Add chekcpoint
Browse files- config.json +47 -0
- configuration_chatglm.py +59 -0
- generation_config.json +6 -0
- latest +1 -0
- modeling_chatglm.py +1193 -0
- pytorch_model.bin +3 -0
- quantization.py +188 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- special_tokens_map.json +1 -0
- tokenization_chatglm.py +257 -0
- tokenizer.model +3 -0
- tokenizer_config.json +14 -0
- training_args.bin +3 -0
- zero_to_fp32.py +592 -0
config.json
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/workspace/zhangdan/glm/chatglm3-6b-base",
|
3 |
+
"add_bias_linear": false,
|
4 |
+
"add_qkv_bias": true,
|
5 |
+
"apply_query_key_layer_scaling": true,
|
6 |
+
"apply_residual_connection_post_layernorm": false,
|
7 |
+
"architectures": [
|
8 |
+
"ChatGLMForConditionalGeneration"
|
9 |
+
],
|
10 |
+
"attention_dropout": 0.0,
|
11 |
+
"attention_softmax_in_fp32": true,
|
12 |
+
"auto_map": {
|
13 |
+
"AutoConfig": "configuration_chatglm.ChatGLMConfig",
|
14 |
+
"AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
|
15 |
+
"AutoModelForCausalLM": "modeling_chatglm.ChatGLMForConditionalGeneration",
|
16 |
+
"AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration",
|
17 |
+
"AutoModelForSequenceClassification": "modeling_chatglm.ChatGLMForSequenceClassification"
|
18 |
+
},
|
19 |
+
"bias_dropout_fusion": true,
|
20 |
+
"classifier_dropout": null,
|
21 |
+
"eos_token_id": 2,
|
22 |
+
"ffn_hidden_size": 13696,
|
23 |
+
"fp32_residual_connection": false,
|
24 |
+
"hidden_dropout": 0.0,
|
25 |
+
"hidden_size": 4096,
|
26 |
+
"kv_channels": 128,
|
27 |
+
"layernorm_epsilon": 1e-05,
|
28 |
+
"model_type": "chatglm",
|
29 |
+
"multi_query_attention": true,
|
30 |
+
"multi_query_group_num": 2,
|
31 |
+
"num_attention_heads": 32,
|
32 |
+
"num_layers": 28,
|
33 |
+
"original_rope": true,
|
34 |
+
"pad_token_id": 0,
|
35 |
+
"padded_vocab_size": 65024,
|
36 |
+
"post_layer_norm": true,
|
37 |
+
"pre_seq_len": null,
|
38 |
+
"prefix_projection": false,
|
39 |
+
"quantization_bit": 0,
|
40 |
+
"rmsnorm": true,
|
41 |
+
"seq_length": 32768,
|
42 |
+
"tie_word_embeddings": false,
|
43 |
+
"torch_dtype": "float16",
|
44 |
+
"transformers_version": "4.30.2",
|
45 |
+
"use_cache": true,
|
46 |
+
"vocab_size": 65024
|
47 |
+
}
|
configuration_chatglm.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
class ChatGLMConfig(PretrainedConfig):
|
5 |
+
model_type = "chatglm"
|
6 |
+
def __init__(
|
7 |
+
self,
|
8 |
+
num_layers=28,
|
9 |
+
padded_vocab_size=65024,
|
10 |
+
hidden_size=4096,
|
11 |
+
ffn_hidden_size=13696,
|
12 |
+
kv_channels=128,
|
13 |
+
num_attention_heads=32,
|
14 |
+
seq_length=2048,
|
15 |
+
hidden_dropout=0.0,
|
16 |
+
attention_dropout=0.0,
|
17 |
+
layernorm_epsilon=1e-5,
|
18 |
+
rmsnorm=True,
|
19 |
+
apply_residual_connection_post_layernorm=False,
|
20 |
+
post_layer_norm=True,
|
21 |
+
add_bias_linear=False,
|
22 |
+
add_qkv_bias=False,
|
23 |
+
bias_dropout_fusion=True,
|
24 |
+
multi_query_attention=False,
|
25 |
+
multi_query_group_num=1,
|
26 |
+
apply_query_key_layer_scaling=True,
|
27 |
+
attention_softmax_in_fp32=True,
|
28 |
+
fp32_residual_connection=False,
|
29 |
+
quantization_bit=0,
|
30 |
+
pre_seq_len=None,
|
31 |
+
prefix_projection=False,
|
32 |
+
**kwargs
|
33 |
+
):
|
34 |
+
self.num_layers = num_layers
|
35 |
+
self.vocab_size = padded_vocab_size
|
36 |
+
self.padded_vocab_size = padded_vocab_size
|
37 |
+
self.hidden_size = hidden_size
|
38 |
+
self.ffn_hidden_size = ffn_hidden_size
|
39 |
+
self.kv_channels = kv_channels
|
40 |
+
self.num_attention_heads = num_attention_heads
|
41 |
+
self.seq_length = seq_length
|
42 |
+
self.hidden_dropout = hidden_dropout
|
43 |
+
self.attention_dropout = attention_dropout
|
44 |
+
self.layernorm_epsilon = layernorm_epsilon
|
45 |
+
self.rmsnorm = rmsnorm
|
46 |
+
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
|
47 |
+
self.post_layer_norm = post_layer_norm
|
48 |
+
self.add_bias_linear = add_bias_linear
|
49 |
+
self.add_qkv_bias = add_qkv_bias
|
50 |
+
self.bias_dropout_fusion = bias_dropout_fusion
|
51 |
+
self.multi_query_attention = multi_query_attention
|
52 |
+
self.multi_query_group_num = multi_query_group_num
|
53 |
+
self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
|
54 |
+
self.attention_softmax_in_fp32 = attention_softmax_in_fp32
|
55 |
+
self.fp32_residual_connection = fp32_residual_connection
|
56 |
+
self.quantization_bit = quantization_bit
|
57 |
+
self.pre_seq_len = pre_seq_len
|
58 |
+
self.prefix_projection = prefix_projection
|
59 |
+
super().__init__(**kwargs)
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"eos_token_id": 2,
|
4 |
+
"pad_token_id": 0,
|
5 |
+
"transformers_version": "4.30.2"
|
6 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step992
|
modeling_chatglm.py
ADDED
@@ -0,0 +1,1193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" PyTorch ChatGLM model. """
|
2 |
+
|
3 |
+
import math
|
4 |
+
import copy
|
5 |
+
import warnings
|
6 |
+
import re
|
7 |
+
import sys
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.utils.checkpoint
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from torch import nn
|
13 |
+
from torch.nn import CrossEntropyLoss, LayerNorm
|
14 |
+
from torch.nn.utils import skip_init
|
15 |
+
from typing import Optional, Tuple, Union, List, Callable, Dict, Any
|
16 |
+
|
17 |
+
from transformers.modeling_outputs import (
|
18 |
+
BaseModelOutputWithPast,
|
19 |
+
CausalLMOutputWithPast,
|
20 |
+
)
|
21 |
+
from transformers.modeling_utils import PreTrainedModel
|
22 |
+
from transformers.utils import logging
|
23 |
+
from transformers.generation.logits_process import LogitsProcessor
|
24 |
+
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
|
25 |
+
|
26 |
+
from .configuration_chatglm import ChatGLMConfig
|
27 |
+
|
28 |
+
# flags required to enable jit fusion kernels
|
29 |
+
|
30 |
+
if sys.platform != 'darwin':
|
31 |
+
torch._C._jit_set_profiling_mode(False)
|
32 |
+
torch._C._jit_set_profiling_executor(False)
|
33 |
+
torch._C._jit_override_can_fuse_on_cpu(True)
|
34 |
+
torch._C._jit_override_can_fuse_on_gpu(True)
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__)
|
37 |
+
|
38 |
+
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM2-6B"
|
39 |
+
_CONFIG_FOR_DOC = "ChatGLM6BConfig"
|
40 |
+
|
41 |
+
CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
42 |
+
"THUDM/chatglm2-6b",
|
43 |
+
# See all ChatGLM models at https://huggingface.co/models?filter=chatglm
|
44 |
+
]
|
45 |
+
|
46 |
+
|
47 |
+
def default_init(cls, *args, **kwargs):
|
48 |
+
return cls(*args, **kwargs)
|
49 |
+
|
50 |
+
|
51 |
+
class InvalidScoreLogitsProcessor(LogitsProcessor):
|
52 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
53 |
+
if torch.isnan(scores).any() or torch.isinf(scores).any():
|
54 |
+
scores.zero_()
|
55 |
+
scores[..., 5] = 5e4
|
56 |
+
return scores
|
57 |
+
|
58 |
+
|
59 |
+
class PrefixEncoder(torch.nn.Module):
|
60 |
+
"""
|
61 |
+
The torch.nn model to encode the prefix
|
62 |
+
Input shape: (batch-size, prefix-length)
|
63 |
+
Output shape: (batch-size, prefix-length, 2*layers*hidden)
|
64 |
+
"""
|
65 |
+
|
66 |
+
def __init__(self, config: ChatGLMConfig):
|
67 |
+
super().__init__()
|
68 |
+
self.prefix_projection = config.prefix_projection
|
69 |
+
if self.prefix_projection:
|
70 |
+
# Use a two-layer MLP to encode the prefix
|
71 |
+
kv_size = config.num_layers * config.kv_channels * config.multi_query_group_num * 2
|
72 |
+
self.embedding = torch.nn.Embedding(config.pre_seq_len, kv_size)
|
73 |
+
self.trans = torch.nn.Sequential(
|
74 |
+
torch.nn.Linear(kv_size, config.hidden_size),
|
75 |
+
torch.nn.Tanh(),
|
76 |
+
torch.nn.Linear(config.hidden_size, kv_size)
|
77 |
+
)
|
78 |
+
else:
|
79 |
+
self.embedding = torch.nn.Embedding(config.pre_seq_len,
|
80 |
+
config.num_layers * config.kv_channels * config.multi_query_group_num * 2)
|
81 |
+
|
82 |
+
def forward(self, prefix: torch.Tensor):
|
83 |
+
if self.prefix_projection:
|
84 |
+
prefix_tokens = self.embedding(prefix)
|
85 |
+
past_key_values = self.trans(prefix_tokens)
|
86 |
+
else:
|
87 |
+
past_key_values = self.embedding(prefix)
|
88 |
+
return past_key_values
|
89 |
+
|
90 |
+
|
91 |
+
def split_tensor_along_last_dim(
|
92 |
+
tensor: torch.Tensor,
|
93 |
+
num_partitions: int,
|
94 |
+
contiguous_split_chunks: bool = False,
|
95 |
+
) -> List[torch.Tensor]:
|
96 |
+
"""Split a tensor along its last dimension.
|
97 |
+
|
98 |
+
Arguments:
|
99 |
+
tensor: input tensor.
|
100 |
+
num_partitions: number of partitions to split the tensor
|
101 |
+
contiguous_split_chunks: If True, make each chunk contiguous
|
102 |
+
in memory.
|
103 |
+
|
104 |
+
Returns:
|
105 |
+
A list of Tensors
|
106 |
+
"""
|
107 |
+
# Get the size and dimension.
|
108 |
+
last_dim = tensor.dim() - 1
|
109 |
+
last_dim_size = tensor.size()[last_dim] // num_partitions
|
110 |
+
# Split.
|
111 |
+
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
|
112 |
+
# Note: torch.split does not create contiguous tensors by default.
|
113 |
+
if contiguous_split_chunks:
|
114 |
+
return tuple(chunk.contiguous() for chunk in tensor_list)
|
115 |
+
|
116 |
+
return tensor_list
|
117 |
+
|
118 |
+
|
119 |
+
class RotaryEmbedding(nn.Module):
|
120 |
+
def __init__(self, dim, original_impl=False, device=None, dtype=None):
|
121 |
+
super().__init__()
|
122 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim))
|
123 |
+
self.register_buffer("inv_freq", inv_freq)
|
124 |
+
self.dim = dim
|
125 |
+
self.original_impl = original_impl
|
126 |
+
|
127 |
+
def forward_impl(
|
128 |
+
self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000
|
129 |
+
):
|
130 |
+
"""Enhanced Transformer with Rotary Position Embedding.
