179 |
-
# 添加其他任务的逻辑...
|
180 |
-
|
181 |
-
# 计算模型参数数量的函数
|
182 |
-
def count_parameters(model):
|
183 |
-
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
184 |
-
|
185 |
-
# 初始化模型
|
186 |
-
model = MultiModalModel()
|
187 |
-
|
188 |
-
# 计算并打印模型参数数量
|
189 |
-
total_params = count_parameters(model)
|
190 |
-
print(f"模型总参数数量: {total_params}")
|
191 |
```
|
|
|
118 |
|
119 |
## How to Get Started with the Model
|
120 |
```python
|
121 |
+
# Use a pipeline as a high-level helper
|
122 |
+
from transformers import pipeline
|
123 |
+
|
124 |
+
pipe = pipeline("text-generation", model="zeroMN/SHMT")
|
125 |
+
```
|
126 |
+
```python
|
127 |
+
# Load model directly
|
128 |
+
from transformers import AutoModel
|
129 |
+
model = AutoModel.from_pretrained("zeroMN/SHMT")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
```
|