|
131 |
+
|
132 |
+
Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
|
133 |
+
transformers/rope/__init__.py. MIT License:
|
134 |
+
https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
|
135 |
+
"""
|
136 |
+
# $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
|
137 |
+
theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=dtype, device=device) / n_elem))
|
138 |
+
|
139 |
+
# Create position indexes `[0, 1, ..., seq_len - 1]`
|
140 |
+
seq_idx = torch.arange(seq_len, dtype=dtype, device=device)
|
141 |
+
|
142 |
+
# Calculate the product of position index and $\theta_i$
|
143 |
+
idx_theta = torch.outer(seq_idx, theta).float()
|
144 |
+
|
145 |
+
cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1)
|
146 |
+
|
147 |
+
# this is to mimic the behaviour of complex32, else we will get different results
|
148 |
+
if dtype in (torch.float16, torch.bfloat16, torch.int8):
|
149 |
+
cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half()
|
150 |
+
return cache
|
151 |
+
|
152 |
+
def forward(self, max_seq_len, offset=0):
|
153 |
+
return self.forward_impl(
|
154 |
+
max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device
|
155 |
+
)
|
156 |
+
|
157 |
+
|
158 |
+
@torch.jit.script
|
159 |
+
def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
|
160 |
+
# x: [sq, b, np, hn]
|
161 |
+
sq, b, np, hn = x.size(0), x.size(1), x.size(2), x.size(3)
|
162 |
+
rot_dim = rope_cache.shape[-2] * 2
|
163 |
+
x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
|
164 |
+
# truncate to support variable sizes
|
165 |
+
rope_cache = rope_cache[:sq]
|
166 |
+
xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2)
|
167 |
+
rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2)
|
168 |
+
x_out2 = torch.stack(
|
169 |
+
[
|
170 |
+
xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
|
171 |
+
xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
|
172 |
+
],
|
173 |
+
-1,
|
174 |
+
)
|
175 |
+
x_out2 = x_out2.flatten(3)
|
176 |
+
return torch.cat((x_out2, x_pass), dim=-1)
|
177 |
+
|
178 |
+
|
179 |
+
class RMSNorm(torch.nn.Module):
|
180 |
+
def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs):
|
181 |
+
super().__init__()
|
182 |
+
self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype))
|
183 |
+
self.eps = eps
|
184 |
+
|
185 |
+
def forward(self, hidden_states: torch.Tensor):
|
186 |
+
input_dtype = hidden_states.dtype
|
187 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
188 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
|
189 |
+
|
190 |
+
return (self.weight * hidden_states).to(input_dtype)
|
191 |
+
|
192 |
+
|
193 |
+
class CoreAttention(torch.nn.Module):
|
194 |
+
def __init__(self, config: ChatGLMConfig, layer_number):
|
195 |
+
super(CoreAttention, self).__init__()
|
196 |
+
|
197 |
+
self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
|
198 |
+
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
|
199 |
+
if self.apply_query_key_layer_scaling:
|
200 |
+
self.attention_softmax_in_fp32 = True
|
201 |
+
self.layer_number = max(1, layer_number)
|
202 |
+
|
203 |
+
projection_size = config.kv_channels * config.num_attention_heads
|
204 |
+
|
205 |
+
# Per attention head and per partition values.
|
206 |
+
self.hidden_size_per_partition = projection_size
|
207 |
+
self.hidden_size_per_attention_head = projection_size // config.num_attention_heads
|
208 |
+
self.num_attention_heads_per_partition = config.num_attention_heads
|
209 |
+
|
210 |
+
coeff = None
|
211 |
+
self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
|
212 |
+
if self.apply_query_key_layer_scaling:
|
213 |
+
coeff = self.layer_number
|
214 |
+
self.norm_factor *= coeff
|
215 |
+
self.coeff = coeff
|
216 |
+
|
217 |
+
self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
|
218 |
+
|
219 |
+
def forward(self, query_layer, key_layer, value_layer, attention_mask):
|
220 |
+
pytorch_major_version = int(torch.__version__.split('.')[0])
|
221 |
+
if pytorch_major_version >= 2:
|
222 |
+
query_layer, key_layer, value_layer = [k.permute(1, 2, 0, 3) for k in [query_layer, key_layer, value_layer]]
|
223 |
+
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
|
224 |
+
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
225 |
+
is_causal=True)
|
226 |
+
else:
|
227 |
+
if attention_mask is not None:
|
228 |
+
attention_mask = ~attention_mask
|
229 |
+
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
230 |
+
attention_mask)
|
231 |
+
context_layer = context_layer.permute(2, 0, 1, 3)
|
232 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
233 |
+
context_layer = context_layer.reshape(*new_context_layer_shape)
|
234 |
+
else:
|
235 |
+
# Raw attention scores
|
236 |
+
|
237 |
+
# [b, np, sq, sk]
|
238 |
+
output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))
|
239 |
+
|
240 |
+
# [sq, b, np, hn] -> [sq, b * np, hn]
|
241 |
+
query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
|
242 |
+
# [sk, b, np, hn] -> [sk, b * np, hn]
|
243 |
+
key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)
|
244 |
+
|
245 |
+
# preallocting input tensor: [b * np, sq, sk]
|
246 |
+
matmul_input_buffer = torch.empty(
|
247 |
+
output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype,
|
248 |
+
device=query_layer.device
|
249 |
+
)
|
250 |
+
|
251 |
+
# Raw attention scores. [b * np, sq, sk]
|
252 |
+
matmul_result = torch.baddbmm(
|
253 |
+
matmul_input_buffer,
|
254 |
+
query_layer.transpose(0, 1), # [b * np, sq, hn]
|
255 |
+
key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk]
|
256 |
+
beta=0.0,
|
257 |
+
alpha=(1.0 / self.norm_factor),
|
258 |
+
)
|
259 |
+
|
260 |
+
# change view to [b, np, sq, sk]
|
261 |
+
attention_scores = matmul_result.view(*output_size)
|
262 |
+
|
263 |
+
# ===========================
|
264 |
+
# Attention probs and dropout
|
265 |
+
# ===========================
|
266 |
+
|
267 |
+
# attention scores and attention mask [b, np, sq, sk]
|
268 |
+
if self.attention_softmax_in_fp32:
|
269 |
+
attention_scores = attention_scores.float()
|
270 |
+
if self.coeff is not None:
|
271 |
+
attention_scores = attention_scores * self.coeff
|
272 |
+
if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
|
273 |
+
attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
|
274 |
+
device=attention_scores.device, dtype=torch.bool)
|
275 |
+
attention_mask.tril_()
|
276 |
+
attention_mask = ~attention_mask
|
277 |
+
if attention_mask is not None:
|
278 |
+
attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
|
279 |
+
attention_probs = F.softmax(attention_scores, dim=-1)
|
280 |
+
attention_probs = attention_probs.type_as(value_layer)
|
281 |
+
|
282 |
+
# This is actually dropping out entire tokens to attend to, which might
|
283 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
284 |
+
attention_probs = self.attention_dropout(attention_probs)
|
285 |
+
# =========================
|
286 |
+
# Context layer. [sq, b, hp]
|
287 |
+
# =========================
|
288 |
+
|
289 |
+
# value_layer -> context layer.
|
290 |
+
# [sk, b, np, hn] --> [b, np, sq, hn]
|
291 |
+
|
292 |
+
# context layer shape: [b, np, sq, hn]
|
293 |
+
output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))
|
294 |
+
# change view [sk, b * np, hn]
|
295 |
+
value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)
|
296 |
+
# change view [b * np, sq, sk]
|
297 |
+
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
|
298 |
+
# matmul: [b * np, sq, hn]
|
299 |
+
context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
|
300 |
+
# change view [b, np, sq, hn]
|
301 |
+
context_layer = context_layer.view(*output_size)
|
302 |
+
# [b, np, sq, hn] --> [sq, b, np, hn]
|
303 |
+
context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
|
304 |
+
# [sq, b, np, hn] --> [sq, b, hp]
|
305 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
306 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
307 |
+
|
308 |
+
return context_layer
|
309 |
+
|
310 |
+
|
311 |
+
class SelfAttention(torch.nn.Module):
|
312 |
+
"""Parallel self-attention layer abstract class.
|
313 |
+
|
314 |
+
Self-attention layer takes input with size [s, b, h]
|
315 |
+
and returns output of the same size.
|
316 |
+
"""
|
317 |
+
|
318 |
+
def __init__(self, config: ChatGLMConfig, layer_number, device=None):
|
319 |
+
super(SelfAttention, self).__init__()
|
320 |
+
self.layer_number = max(1, layer_number)
|
321 |
+
|
322 |
+
self.projection_size = config.kv_channels * config.num_attention_heads
|
323 |
+
|
324 |
+
# Per attention head and per partition values.
|
325 |
+
self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads
|
326 |
+
self.num_attention_heads_per_partition = config.num_attention_heads
|
327 |
+
|
328 |
+
self.multi_query_attention = config.multi_query_attention
|
329 |
+
self.qkv_hidden_size = 3 * self.projection_size
|
330 |
+
if self.multi_query_attention:
|
331 |
+
self.num_multi_query_groups_per_partition = config.multi_query_group_num
|
332 |
+
self.qkv_hidden_size = (
|
333 |
+
self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num
|
334 |
+
)
|
335 |
+
self.query_key_value = nn.Linear(config.hidden_size, self.qkv_hidden_size,
|
336 |
+
bias=config.add_bias_linear or config.add_qkv_bias,
|
337 |
+
device=device, **_config_to_kwargs(config)
|
338 |
+
)
|
339 |
+
|
340 |
+
self.core_attention = CoreAttention(config, self.layer_number)
|
341 |
+
|
342 |
+
# Output.
|
343 |
+
self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear,
|
344 |
+
device=device, **_config_to_kwargs(config)
|
345 |
+
)
|
346 |
+
|
347 |
+
def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None):
|
348 |
+
if self.multi_query_attention:
|
349 |
+
num_attention_heads = self.num_multi_query_groups_per_partition
|
350 |
+
else:
|
351 |
+
num_attention_heads = self.num_attention_heads_per_partition
|
352 |
+
return torch.empty(
|
353 |
+
inference_max_sequence_len,
|
354 |
+
batch_size,
|
355 |
+
num_attention_heads,
|
356 |
+
self.hidden_size_per_attention_head,
|
357 |
+
dtype=dtype,
|
358 |
+
device=device,
|
359 |
+
)
|
360 |
+
|
361 |
+
def forward(
|
362 |
+
self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
|
363 |
+
):
|
364 |
+
# hidden_states: [sq, b, h]
|
365 |
+
|
366 |
+
# =================================================
|
367 |
+
# Pre-allocate memory for key-values for inference.
|
368 |
+
# =================================================
|
369 |
+
# =====================
|
370 |
+
# Query, Key, and Value
|
371 |
+
# =====================
|
372 |
+
|
373 |
+
# Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
|
374 |
+
mixed_x_layer = self.query_key_value(hidden_states)
|
375 |
+
|
376 |
+
if self.multi_query_attention:
|
377 |
+
(query_layer, key_layer, value_layer) = mixed_x_layer.split(
|
378 |
+
[
|
379 |
+
self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
|
380 |
+
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
|
381 |
+
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
|
382 |
+
],
|
383 |
+
dim=-1,
|
384 |
+
)
|
385 |
+
query_layer = query_layer.view(
|
386 |
+
query_layer.size()[:-1] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
|
387 |
+
)
|
388 |
+
key_layer = key_layer.view(
|
389 |
+
key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
|
390 |
+
)
|
391 |
+
value_layer = value_layer.view(
|
392 |
+
value_layer.size()[:-1]
|
393 |
+
+ (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
|
394 |
+
)
|
395 |
+
else:
|
396 |
+
new_tensor_shape = mixed_x_layer.size()[:-1] + \
|
397 |
+
(self.num_attention_heads_per_partition,
|
398 |
+
3 * self.hidden_size_per_attention_head)
|
399 |
+
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
|
400 |
+
|
401 |
+
# [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
|
402 |
+
(query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
|
403 |
+
|
404 |
+
# apply relative positional encoding (rotary embedding)
|
405 |
+
if rotary_pos_emb is not None:
|
406 |
+
query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
|
407 |
+
key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
|
408 |
+
|
409 |
+
# adjust key and value for inference
|
410 |
+
if kv_cache is not None:
|
411 |
+
cache_k, cache_v = kv_cache
|
412 |
+
key_layer = torch.cat((cache_k, key_layer), dim=0)
|
413 |
+
value_layer = torch.cat((cache_v, value_layer), dim=0)
|
414 |
+
if use_cache:
|
415 |
+
kv_cache = (key_layer, value_layer)
|
416 |
+
else:
|
417 |
+
kv_cache = None
|
418 |
+
|
419 |
+
if self.multi_query_attention:
|
420 |
+
key_layer = key_layer.unsqueeze(-2)
|
421 |
+
key_layer = key_layer.expand(
|
422 |
+
-1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1
|
423 |
+
)
|
424 |
+
key_layer = key_layer.contiguous().view(
|
425 |
+
key_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
|
426 |
+
)
|
427 |
+
value_layer = value_layer.unsqueeze(-2)
|
428 |
+
value_layer = value_layer.expand(
|
429 |
+
-1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1
|
430 |
+
)
|
431 |
+
value_layer = value_layer.contiguous().view(
|
432 |
+
value_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
|
433 |
+
)
|
434 |
+
|
435 |
+
# ==================================
|
436 |
+
# core attention computation
|
437 |
+
# ==================================
|
438 |
+
|
439 |
+
context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)
|
440 |
+
|
441 |
+
# =================
|
442 |
+
# Output. [sq, b, h]
|
443 |
+
# =================
|
444 |
+
|
445 |
+
output = self.dense(context_layer)
|
446 |
+
|
447 |
+
return output, kv_cache
|
448 |
+
|
449 |
+
|
450 |
+
def _config_to_kwargs(args):
|
451 |
+
common_kwargs = {
|
452 |
+
"dtype": args.torch_dtype,
|
453 |
+
}
|
454 |
+
return common_kwargs
|
455 |
+
|
456 |
+
|
457 |
+
class MLP(torch.nn.Module):
|
458 |
+
"""MLP.
|
459 |
+
|
460 |
+
MLP will take the input with h hidden state, project it to 4*h
|
461 |
+
hidden dimension, perform nonlinear transformation, and project the
|
462 |
+
state back into h hidden dimension.
|
463 |
+
"""
|
464 |
+
|
465 |
+
def __init__(self, config: ChatGLMConfig, device=None):
|
466 |
+
super(MLP, self).__init__()
|
467 |
+
|
468 |
+
self.add_bias = config.add_bias_linear
|
469 |
+
|
470 |
+
# Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
|
471 |
+
self.dense_h_to_4h = nn.Linear(
|
472 |
+
config.hidden_size,
|
473 |
+
config.ffn_hidden_size * 2,
|
474 |
+
bias=self.add_bias,
|
475 |
+
device=device,
|
476 |
+
**_config_to_kwargs(config)
|
477 |
+
)
|
478 |
+
|
479 |
+
def swiglu(x):
|
480 |
+
x = torch.chunk(x, 2, dim=-1)
|
481 |
+
return F.silu(x[0]) * x[1]
|
482 |
+
|
483 |
+
self.activation_func = swiglu
|
484 |
+
|
485 |
+
# Project back to h.
|
486 |
+
self.dense_4h_to_h = nn.Linear(
|
487 |
+
config.ffn_hidden_size,
|
488 |
+
config.hidden_size,
|
489 |
+
bias=self.add_bias,
|
490 |
+
device=device,
|
491 |
+
**_config_to_kwargs(config)
|
492 |
+
)
|
493 |
+
|
494 |
+
def forward(self, hidden_states):
|
495 |
+
# [s, b, 4hp]
|
496 |
+
intermediate_parallel = self.dense_h_to_4h(hidden_states)
|
497 |
+
intermediate_parallel = self.activation_func(intermediate_parallel)
|
498 |
+
# [s, b, h]
|
499 |
+
output = self.dense_4h_to_h(intermediate_parallel)
|
500 |
+
return output
|
501 |
+
|
502 |
+
|
503 |
+
class GLMBlock(torch.nn.Module):
|
504 |
+
"""A single transformer layer.
|
505 |
+
|
506 |
+
Transformer layer takes input with size [s, b, h] and returns an
|
507 |
+
output of the same size.
|
508 |
+
"""
|
509 |
+
|
510 |
+
def __init__(self, config: ChatGLMConfig, layer_number, device=None):
|
511 |
+
super(GLMBlock, self).__init__()
|
512 |
+
self.layer_number = layer_number
|
513 |
+
|
514 |
+
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
|
515 |
+
|
516 |
+
self.fp32_residual_connection = config.fp32_residual_connection
|
517 |
+
|
518 |
+
LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
|
519 |
+
# Layernorm on the input data.
|
520 |
+
self.input_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
|
521 |
+
dtype=config.torch_dtype)
|
522 |
+
|
523 |
+
# Self attention.
|
524 |
+
self.self_attention = SelfAttention(config, layer_number, device=device)
|
525 |
+
self.hidden_dropout = config.hidden_dropout
|
526 |
+
|
527 |
+
# Layernorm on the attention output
|
528 |
+
self.post_attention_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
|
529 |
+
dtype=config.torch_dtype)
|
530 |
+
|
531 |
+
# MLP
|
532 |
+
self.mlp = MLP(config, device=device)
|
533 |
+
|
534 |
+
def forward(
|
535 |
+
self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True,
|
536 |
+
):
|
537 |
+
# hidden_states: [s, b, h]
|
538 |
+
|
539 |
+
# Layer norm at the beginning of the transformer layer.
|
540 |
+
layernorm_output = self.input_layernorm(hidden_states)
|
541 |
+
# Self attention.
|
542 |
+
attention_output, kv_cache = self.self_attention(
|
543 |
+
layernorm_output,
|
544 |
+
attention_mask,
|
545 |
+
rotary_pos_emb,
|
546 |
+
kv_cache=kv_cache,
|
547 |
+
use_cache=use_cache
|
548 |
+
)
|
549 |
+
|
550 |
+
# Residual connection.
|
551 |
+
if self.apply_residual_connection_post_layernorm:
|
552 |
+
residual = layernorm_output
|
553 |
+
else:
|
554 |
+
residual = hidden_states
|
555 |
+
|
556 |
+
layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
|
557 |
+
layernorm_input = residual + layernorm_input
|
558 |
+
|
559 |
+
# Layer norm post the self attention.
|
560 |
+
layernorm_output = self.post_attention_layernorm(layernorm_input)
|
561 |
+
|
562 |
+
# MLP.
|
563 |
+
mlp_output = self.mlp(layernorm_output)
|
564 |
+
|
565 |
+
# Second residual connection.
|
566 |
+
if self.apply_residual_connection_post_layernorm:
|
567 |
+
residual = layernorm_output
|
568 |
+
else:
|
569 |
+
residual = layernorm_input
|
570 |
+
|
571 |
+
output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
|
572 |
+
output = residual + output
|
573 |
+
|
574 |
+
return output, kv_cache
|
575 |
+
|
576 |
+
|
577 |
+
class GLMTransformer(torch.nn.Module):
|
578 |
+
"""Transformer class."""
|
579 |
+
|
580 |
+
def __init__(self, config: ChatGLMConfig, device=None):
|
581 |
+
super(GLMTransformer, self).__init__()
|
582 |
+
|
583 |
+
self.fp32_residual_connection = config.fp32_residual_connection
|
584 |
+
self.post_layer_norm = config.post_layer_norm
|
585 |
+
|
586 |
+
# Number of layers.
|
587 |
+
self.num_layers = config.num_layers
|
588 |
+
|
589 |
+
# Transformer layers.
|
590 |
+
def build_layer(layer_number):
|
591 |
+
return GLMBlock(config, layer_number, device=device)
|
592 |
+
|
593 |
+
self.layers = torch.nn.ModuleList([build_layer(i + 1) for i in range(self.num_layers)])
|
594 |
+
|
595 |
+
if self.post_layer_norm:
|
596 |
+
LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
|
597 |
+
# Final layer norm before output.
|
598 |
+
self.final_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
|
599 |
+
dtype=config.torch_dtype)
|
600 |
+
|
601 |
+
self.gradient_checkpointing = False
|
602 |
+
|
603 |
+
def _get_layer(self, layer_number):
|
604 |
+
return self.layers[layer_number]
|
605 |
+
|
606 |
+
def forward(
|
607 |
+
self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None,
|
608 |
+
use_cache: Optional[bool] = True,
|
609 |
+
output_hidden_states: Optional[bool] = False,
|
610 |
+
):
|
611 |
+
if not kv_caches:
|
612 |
+
kv_caches = [None for _ in range(self.num_layers)]
|
613 |
+
presents = () if use_cache else None
|
614 |
+
if self.gradient_checkpointing and self.training:
|
615 |
+
if use_cache:
|
616 |
+
logger.warning_once(
|
617 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
618 |
+
)
|
619 |
+
use_cache = False
|
620 |
+
|
621 |
+
all_self_attentions = None
|
622 |
+
all_hidden_states = () if output_hidden_states else None
|
623 |
+
for index in range(self.num_layers):
|
624 |
+
if output_hidden_states:
|
625 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
626 |
+
|
627 |
+
layer = self._get_layer(index)
|
628 |
+
if self.gradient_checkpointing and self.training:
|
629 |
+
layer_ret = torch.utils.checkpoint.checkpoint(
|
630 |
+
layer,
|
631 |
+
hidden_states,
|
632 |
+
attention_mask,
|
633 |
+
rotary_pos_emb,
|
634 |
+
kv_caches[index],
|
635 |
+
use_cache
|
636 |
+
)
|
637 |
+
else:
|
638 |
+
layer_ret = layer(
|
639 |
+
hidden_states,
|
640 |
+
attention_mask,
|
641 |
+
rotary_pos_emb,
|
642 |
+
kv_cache=kv_caches[index],
|
643 |
+
use_cache=use_cache
|
644 |
+
)
|
645 |
+
hidden_states, kv_cache = layer_ret
|
646 |
+
if use_cache:
|
647 |
+
presents = presents + (kv_cache,)
|
648 |
+
|
649 |
+
if output_hidden_states:
|
650 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
651 |
+
|
652 |
+
# Final layer norm.
|
653 |
+
if self.post_layer_norm:
|
654 |
+
hidden_states = self.final_layernorm(hidden_states)
|
655 |
+
|
656 |
+
return hidden_states, presents, all_hidden_states, all_self_attentions
|
657 |
+
|
658 |
+
|
659 |
+
class ChatGLMPreTrainedModel(PreTrainedModel):
|
660 |
+
"""
|
661 |
+
An abstract class to handle weights initialization and
|
662 |
+
a simple interface for downloading and loading pretrained models.
|
663 |
+
"""
|
664 |
+
|
665 |
+
is_parallelizable = False
|
666 |
+
supports_gradient_checkpointing = True
|
667 |
+
config_class = ChatGLMConfig
|
668 |
+
base_model_prefix = "transformer"
|
669 |
+
_no_split_modules = ["GLMBlock"]
|
670 |
+
|
671 |
+
def _init_weights(self, module: nn.Module):
|
672 |
+
"""Initialize the weights."""
|
673 |
+
return
|
674 |
+
|
675 |
+
def get_masks(self, input_ids, past_key_values, padding_mask=None):
|
676 |
+
batch_size, seq_length = input_ids.shape
|
677 |
+
full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
|
678 |
+
full_attention_mask.tril_()
|
679 |
+
past_length = 0
|
680 |
+
if past_key_values:
|
681 |
+
past_length = past_key_values[0][0].shape[0]
|
682 |
+
if past_length:
|
683 |
+
full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length,
|
684 |
+
device=input_ids.device), full_attention_mask), dim=-1)
|
685 |
+
if padding_mask is not None:
|
686 |
+
full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1)
|
687 |
+
if not past_length and padding_mask is not None:
|
688 |
+
full_attention_mask -= padding_mask.unsqueeze(-1) - 1
|
689 |
+
full_attention_mask = (full_attention_mask < 0.5).bool()
|
690 |
+
full_attention_mask.unsqueeze_(1)
|
691 |
+
return full_attention_mask
|
692 |
+
|
693 |
+
def get_position_ids(self, input_ids, device):
|
694 |
+
batch_size, seq_length = input_ids.shape
|
695 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
|
696 |
+
return position_ids
|
697 |
+
|
698 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
699 |
+
if isinstance(module, GLMTransformer):
|
700 |
+
module.gradient_checkpointing = value
|
701 |
+
|
702 |
+
|
703 |
+
class Embedding(torch.nn.Module):
|
704 |
+
"""Language model embeddings."""
|
705 |
+
|
706 |
+
def __init__(self, config: ChatGLMConfig, device=None):
|
707 |
+
super(Embedding, self).__init__()
|
708 |
+
|
709 |
+
self.hidden_size = config.hidden_size
|
710 |
+
# Word embeddings (parallel).
|
711 |
+
self.word_embeddings = nn.Embedding(
|
712 |
+
config.padded_vocab_size,
|
713 |
+
self.hidden_size,
|
714 |
+
dtype=config.torch_dtype,
|
715 |
+
device=device
|
716 |
+
)
|
717 |
+
self.fp32_residual_connection = config.fp32_residual_connection
|
718 |
+
|
719 |
+
def forward(self, input_ids):
|
720 |
+
# Embeddings.
|
721 |
+
words_embeddings = self.word_embeddings(input_ids)
|
722 |
+
embeddings = words_embeddings
|
723 |
+
# Data format change to avoid explicit tranposes : [b s h] --> [s b h].
|
724 |
+
embeddings = embeddings.transpose(0, 1).contiguous()
|
725 |
+
# If the input flag for fp32 residual connection is set, convert for float.
|
726 |
+
if self.fp32_residual_connection:
|
727 |
+
embeddings = embeddings.float()
|
728 |
+
return embeddings
|
729 |
+
|
730 |
+
|
731 |
+
class ChatGLMModel(ChatGLMPreTrainedModel):
|
732 |
+
def __init__(self, config: ChatGLMConfig, device=None, empty_init=True):
|
733 |
+
super().__init__(config)
|
734 |
+
if empty_init:
|
735 |
+
init_method = skip_init
|
736 |
+
else:
|
737 |
+
init_method = default_init
|
738 |
+
init_kwargs = {}
|
739 |
+
if device is not None:
|
740 |
+
init_kwargs["device"] = device
|
741 |
+
self.embedding = init_method(Embedding, config, **init_kwargs)
|
742 |
+
self.num_layers = config.num_layers
|
743 |
+
self.multi_query_group_num = config.multi_query_group_num
|
744 |
+
self.kv_channels = config.kv_channels
|
745 |
+
|
746 |
+
# Rotary positional embeddings
|
747 |
+
self.seq_length = config.seq_length
|
748 |
+
rotary_dim = (
|
749 |
+
config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
|
750 |
+
)
|
751 |
+
|
752 |
+
self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, original_impl=config.original_rope, device=device,
|
753 |
+
dtype=config.torch_dtype)
|
754 |
+
self.encoder = init_method(GLMTransformer, config, **init_kwargs)
|
755 |
+
self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
|
756 |
+
dtype=config.torch_dtype, **init_kwargs)
|
757 |
+
self.pre_seq_len = config.pre_seq_len
|
758 |
+
self.prefix_projection = config.prefix_projection
|
759 |
+
if self.pre_seq_len is not None:
|
760 |
+
for param in self.parameters():
|
761 |
+
param.requires_grad = False
|
762 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
763 |
+
self.prefix_encoder = PrefixEncoder(config)
|
764 |
+
self.dropout = torch.nn.Dropout(0.1)
|
765 |
+
|
766 |
+
def get_input_embeddings(self):
|
767 |
+
return self.embedding.word_embeddings
|
768 |
+
|
769 |
+
def get_prompt(self, batch_size, device, dtype=torch.half):
|
770 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
|
771 |
+
past_key_values = self.prefix_encoder(prefix_tokens).type(dtype)
|
772 |
+
past_key_values = past_key_values.view(
|
773 |
+
batch_size,
|
774 |
+
self.pre_seq_len,
|
775 |
+
self.num_layers * 2,
|
776 |
+
self.multi_query_group_num,
|
777 |
+
self.kv_channels
|
778 |
+
)
|
779 |
+
# seq_len, b, nh, hidden_size
|
780 |
+
past_key_values = self.dropout(past_key_values)
|
781 |
+
past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2)
|
782 |
+
return past_key_values
|
783 |
+
|
784 |
+
def forward(
|
785 |
+
self,
|
786 |
+
input_ids,
|
787 |
+
position_ids: Optional[torch.Tensor] = None,
|
788 |
+
attention_mask: Optional[torch.BoolTensor] = None,
|
789 |
+
full_attention_mask: Optional[torch.BoolTensor] = None,
|
790 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
791 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
792 |
+
use_cache: Optional[bool] = None,
|
793 |
+
output_hidden_states: Optional[bool] = None,
|
794 |
+
return_dict: Optional[bool] = None,
|
795 |
+
):
|
796 |
+
output_hidden_states = (
|
797 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
798 |
+
)
|
799 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
800 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
801 |
+
|
802 |
+
batch_size, seq_length = input_ids.shape
|
803 |
+
|
804 |
+
if inputs_embeds is None:
|
805 |
+
inputs_embeds = self.embedding(input_ids)
|
806 |
+
|
807 |
+
if self.pre_seq_len is not None:
|
808 |
+
if past_key_values is None:
|
809 |
+
past_key_values = self.get_prompt(batch_size=batch_size, device=input_ids.device,
|
810 |
+
dtype=inputs_embeds.dtype)
|
811 |
+
if attention_mask is not None:
|
812 |
+
attention_mask = torch.cat([attention_mask.new_ones((batch_size, self.pre_seq_len)),
|
813 |
+
attention_mask], dim=-1)
|
814 |
+
|
815 |
+
if full_attention_mask is None:
|
816 |
+
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
|
817 |
+
full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)
|
818 |
+
|
819 |
+
# Rotary positional embeddings
|
820 |
+
rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
|
821 |
+
if position_ids is not None:
|
822 |
+
rotary_pos_emb = rotary_pos_emb[position_ids]
|
823 |
+
else:
|
824 |
+
rotary_pos_emb = rotary_pos_emb[None, :seq_length]
|
825 |
+
rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous()
|
826 |
+
|
827 |
+
# Run encoder.
|
828 |
+
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
|
829 |
+
inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb,
|
830 |
+
kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
|
831 |
+
)
|
832 |
+
|
833 |
+
if not return_dict:
|
834 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
835 |
+
|
836 |
+
return BaseModelOutputWithPast(
|
837 |
+
last_hidden_state=hidden_states,
|
838 |
+
past_key_values=presents,
|
839 |
+
hidden_states=all_hidden_states,
|
840 |
+
attentions=all_self_attentions,
|
841 |
+
)
|
842 |
+
|
843 |
+
def quantize(self, weight_bit_width: int):
|
844 |
+
from .quantization import quantize
|
845 |
+
quantize(self.encoder, weight_bit_width)
|
846 |
+
return self
|
847 |
+
|
848 |
+
|
849 |
+
class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
850 |
+
def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
|
851 |
+
super().__init__(config)
|
852 |
+
|
853 |
+
self.max_sequence_length = config.max_length
|
854 |
+
self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
|
855 |
+
self.config = config
|
856 |
+
self.quantized = False
|
857 |
+
|
858 |
+
if self.config.quantization_bit:
|
859 |
+
self.quantize(self.config.quantization_bit, empty_init=True)
|
860 |
+
|
861 |
+
def _update_model_kwargs_for_generation(
|
862 |
+
self,
|
863 |
+
outputs: ModelOutput,
|
864 |
+
model_kwargs: Dict[str, Any],
|
865 |
+
is_encoder_decoder: bool = False,
|
866 |
+
standardize_cache_format: bool = False,
|
867 |
+
) -> Dict[str, Any]:
|
868 |
+
# update past_key_values
|
869 |
+
model_kwargs["past_key_values"] = self._extract_past_from_model_output(
|
870 |
+
outputs, standardize_cache_format=standardize_cache_format
|
871 |
+
)
|
872 |
+
|
873 |
+
# update attention mask
|
874 |
+
if "attention_mask" in model_kwargs:
|
875 |
+
attention_mask = model_kwargs["attention_mask"]
|
876 |
+
model_kwargs["attention_mask"] = torch.cat(
|
877 |
+
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
|
878 |
+
)
|
879 |
+
|
880 |
+
# update position ids
|
881 |
+
if "position_ids" in model_kwargs:
|
882 |
+
position_ids = model_kwargs["position_ids"]
|
883 |
+
new_position_id = position_ids[..., -1:].clone()
|
884 |
+
new_position_id += 1
|
885 |
+
model_kwargs["position_ids"] = torch.cat(
|
886 |
+
[position_ids, new_position_id], dim=-1
|
887 |
+
)
|
888 |
+
|
889 |
+
model_kwargs["is_first_forward"] = False
|
890 |
+
return model_kwargs
|
891 |
+
|
892 |
+
def prepare_inputs_for_generation(
|
893 |
+
self,
|
894 |
+
input_ids: torch.LongTensor,
|
895 |
+
past_key_values: Optional[torch.Tensor] = None,
|
896 |
+
attention_mask: Optional[torch.Tensor] = None,
|
897 |
+
position_ids: Optional[torch.Tensor] = None,
|
898 |
+
is_first_forward: bool = True,
|
899 |
+
**kwargs
|
900 |
+
) -> dict:
|
901 |
+
# only last token for input_ids if past is not None
|
902 |
+
if position_ids is None:
|
903 |
+
position_ids = self.get_position_ids(input_ids, device=input_ids.device)
|
904 |
+
if not is_first_forward:
|
905 |
+
position_ids = position_ids[..., -1:]
|
906 |
+
input_ids = input_ids[:, -1:]
|
907 |
+
return {
|
908 |
+
"input_ids": input_ids,
|
909 |
+
"past_key_values": past_key_values,
|
910 |
+
"position_ids": position_ids,
|
911 |
+
"attention_mask": attention_mask,
|
912 |
+
"return_last_logit": True
|
913 |
+
}
|
914 |
+
|
915 |
+
def forward(
|
916 |
+
self,
|
917 |
+
input_ids: Optional[torch.Tensor] = None,
|
918 |
+
position_ids: Optional[torch.Tensor] = None,
|
919 |
+
attention_mask: Optional[torch.Tensor] = None,
|
920 |
+
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
|
921 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
922 |
+
labels: Optional[torch.Tensor] = None,
|
923 |
+
use_cache: Optional[bool] = None,
|
924 |
+
output_attentions: Optional[bool] = None,
|
925 |
+
output_hidden_states: Optional[bool] = None,
|
926 |
+
return_dict: Optional[bool] = None,
|
927 |
+
return_last_logit: Optional[bool] = False,
|
928 |
+
):
|
929 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
930 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
931 |
+
|
932 |
+
transformer_outputs = self.transformer(
|
933 |
+
input_ids=input_ids,
|
934 |
+
position_ids=position_ids,
|
935 |
+
attention_mask=attention_mask,
|
936 |
+
past_key_values=past_key_values,
|
937 |
+
inputs_embeds=inputs_embeds,
|
938 |
+
use_cache=use_cache,
|
939 |
+
output_hidden_states=output_hidden_states,
|
940 |
+
return_dict=return_dict,
|
941 |
+
)
|
942 |
+
|
943 |
+
hidden_states = transformer_outputs[0]
|
944 |
+
if return_last_logit:
|
945 |
+
hidden_states = hidden_states[-1:]
|
946 |
+
lm_logits = self.transformer.output_layer(hidden_states)
|
947 |
+
lm_logits = lm_logits.transpose(0, 1).contiguous()
|
948 |
+
|
949 |
+
loss = None
|
950 |
+
if labels is not None:
|
951 |
+
lm_logits = lm_logits.to(torch.float32)
|
952 |
+
|
953 |
+
# Shift so that tokens < n predict n
|
954 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
955 |
+
shift_labels = labels[..., 1:].contiguous()
|
956 |
+
# Flatten the tokens
|
957 |
+
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
958 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
959 |
+
|
960 |
+
lm_logits = lm_logits.to(hidden_states.dtype)
|
961 |
+
loss = loss.to(hidden_states.dtype)
|
962 |
+
|
963 |
+
if not return_dict:
|
964 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
965 |
+
return ((loss,) + output) if loss is not None else output
|
966 |
+
|
967 |
+
return CausalLMOutputWithPast(
|
968 |
+
loss=loss,
|
969 |
+
logits=lm_logits,
|
970 |
+
past_key_values=transformer_outputs.past_key_values,
|
971 |
+
hidden_states=transformer_outputs.hidden_states,
|
972 |
+
attentions=transformer_outputs.attentions,
|
973 |
+
)
|
974 |
+
|
975 |
+
@staticmethod
|
976 |
+
def _reorder_cache(
|
977 |
+
past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
|
978 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
|
979 |
+
"""
|
980 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
981 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
982 |
+
beam_idx at every generation step.
|
983 |
+
|
984 |
+
Output shares the same memory storage as `past`.
|
985 |
+
"""
|
986 |
+
return tuple(
|
987 |
+
(
|
988 |
+
layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)),
|
989 |
+
layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)),
|
990 |
+
)
|
991 |
+
for layer_past in past
|
992 |
+
)
|
993 |
+
|
994 |
+
def process_response(self, response):
|
995 |
+
response = response.strip()
|
996 |
+
response = response.replace("[[训练时间]]", "2023年")
|
997 |
+
return response
|
998 |
+
|
999 |
+
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = None):
|
1000 |
+
prompt = tokenizer.build_prompt(query, history=history)
|
1001 |
+
inputs = tokenizer([prompt], return_tensors="pt")
|
1002 |
+
inputs = inputs.to(self.device)
|
1003 |
+
return inputs
|
1004 |
+
|
1005 |
+
def build_stream_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = None):
|
1006 |
+
if history:
|
1007 |
+
prompt = "\n\n[Round {}]\n\n问:{}\n\n答:".format(len(history) + 1, query)
|
1008 |
+
input_ids = tokenizer.encode(prompt, add_special_tokens=False)
|
1009 |
+
input_ids = input_ids[1:]
|
1010 |
+
inputs = tokenizer.batch_encode_plus([(input_ids, None)], return_tensors="pt", add_special_tokens=False)
|
1011 |
+
else:
|
1012 |
+
prompt = "[Round {}]\n\n问:{}\n\n答:".format(len(history) + 1, query)
|
1013 |
+
inputs = tokenizer([prompt], return_tensors="pt")
|
1014 |
+
inputs = inputs.to(self.device)
|
1015 |
+
return inputs
|
1016 |
+
|
1017 |
+
@torch.inference_mode()
|
1018 |
+
def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 8192, num_beams=1,
|
1019 |
+
do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None, **kwargs):
|
1020 |
+
if history is None:
|
1021 |
+
history = []
|
1022 |
+
if logits_processor is None:
|
1023 |
+
logits_processor = LogitsProcessorList()
|
1024 |
+
logits_processor.append(InvalidScoreLogitsProcessor())
|
1025 |
+
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
|
1026 |
+
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
1027 |
+
inputs = self.build_inputs(tokenizer, query, history=history)
|
1028 |
+
outputs = self.generate(**inputs, **gen_kwargs)
|
1029 |
+
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
|
1030 |
+
response = tokenizer.decode(outputs)
|
1031 |
+
response = self.process_response(response)
|
1032 |
+
history = history + [(query, response)]
|
1033 |
+
return response, history
|
1034 |
+
|
1035 |
+
@torch.inference_mode()
|
1036 |
+
def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, past_key_values=None,
|
1037 |
+
max_length: int = 8192, do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None,
|
1038 |
+
return_past_key_values=False, **kwargs):
|
1039 |
+
if history is None:
|
1040 |
+
history = []
|
1041 |
+
if logits_processor is None:
|
1042 |
+
logits_processor = LogitsProcessorList()
|
1043 |
+
logits_processor.append(InvalidScoreLogitsProcessor())
|
1044 |
+
gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
|
1045 |
+
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
1046 |
+
if past_key_values is None and not return_past_key_values:
|
1047 |
+
inputs = self.build_inputs(tokenizer, query, history=history)
|
1048 |
+
else:
|
1049 |
+
inputs = self.build_stream_inputs(tokenizer, query, history=history)
|
1050 |
+
if past_key_values is not None:
|
1051 |
+
past_length = past_key_values[0][0].shape[0]
|
1052 |
+
if self.transformer.pre_seq_len is not None:
|
1053 |
+
past_length -= self.transformer.pre_seq_len
|
1054 |
+
inputs.position_ids += past_length
|
1055 |
+
attention_mask = inputs.attention_mask
|
1056 |
+
attention_mask = torch.cat((attention_mask.new_ones(1, past_length), attention_mask), dim=1)
|
1057 |
+
inputs['attention_mask'] = attention_mask
|
1058 |
+
for outputs in self.stream_generate(**inputs, past_key_values=past_key_values,
|
1059 |
+
return_past_key_values=return_past_key_values, **gen_kwargs):
|
1060 |
+
if return_past_key_values:
|
1061 |
+
outputs, past_key_values = outputs
|
1062 |
+
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
|
1063 |
+
response = tokenizer.decode(outputs)
|
1064 |
+
if response and response[-1] != "�":
|
1065 |
+
response = self.process_response(response)
|
1066 |
+
new_history = history + [(query, response)]
|
1067 |
+
if return_past_key_values:
|
1068 |
+
yield response, new_history, past_key_values
|
1069 |
+
else:
|
1070 |
+
yield response, new_history
|
1071 |
+
|
1072 |
+
@torch.inference_mode()
|
1073 |
+
def stream_generate(
|
1074 |
+
self,
|
1075 |
+
input_ids,
|
1076 |
+
generation_config: Optional[GenerationConfig] = None,
|
1077 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
1078 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
1079 |
+
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
1080 |
+
return_past_key_values=False,
|
1081 |
+
**kwargs,
|
1082 |
+
):
|
1083 |
+
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
|
1084 |
+
|
1085 |
+
if generation_config is None:
|
1086 |
+
generation_config = self.generation_config
|
1087 |
+
generation_config = copy.deepcopy(generation_config)
|
1088 |
+
model_kwargs = generation_config.update(**kwargs)
|
1089 |
+
bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
|
1090 |
+
|
1091 |
+
if isinstance(eos_token_id, int):
|
1092 |
+
eos_token_id = [eos_token_id]
|
1093 |
+
|
1094 |
+
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
|
1095 |
+
if has_default_max_length and generation_config.max_new_tokens is None:
|
1096 |
+
warnings.warn(
|
1097 |
+
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
|
1098 |
+
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
|
1099 |
+
" recommend using `max_new_tokens` to control the maximum length of the generation.",
|
1100 |
+
UserWarning,
|
1101 |
+
)
|
1102 |
+
elif generation_config.max_new_tokens is not None:
|
1103 |
+
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
|
1104 |
+
if not has_default_max_length:
|
1105 |
+
logger.warn(
|
1106 |
+
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
|
1107 |
+
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
|
1108 |
+
"Please refer to the documentation for more information. "
|
1109 |
+
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
|
1110 |
+
UserWarning,
|
1111 |
+
)
|
1112 |
+
|
1113 |
+
if input_ids_seq_length >= generation_config.max_length:
|
1114 |
+
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
|
1115 |
+
logger.warning(
|
1116 |
+
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
|
1117 |
+
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
|
1118 |
+
" increasing `max_new_tokens`."
|
1119 |
+
)
|
1120 |
+
|
1121 |
+
# 2. Set generation parameters if not already defined
|
1122 |
+
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
1123 |
+
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
1124 |
+
|
1125 |
+
logits_processor = self._get_logits_processor(
|
1126 |
+
generation_config=generation_config,
|
1127 |
+
input_ids_seq_length=input_ids_seq_length,
|
1128 |
+
encoder_input_ids=input_ids,
|
1129 |
+
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
1130 |
+
logits_processor=logits_processor,
|
1131 |
+
)
|
1132 |
+
|
1133 |
+
stopping_criteria = self._get_stopping_criteria(
|
1134 |
+
generation_config=generation_config, stopping_criteria=stopping_criteria
|
1135 |
+
)
|
1136 |
+
logits_warper = self._get_logits_warper(generation_config)
|
1137 |
+
|
1138 |
+
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
|
1139 |
+
scores = None
|
1140 |
+
while True:
|
1141 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
1142 |
+
# forward pass to get next token
|
1143 |
+
outputs = self(
|
1144 |
+
**model_inputs,
|
1145 |
+
return_dict=True,
|
1146 |
+
output_attentions=False,
|
1147 |
+
output_hidden_states=False,
|
1148 |
+
)
|
1149 |
+
|
1150 |
+
next_token_logits = outputs.logits[:, -1, :]
|
1151 |
+
|
1152 |
+
# pre-process distribution
|
1153 |
+
next_token_scores = logits_processor(input_ids, next_token_logits)
|
1154 |
+
next_token_scores = logits_warper(input_ids, next_token_scores)
|
1155 |
+
|
1156 |
+
# sample
|
1157 |
+
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
1158 |
+
if generation_config.do_sample:
|
1159 |
+
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
1160 |
+
else:
|
1161 |
+
next_tokens = torch.argmax(probs, dim=-1)
|
1162 |
+
|
1163 |
+
# update generated ids, model inputs, and length for next step
|
1164 |
+
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
1165 |
+
model_kwargs = self._update_model_kwargs_for_generation(
|
1166 |
+
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
|
1167 |
+
)
|
1168 |
+
unfinished_sequences = unfinished_sequences.mul((sum(next_tokens != i for i in eos_token_id)).long())
|
1169 |
+
if return_past_key_values:
|
1170 |
+
yield input_ids, outputs.past_key_values
|
1171 |
+
else:
|
1172 |
+
yield input_ids
|
1173 |
+
# stop when each sentence is finished, or if we exceed the maximum length
|
1174 |
+
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
|
1175 |
+
break
|
1176 |
+
|
1177 |
+
def quantize(self, bits: int, empty_init=False, device=None, **kwargs):
|
1178 |
+
if bits == 0:
|
1179 |
+
return
|
1180 |
+
|
1181 |
+
from .quantization import quantize
|
1182 |
+
|
1183 |
+
if self.quantized:
|
1184 |
+
logger.info("Already quantized.")
|
1185 |
+
return self
|
1186 |
+
|
1187 |
+
self.quantized = True
|
1188 |
+
|
1189 |
+
self.config.quantization_bit = bits
|
1190 |
+
|
1191 |
+
self.transformer.encoder = quantize(self.transformer.encoder, bits, empty_init=empty_init, device=device,
|
1192 |
+
**kwargs)
|
1193 |
+
return self
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:edef24ac08b0a6b6525c9005673f9603e23dba575380b3c8de7216ca5aa54fe4
|
3 |
+
size 12487238102
|
quantization.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.nn import Linear
|
2 |
+
from torch.nn.parameter import Parameter
|
3 |
+
|
4 |
+
import bz2
|
5 |
+
import torch
|
6 |
+
import base64
|
7 |
+
import ctypes
|
8 |
+
from transformers.utils import logging
|
9 |
+
|
10 |
+
from typing import List
|
11 |
+
from functools import partial
|
12 |
+
|
13 |
+
logger = logging.get_logger(__name__)
|
14 |
+
|
15 |
+
try:
|
16 |
+
from cpm_kernels.kernels.base import LazyKernelCModule, KernelFunction, round_up
|
17 |
+
|
18 |
+
class Kernel:
|
19 |
+
def __init__(self, code: bytes, function_names: List[str]):
|
20 |
+
self.code = code
|
21 |
+
self._function_names = function_names
|
22 |
+
self._cmodule = LazyKernelCModule(self.code)
|
23 |
+
|
24 |
+
for name in self._function_names:
|
25 |
+
setattr(self, name, KernelFunction(self._cmodule, name))
|
26 |
+
|
27 |
+
quantization_code = "$QlpoOTFBWSZTWU9yuJUAQHN//////////f/n/8/n///n//bt4dTidcVx8X3V9FV/92/v4B7/AD5FBQFAAAChSgKpFCFAFVSigUAAAEKhSgUUqgFBKigqVREQAABQBQIANDTTIGI00BkZBkNGE0A0BkBkGQGRkaNAaAGQNBoGgDIAAYIGTI0DQAQAaGmmQMRpoDIyDIaMJoBoDIDIMgMjI0aA0AMgaDQNAGQAAwQMmRoGgAgA0NNMgYjTQGRkGQ0YTQDQGQGQZAZGRo0BoAZA0GgaAMgABggZMjQNABABoaaZAxGmgMjIMhowmgGgMgMgyAyMjRoDQAyBoNA0AZAADBAyZGgaAAmqU1NEgJqnptU/Sn4jRR6J6epk2pqb1Q/SgAPUGgyNNGjQ2SBpoAZAAGg0NB6mgDIAAAAA2oaApSREBNAARhGiYEaEwU8pvImlP0k2aam1GaGqbFNM1MHpTwmkepmyU9R6nqPKekHqNNPUxNGhp6n6p6QaZ6o9TG1GMqcoV9ly6nRanHlq6zPNbnGZNi6HSug+2nPiZ13XcnFYZW+45W11CumhzYhchOJ2GLLV1OBjBjGf4TptOddTSOcVxhqYZMYwZXZZY00zI1paX5X9J+b+f4e+x43RXSxXPOdquiGpduatGyXneN696M9t4HU2eR5XX/kPhP261NTx3JO1Ow7LyuDmeo9a7d351T1ZxnvnrvYnrXv/hXxPCeuYx2XsNmO003eg9J3Z6U7b23meJ4ri01OdzTk9BNO96brz+qT5nuvvH3ds/G+m/JcG/F2XYuhXlvO+jP7U3XgrzPN/lr8Sf1n6j4j7jZs+s/T0tNaNNYzTs12rxjwztHlnire3Nzc3N1wuBwOBwXBvZfoHpD7rFmR99V5vj3aXza3xdBbXMalubTg/jIv5dfAi54Pdc75j4z412n3Npj3Ld/ENm7a3b/Cod6h/ret1/5vn/C+l+gdslMvgPSLJ8d8q+U66fevYn/tW1chleEtNTGlcHCbLRlq0tHzF5tsbbZZfHjjLgZu42XCuC3NrdjTasZGNzgxPIrGqp7r3p7L2p5XjnpPSmTd5XtzqnB6U87zzg1Ol0zd0zsLszxR6lkxp35u6/teL0L0W922cR7Lu1lpL9CsHirzuM2T+BgsyViT6LHcm0/Vr6U/7LGGyJeqTEjt0PHWhF5mCT7R9mtlDwriYv0Tyr/OxYt6qp5r0mPVT0608TqnqMZaarU2nFwrTzzlrs1ed7z1ux60wyr4ydCaTi3enW8x68x0zU7tXSlcmPSW1mGpWJMg4zmPC2lK96tp0OE80y4MfEvnZj8zGluR6b22ki1Ou9V2nCd9xovcPvcYMZYy0lvN60ScZ45vN6yeCeeXFb1lVjnnCar5fwXwE2bzJ4HI1XVPXfXZMm44GUsMpYsmLB65TuVdm0cl0b+i/wGNN66XjeV7zuPpHcnK/juhhjdfId5jMdE5nN0dGmmm2zZs2cexD5n9p/dY352XsvXHaZNWWsmmS1atjR452nYudzvqv2HMRyvNNnlMcDl3R2+yx2uVrBubTW9icHDVtbNXlZm7jma1rM4VurZZd2y6nUau7ZXZ7bVU+mnoOVxZGMrVmvX60605JwmzGZhhhjTWtaaaMaaGTGmNMZasY0iX8VMUl8eepaIrzGSpemWOQyZORk2bNpjUybMmxqYmknCGCFynutfksaZpjTNMaaatM0xsxcGR0sociNqxNSmhhR1ZJPbsn8qyF0t2qH6iYBclclalbtTTcHTDsPaX6rlnElph2Jyumumtynv2Kk8GI7rsvXbIcJgHJOSaSXnnGaI3m87RtVXJOZ/YtgdTE6Wpha6ZlE8ayXkef1fh602r2WwvfMXtMdLlkfnLFdYYwYso+bWqm7yJqHXZGw2nrS5ZanSYnWlxBxMF1V940K2wdrI7R6OYf7DGGamMmTSbRhlS45xmVOumF1EyPCmHrrN8wwZOOrdNtLeMtzFzDlWnfTBxMk2NaXIZHBYxYLD4w8yju0ao65Vz1OIXoS9dLanwCe1PWrYuWMqf1if1z2k2yYfKJ741PDgno1ZQ8DRqvUny3mNoWTzGO6m1DkrJI8JiR5cSd+vZdGOO8nrMoc5+NDUFsMSXaZJeNlMmGLtJsovOsUp7I9S5VojKxF6bTVEelXqlfJobQr3LozSh2Jk7VcrVMfhXqszGWMzNqGhqZY0OadxkyyMssKugZR0KNFXBHlqwmJgTE/BNVMk6ItJXZMR0H47GpXv/DMOvNkmVuaV1PRfEdxuqc7Hcd+ZV/zTLaRxWk0nl9CdCeM6mn5rstHIBcpiuwmUZXeq81DacHI2rmrZ5SuE5mOZd6LQrZg9mx32TprA8BMo5jKN6yLTCi3WzQaZSuhzTtM1fUTGVpG8Tw+KXI0tjEpiWxtLYynOlktSbVlaI5kxP8TDH8kx50xoxi5KcA4pcja8KWLRlO/Ks6q06ergnvm1ca3Tq8Uw7LTUsmWyctXPWmpitl/uvGcWTGXGuAXDfhqazGmjkxcJW5hMMMMpYsXl2TZYtVOddG3XCarUt6Ptq9CZXSNzyuRzqRZOjsxdBbFVz6OA5HI43r1jityVlVpVkxmOsyaYWE1NTGq1sOVh36mHMcxtSvcy70edG0ZGR3I1Go1GRlV7mWWo1G0ZGRqlvH40l7o4m5xMWLLLYyNjnqc8556mdPqLJ31n/1nWOncxzG1tizrHs/Z+d2vP/B/l8wdJ6rHUn2nbbDq4p6htFtYzMMMTaZis1K5GKzGNmxhmUx2DDlZ/qNnIx41xnaMfCZWYaZWtNLTNW8ND4Fw1MyZOCdM428suKG1ehW8TesOydg7J+YYcD4cYR+8dFK6M4E3HM9ZfRNNL+Sn6rsl4DsrDl2HpPCnfxjGXtbZtYys1ttlyJ4T+BvexjGWRjMszK4Jpc77D3GyuVD7q0+G8m9G+2+rGm7cOR2y7FdtY2XUYx/oNlfRYxhMYyYZkyyg55enna9Kt/FFi6GMMwYwdwxWgxGMLKYmUyGExTKMZkMFhkymKuh0NOBNnBu+23LdwDoZYYzGGMxtORaTU1pjTGWTTGGtMrNWUsyyTTLLG1qy2ZjbK2DBllWqxMtBMaYZQmcE7zvvRcTkclUwdkxTaSdyySt/7fpL+T1v516Ji97fwr5JbLu305zMn5+GMTTZ9F+y7ExwmGVfG44yxn3dLv6l5i+Wth1jCrDq21nW9LqvvDzz3Vf3LLH/O/32TJ/erx3bXftO4eF+G956D952K/An4NfvOpjFjExjevP/UmE0fIoZXx6/w6lX/no3D0bLt+ixjieBM6ksRd0yB4Lt2SwYNE+gd1detlZWUnpiZfGfFaK+4PyCa/v18V8X75pe9fLXzp7l3VjF76vWZmHwGz1IZNWT7b8yddJ4q5kyrVdfru6atWc7bVYztL9Jf4GXvT+Y8m9/YsXP6H018a8D4XVOqvfzqeR+6yZOD8dPv0+U7/q5Pl+2dNb0MjzGVH5p6MNQ7cOWvw62U9aHE8DprDek+McLyvDz+te+9Zhq5+YTruufMcWMabqysTmZVWjKPfnK0wyVcrsuhjZRdLkHNvD72b9abriOSGIxiLixMOoalNPXzy+wT/tf+U6HHONfsz+xe8ufHBdQWWGWLA9if0rsnmrxK5LvRZQeWsTCsrmOYy8VteVfuRfcVTtDLItLIsMYxZLdU/DbtSemxF6Z6Zo5WBXE4tFdCyVMMXMTEMZXVlS6Xec2T4e0tHsRcEuWshcJ2YsNF5rUx1E8ifCq6Z+ZP7qdCeu/aTwFd53l16/o0NOw6O3dLavP4Hbi4RdmuDk6DoYaninC0+o4uZjbJ7Rxeu0/FbuFg+q7DVS6fQe0rZ6NDGUNNU6DEqOaLTicKnYZMnBWruljQxoaS3dZhocDge0bSTyOvdAbG5hxe2xji7E/L55xX13wWNDi6HCekcFxfCPGxY0MXC+s7afWaMdDyjyr+o8Rudm/NabOZvdl274zH4f5XK9z6On1Pe/K5TdPAslg77BjuO6Y3eO7GqvOPG/stknp1leyvLL0Z7bl9I4noMvLkzytLhWYzrOZzLXCORe028rORzOg4N/L0HlMOQ3Pgmnbb6KczlabORpu980q37TBqRu0/p3PO6234Bl03Ynuz+9W7gnsEcmvYaYY3aMYY0wx3pYd+ujsXauWdaY5Xkbtl23fPzFHiDB/QMo0yFjBllYxTQYYyxkrwn7JufwJ/PfgJ+C83X69ni6zvXcnyXabv0ncbLwsceS+RNlyN2mnneJtX0ngYO0+e+0+UnA+Wch3ji8hj5an4h+i6XBySU4n+R0roVcbw5yvHrmr4Yw8Y7x6c+9POPYHI5HI5HI5HI5HGXGww4nE4nrVyOR8XeqPEO7PLOiukYa3Novk5hV4cdtYZLI93e+uxff2jRo0aNGjRo0aNG1bVtW1dy3m83m8+tQ5ZzHw3nObwOu8La9Rc1dtkdS8A3eTk823tnktXWlxN6Oixe06zrN70Isd9jiOgZFq9yfkPqP/SLhN2Myl8jDM43bl1nbcb4cO57jlh8Jow6pzXZdL4dyODTuuhu77FyO27DdwdRxmvO+O+3N2+BdqyTwLHVczDVY4UPE4O66/ZO2cx1LFzVdSXtF7G4HMbrauOHRw6c8FdZ5m9fHZHYZXfTlZquyynSyTTKke6vcffSD9pzPA/G7n7jxPmuhc1DHMynPMrGL6AdewYmwu5ko+UUyTwrMv27rPH1v1nGqd87+p6N6LU8k3NEng53xXyHS97+44OSg/sy/hn+Se6yfYNjW0/uTgP+PvWYzLMmjhcLB/gGpri6H83/84eUXWT6T9Hsv7785z/7z4icpW+zfXypuR7rx/gMdZb1/wC678pcs8/2a3mDitGHxl9mfPlll5MafWWqxk/eYuTDgcNMzDGWLWvsuglNxs53GtN6uWpktlW1tZZYcuinMMWmnNnJydze3b2Y1McBxrBkXw799izLMZZYyy0TkbsGM4p03S2uVu5s/XXUdSdec6smVxZYYGpVmT8A+8ajuEyV5FatkvVru2x6uxGXXbH4A+jvgP4GMYy3iPLXzq/6z65+E005ey+cwMZD3fZcqc6xpjTFjQ0P3U+e++cPYmTIwj0nrK5NPTfl3WvpfLtXDcb2HQMudYOxFXQBor4L4T6vrOauFctYXJQ++NUWmJe5bmx1jDiZS1dTqWxo4GR8jm3fttpmPHppk9PEyv4/y8/sO07XacOmcqc0x2Vi9BvNJvN5oW8x4mOsydpidRxMYJPx06m1bqPzq9KtK8sxXNXFodD/+MYYaJTLwOhc9brCsV18oOR1i4tXChyTkq4lf4y1Ke+9axjDHqs1mfBbMXuP4Hzi+X7t8vzv7bHerrUPgPCxhjre4fXdfLNtNM+Jd+Zdh8xd8wP87uNPoPgv4W7/5P2BuxfsMabNnMnza+54Pdi5U671GPZY8CehX8Voeoo7FHpkeEc6715FwHZrIrUrHaviPUbPZHND+IhczrP6FcYvhOZ0Di/ETt0OI+YwNWR9r7tpf6WDeZKZDB1+z2IthOl1mPyb5FluvEx9h9d0NnM0Y1XPFkWIsk1WotJ0PBMmkvjvQTd0e71tfeV+8r8lQ/tpzpsmxJ+InrI/dj2UajUajVTUajatRqNRtGo1Go1Go4wjeMpZFMVV9CHbofPraLsJ3JpWV2XOoanCuFky4y3PPNxucK2uKC1Lbdb1eo+m5XomN6HfeZsabHLHRX/K+offtNGGmHWctcVcG44MdSqsOLY9VzX+Zxfxn2HPdWTpzWvkrtJ8M5zorrKcquRytJ5N5DZmcaW02l76nWO+BqPXm1A2Ry/0q71dH/mqrqeFjkYxjEXtsX8qubTk67rGycyqsdm4tZx5D6D5hhi0waaWmiaMP81Yjii5qxPlPuU/GfTL1Y5E6Jyfiq63qTa39A4J0sOGDgO9WF9bOXl0XfPRbsY2bPNKPy1YrFYrFYmRhhlTIyMjJWJYZHXuCXI8OoXsvfljGLFicNifpp2XunoPiG1wtx3p1Tah+/DD66OnVtVXP9rKbVxOnL0tR/rHtqB5UDErUVcl11D4qqvjpOcxX7armUNJB3LpW6bxVvD08e8h3odKKvyCFZBdSh2FVcST9xV3n3T8t1j7Kr9qgrqXg+13Pt5U7JCvFXVIV1YG5lRhkVYZJYYDDD4KOIMoHCp26WS8GB7uBh2zIdgq/PKyInjV2STShuoapUdCpX1yTwqq/z1VvET7Kh5nVPkO8YyxjLt2MaaMmWTLQvx3qnzltnXW0p2jxgbEtSny/Osv8Y9pLMXYoHVPAhkVdWVeODhR6q9/Sxe2liwwZWMVvFXfRkeIDxAePUPIrdJ4ey6yquzH+PD/bUOWAu05qVHtFd8rrKHSoeNIOUqrYr3FXyToqfYJgwmJdKpXXOwYYegNNGMzfZPp/t3t/DVs4zjNTN61rRqaWaa4NYbRjTa0tWwy2Y2tGN8ZO8ofNKq4j9SL7I+cSm4/6ovLV5HNXLI0jJidwrtk6ynCaP6Z++GjRlWS3tLeW129Mi9evxU9mtz6s5J3Z7M2ngTgnKvmpomxpaLCzPfmx0JWE+m3NLDDGOX47RctdYYNK5jakdqLkRlI39n590T5zctGSwwZZDJj6kW8XSi6ot2MmWWJ0DUT3nuvebBudScjZ79g8cWJ8av0k+/bE5WKd5MdbFpbDVMxu1DVMmtNZGJvq1mtRbn6M+g/kP0FwDwr7quZs7xosNGpbscyxhhd9TyJyFwbLcxlTasg75vW7TsV5K7ji44XPMMrdoj+Y3rT0Hie62nlYV/pwczzOmdLqLhYkzGMzCZWGMQzGMSsZYY6Di1t4nlJ+Em63mJxrVLxPbYxNEdgc1dU2iOKyoYYWjNrEeHTYybVk0atSa7ehuwsWMWTqn1TrnS6hYsi71d1+s+k+ic70e20fzE/VaTdxT9ZtU4GIXdeNx3X77guYYfpHeTQjaMX6brOu4OY4K7Y2d9mbHarI5ox3p4GpJ2Vd/Tst60f7j999pppjR+Q/Qf8J/VaORs3cji7FfFuN61+ui9s8hix1OCh5KGVV23BPXvZfz3CLyHpix+exi8z/KnCnosY2eunor+cxyPO/xJ0vKey9OvE9VjqaYu0x3Z3jd6o2b1T12D+F8l232lwaaacD5LE8LBxu7WTlbWraWpew8Xexjel3E+wWD4APITdNqR8F3R3T0lunCQ4GaE9R37DxeCYfcHi4xci5ovKfxVs55y2hf+65E/Xdp6jR5nrebTmi5incpkyOjs50JvrZwstbbW6kfuuQw+2mykf/EXNFzxfKTrxew929TR6bWnGL//F3JFOFCQT3K4lQ"
|
28 |
+
|
29 |
+
kernels = Kernel(
|
30 |
+
bz2.decompress(base64.b64decode(quantization_code)),
|
31 |
+
[
|
32 |
+
"int4WeightCompression",
|
33 |
+
"int4WeightExtractionFloat",
|
34 |
+
"int4WeightExtractionHalf",
|
35 |
+
"int8WeightExtractionFloat",
|
36 |
+
"int8WeightExtractionHalf",
|
37 |
+
],
|
38 |
+
)
|
39 |
+
except Exception as exception:
|
40 |
+
kernels = None
|
41 |
+
logger.warning("Failed to load cpm_kernels:" + str(exception))
|
42 |
+
|
43 |
+
|
44 |
+
class W8A16Linear(torch.autograd.Function):
|
45 |
+
@staticmethod
|
46 |
+
def forward(ctx, inp: torch.Tensor, quant_w: torch.Tensor, scale_w: torch.Tensor, weight_bit_width):
|
47 |
+
ctx.inp_shape = inp.size()
|
48 |
+
ctx.weight_bit_width = weight_bit_width
|
49 |
+
out_features = quant_w.size(0)
|
50 |
+
inp = inp.contiguous().view(-1, inp.size(-1))
|
51 |
+
weight = extract_weight_to_half(quant_w, scale_w, weight_bit_width)
|
52 |
+
ctx.weight_shape = weight.size()
|
53 |
+
output = inp.mm(weight.t())
|
54 |
+
ctx.save_for_backward(inp, quant_w, scale_w)
|
55 |
+
return output.view(*(ctx.inp_shape[:-1] + (out_features,)))
|
56 |
+
|
57 |
+
@staticmethod
|
58 |
+
def backward(ctx, grad_output: torch.Tensor):
|
59 |
+
inp, quant_w, scale_w = ctx.saved_tensors
|
60 |
+
weight = extract_weight_to_half(quant_w, scale_w, ctx.weight_bit_width)
|
61 |
+
grad_output = grad_output.contiguous().view(-1, weight.size(0))
|
62 |
+
grad_input = grad_output.mm(weight)
|
63 |
+
grad_weight = grad_output.t().mm(inp)
|
64 |
+
return grad_input.view(ctx.inp_shape), grad_weight.view(ctx.weight_shape), None, None
|
65 |
+
|
66 |
+
|
67 |
+
def compress_int4_weight(weight: torch.Tensor): # (n, m)
|
68 |
+
with torch.cuda.device(weight.device):
|
69 |
+
n, m = weight.size(0), weight.size(1)
|
70 |
+
assert m % 2 == 0
|
71 |
+
m = m // 2
|
72 |
+
out = torch.empty(n, m, dtype=torch.int8, device="cuda")
|
73 |
+
stream = torch.cuda.current_stream()
|
74 |
+
|
75 |
+
gridDim = (n, 1, 1)
|
76 |
+
blockDim = (min(round_up(m, 32), 1024), 1, 1)
|
77 |
+
|
78 |
+
kernels.int4WeightCompression(
|
79 |
+
gridDim,
|
80 |
+
blockDim,
|
81 |
+
0,
|
82 |
+
stream,
|
83 |
+
[ctypes.c_void_p(weight.data_ptr()), ctypes.c_void_p(out.data_ptr()), ctypes.c_int32(n), ctypes.c_int32(m)],
|
84 |
+
)
|
85 |
+
return out
|
86 |
+
|
87 |
+
|
88 |
+
def extract_weight_to_half(weight: torch.Tensor, scale_list: torch.Tensor, source_bit_width: int):
|
89 |
+
assert scale_list.dtype in [torch.half, torch.bfloat16]
|
90 |
+
assert weight.dtype in [torch.int8]
|
91 |
+
if source_bit_width == 8:
|
92 |
+
return weight.to(scale_list.dtype) * scale_list[:, None]
|
93 |
+
elif source_bit_width == 4:
|
94 |
+
func = (
|
95 |
+
kernels.int4WeightExtractionHalf if scale_list.dtype == torch.half else kernels.int4WeightExtractionBFloat16
|
96 |
+
)
|
97 |
+
else:
|
98 |
+
assert False, "Unsupported bit-width"
|
99 |
+
|
100 |
+
with torch.cuda.device(weight.device):
|
101 |
+
n, m = weight.size(0), weight.size(1)
|
102 |
+
out = torch.empty(n, m * (8 // source_bit_width), dtype=scale_list.dtype, device="cuda")
|
103 |
+
stream = torch.cuda.current_stream()
|
104 |
+
|
105 |
+
gridDim = (n, 1, 1)
|
106 |
+
blockDim = (min(round_up(m, 32), 1024), 1, 1)
|
107 |
+
|
108 |
+
func(
|
109 |
+
gridDim,
|
110 |
+
blockDim,
|
111 |
+
0,
|
112 |
+
stream,
|
113 |
+
[
|
114 |
+
ctypes.c_void_p(weight.data_ptr()),
|
115 |
+
ctypes.c_void_p(scale_list.data_ptr()),
|
116 |
+
ctypes.c_void_p(out.data_ptr()),
|
117 |
+
ctypes.c_int32(n),
|
118 |
+
ctypes.c_int32(m),
|
119 |
+
],
|
120 |
+
)
|
121 |
+
return out
|
122 |
+
|
123 |
+
|
124 |
+
class QuantizedLinear(torch.nn.Module):
|
125 |
+
def __init__(self, weight_bit_width: int, weight, bias=None, device="cpu", dtype=None, empty_init=False, *args,
|
126 |
+
**kwargs):
|
127 |
+
super().__init__()
|
128 |
+
self.weight_bit_width = weight_bit_width
|
129 |
+
|
130 |
+
shape = weight.shape
|
131 |
+
|
132 |
+
if weight is None or empty_init:
|
133 |
+
self.weight = torch.empty(shape[0], shape[1] * weight_bit_width // 8, dtype=torch.int8, device=device)
|
134 |
+
self.weight_scale = torch.empty(shape[0], dtype=dtype, device=device)
|
135 |
+
else:
|
136 |
+
self.weight_scale = weight.abs().max(dim=-1).values / ((2 ** (weight_bit_width - 1)) - 1)
|
137 |
+
self.weight = torch.round(weight / self.weight_scale[:, None]).to(torch.int8)
|
138 |
+
if weight_bit_width == 4:
|
139 |
+
self.weight = compress_int4_weight(self.weight)
|
140 |
+
|
141 |
+
self.weight = Parameter(self.weight.to(device), requires_grad=False)
|
142 |
+
self.weight_scale = Parameter(self.weight_scale.to(device), requires_grad=False)
|
143 |
+
self.bias = Parameter(bias.to(device), requires_grad=False) if bias is not None else None
|
144 |
+
|
145 |
+
def forward(self, input):
|
146 |
+
output = W8A16Linear.apply(input, self.weight, self.weight_scale, self.weight_bit_width)
|
147 |
+
if self.bias is not None:
|
148 |
+
output = output + self.bias
|
149 |
+
return output
|
150 |
+
|
151 |
+
|
152 |
+
def quantize(model, weight_bit_width, empty_init=False, device=None):
|
153 |
+
"""Replace fp16 linear with quantized linear"""
|
154 |
+
for layer in model.layers:
|
155 |
+
layer.self_attention.query_key_value = QuantizedLinear(
|
156 |
+
weight_bit_width=weight_bit_width,
|
157 |
+
weight=layer.self_attention.query_key_value.weight.to(torch.cuda.current_device()),
|
158 |
+
bias=layer.self_attention.query_key_value.bias,
|
159 |
+
dtype=layer.self_attention.query_key_value.weight.dtype,
|
160 |
+
device=layer.self_attention.query_key_value.weight.device if device is None else device,
|
161 |
+
empty_init=empty_init
|
162 |
+
)
|
163 |
+
layer.self_attention.dense = QuantizedLinear(
|
164 |
+
weight_bit_width=weight_bit_width,
|
165 |
+
weight=layer.self_attention.dense.weight.to(torch.cuda.current_device()),
|
166 |
+
bias=layer.self_attention.dense.bias,
|
167 |
+
dtype=layer.self_attention.dense.weight.dtype,
|
168 |
+
device=layer.self_attention.dense.weight.device if device is None else device,
|
169 |
+
empty_init=empty_init
|
170 |
+
)
|
171 |
+
layer.mlp.dense_h_to_4h = QuantizedLinear(
|
172 |
+
weight_bit_width=weight_bit_width,
|
173 |
+
weight=layer.mlp.dense_h_to_4h.weight.to(torch.cuda.current_device()),
|
174 |
+
bias=layer.mlp.dense_h_to_4h.bias,
|
175 |
+
dtype=layer.mlp.dense_h_to_4h.weight.dtype,
|
176 |
+
device=layer.mlp.dense_h_to_4h.weight.device if device is None else device,
|
177 |
+
empty_init=empty_init
|
178 |
+
)
|
179 |
+
layer.mlp.dense_4h_to_h = QuantizedLinear(
|
180 |
+
weight_bit_width=weight_bit_width,
|
181 |
+
weight=layer.mlp.dense_4h_to_h.weight.to(torch.cuda.current_device()),
|
182 |
+
bias=layer.mlp.dense_4h_to_h.bias,
|
183 |
+
dtype=layer.mlp.dense_4h_to_h.weight.dtype,
|
184 |
+
device=layer.mlp.dense_4h_to_h.weight.device if device is None else device,
|
185 |
+
empty_init=empty_init
|
186 |
+
)
|
187 |
+
|
188 |
+
return model
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad8a35afd8967cbb748405387e44426e43ad127028e826eddc9b67d2ca873c85
|
3 |
+
size 15984
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f338ce80d7c441076bfc8c53b84067a0181f5a14e80c13d5acb8150b659f4d73
|
3 |
+
size 15984
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9fbc9fa428939be10b46779f0eb5cd833e0da426b1cbdee77b3a55b6952235b
|
3 |
+
size 15984
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac55dba0b79d5fa4699d239da2f966d52040d576d31234ac8d4632e6956481bc
|
3 |
+
size 15984
|
rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af2d0c015100768ffa23faf3b6c2d54ea89eb045603e30e55cd211e06ff34972
|
3 |
+
size 15984
|
rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c60a1b40608e34bc801c8231f97b81c53b5290dfaed1b9cd0ccbeca29574a991
|
3 |
+
size 15984
|
rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ad6a142a403eb9aafc4a3a9a856bca648fe31fd22d796867baca31fb13656aa
|
3 |
+
size 15984
|
rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38bc23a138cc800b22881742c0f3f9a71731a9a7111c6058a0077e6274d21773
|
3 |
+
size 15984
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
tokenization_chatglm.py
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from typing import List, Optional, Union, Dict
|
4 |
+
from sentencepiece import SentencePieceProcessor
|
5 |
+
from transformers import PreTrainedTokenizer
|
6 |
+
from transformers.utils import logging, PaddingStrategy
|
7 |
+
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
8 |
+
|
9 |
+
|
10 |
+
class SPTokenizer:
|
11 |
+
def __init__(self, model_path: str):
|
12 |
+
# reload tokenizer
|
13 |
+
assert os.path.isfile(model_path), model_path
|
14 |
+
self.sp_model = SentencePieceProcessor(model_file=model_path)
|
15 |
+
|
16 |
+
# BOS / EOS token IDs
|
17 |
+
self.n_words: int = self.sp_model.vocab_size()
|
18 |
+
self.bos_id: int = self.sp_model.bos_id()
|
19 |
+
self.eos_id: int = self.sp_model.eos_id()
|
20 |
+
self.pad_id: int = self.sp_model.unk_id()
|
21 |
+
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
|
22 |
+
|
23 |
+
special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"]
|
24 |
+
self.special_tokens = {}
|
25 |
+
self.index_special_tokens = {}
|
26 |
+
for token in special_tokens:
|
27 |
+
self.special_tokens[token] = self.n_words
|
28 |
+
self.index_special_tokens[self.n_words] = token
|
29 |
+
self.n_words += 1
|
30 |
+
|
31 |
+
def tokenize(self, s: str):
|
32 |
+
return self.sp_model.EncodeAsPieces(s)
|
33 |
+
|
34 |
+
def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
|
35 |
+
assert type(s) is str
|
36 |
+
t = self.sp_model.encode(s)
|
37 |
+
if bos:
|
38 |
+
t = [self.bos_id] + t
|
39 |
+
if eos:
|
40 |
+
t = t + [self.eos_id]
|
41 |
+
return t
|
42 |
+
|
43 |
+
def decode(self, t: List[int]) -> str:
|
44 |
+
return self.sp_model.decode(t)
|
45 |
+
|
46 |
+
def decode_tokens(self, tokens: List[str]) -> str:
|
47 |
+
text = self.sp_model.DecodePieces(tokens)
|
48 |
+
return text
|
49 |
+
|
50 |
+
def convert_token_to_id(self, token):
|
51 |
+
""" Converts a token (str) in an id using the vocab. """
|
52 |
+
if token in self.special_tokens:
|
53 |
+
return self.special_tokens[token]
|
54 |
+
return self.sp_model.PieceToId(token)
|
55 |
+
|
56 |
+
def convert_id_to_token(self, index):
|
57 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
58 |
+
if index in self.index_special_tokens or index in [self.eos_id, self.bos_id, self.pad_id] or index < 0:
|
59 |
+
return ""
|
60 |
+
return self.sp_model.IdToPiece(index)
|
61 |
+
|
62 |
+
|
63 |
+
class ChatGLMTokenizer(PreTrainedTokenizer):
|
64 |
+
vocab_files_names = {"vocab_file": "tokenizer.model"}
|
65 |
+
|
66 |
+
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
67 |
+
|
68 |
+
def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, **kwargs):
|
69 |
+
super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs)
|
70 |
+
self.name = "GLMTokenizer"
|
71 |
+
|
72 |
+
self.vocab_file = vocab_file
|
73 |
+
self.tokenizer = SPTokenizer(vocab_file)
|
74 |
+
self.special_tokens = {
|
75 |
+
"<bos>": self.tokenizer.bos_id,
|
76 |
+
"<eos>": self.tokenizer.eos_id,
|
77 |
+
"<pad>": self.tokenizer.pad_id
|
78 |
+
}
|
79 |
+
|
80 |
+
def get_command(self, token):
|
81 |
+
if token in self.special_tokens:
|
82 |
+
return self.special_tokens[token]
|
83 |
+
assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}"
|
84 |
+
return self.tokenizer.special_tokens[token]
|
85 |
+
|
86 |
+
@property
|
87 |
+
def unk_token(self) -> str:
|
88 |
+
return "<unk>"
|
89 |
+
|
90 |
+
@property
|
91 |
+
def pad_token(self) -> str:
|
92 |
+
return "<unk>"
|
93 |
+
|
94 |
+
@property
|
95 |
+
def pad_token_id(self):
|
96 |
+
return self.get_command("<pad>")
|
97 |
+
|
98 |
+
@property
|
99 |
+
def eos_token(self) -> str:
|
100 |
+
return "</s>"
|
101 |
+
|
102 |
+
@property
|
103 |
+
def eos_token_id(self):
|
104 |
+
return self.get_command("<eos>")
|
105 |
+
|
106 |
+
@property
|
107 |
+
def vocab_size(self):
|
108 |
+
return self.tokenizer.n_words
|
109 |
+
|
110 |
+
def get_vocab(self):
|
111 |
+
""" Returns vocab as a dict """
|
112 |
+
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
113 |
+
vocab.update(self.added_tokens_encoder)
|
114 |
+
return vocab
|
115 |
+
|
116 |
+
def _tokenize(self, text, **kwargs):
|
117 |
+
return self.tokenizer.tokenize(text)
|
118 |
+
|
119 |
+
def _convert_token_to_id(self, token):
|
120 |
+
""" Converts a token (str) in an id using the vocab. """
|
121 |
+
return self.tokenizer.convert_token_to_id(token)
|
122 |
+
|
123 |
+
def _convert_id_to_token(self, index):
|
124 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
125 |
+
return self.tokenizer.convert_id_to_token(index)
|
126 |
+
|
127 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
128 |
+
return self.tokenizer.decode_tokens(tokens)
|
129 |
+
|
130 |
+
def save_vocabulary(self, save_directory, filename_prefix=None):
|
131 |
+
"""
|
132 |
+
Save the vocabulary and special tokens file to a directory.
|
133 |
+
|
134 |
+
Args:
|
135 |
+
save_directory (`str`):
|
136 |
+
The directory in which to save the vocabulary.
|
137 |
+
filename_prefix (`str`, *optional*):
|
138 |
+
An optional prefix to add to the named of the saved files.
|
139 |
+
|
140 |
+
Returns:
|
141 |
+
`Tuple(str)`: Paths to the files saved.
|
142 |
+
"""
|
143 |
+
if os.path.isdir(save_directory):
|
144 |
+
vocab_file = os.path.join(
|
145 |
+
save_directory, self.vocab_files_names["vocab_file"]
|
146 |
+
)
|
147 |
+
else:
|
148 |
+
vocab_file = save_directory
|
149 |
+
|
150 |
+
with open(self.vocab_file, 'rb') as fin:
|
151 |
+
proto_str = fin.read()
|
152 |
+
|
153 |
+
with open(vocab_file, "wb") as writer:
|
154 |
+
writer.write(proto_str)
|
155 |
+
|
156 |
+
return (vocab_file,)
|
157 |
+
|
158 |
+
def get_prefix_tokens(self):
|
159 |
+
prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")]
|
160 |
+
return prefix_tokens
|
161 |
+
|
162 |
+
def build_prompt(self, query, history=None):
|
163 |
+
if history is None:
|
164 |
+
history = []
|
165 |
+
prompt = ""
|
166 |
+
for i, (old_query, response) in enumerate(history):
|
167 |
+
prompt += "[Round {}]\n\n问:{}\n\n答:{}\n\n".format(i + 1, old_query, response)
|
168 |
+
prompt += "[Round {}]\n\n问:{}\n\n答:".format(len(history) + 1, query)
|
169 |
+
return prompt
|
170 |
+
|
171 |
+
def build_inputs_with_special_tokens(
|
172 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
173 |
+
) -> List[int]:
|
174 |
+
"""
|
175 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
176 |
+
adding special tokens. A BERT sequence has the following format:
|
177 |
+
|
178 |
+
- single sequence: `[CLS] X [SEP]`
|
179 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
180 |
+
|
181 |
+
Args:
|
182 |
+
token_ids_0 (`List[int]`):
|
183 |
+
List of IDs to which the special tokens will be added.
|
184 |
+
token_ids_1 (`List[int]`, *optional*):
|
185 |
+
Optional second list of IDs for sequence pairs.
|
186 |
+
|
187 |
+
Returns:
|
188 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
189 |
+
"""
|
190 |
+
prefix_tokens = self.get_prefix_tokens()
|
191 |
+
token_ids_0 = prefix_tokens + token_ids_0
|
192 |
+
if token_ids_1 is not None:
|
193 |
+
token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")]
|
194 |
+
return token_ids_0
|
195 |
+
|
196 |
+
def _pad(
|
197 |
+
self,
|
198 |
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
199 |
+
max_length: Optional[int] = None,
|
200 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
201 |
+
pad_to_multiple_of: Optional[int] = None,
|
202 |
+
return_attention_mask: Optional[bool] = None,
|
203 |
+
) -> dict:
|
204 |
+
"""
|
205 |
+
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
206 |
+
|
207 |
+
Args:
|
208 |
+
encoded_inputs:
|
209 |
+
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
210 |
+
max_length: maximum length of the returned list and optionally padding length (see below).
|
211 |
+
Will truncate by taking into account the special tokens.
|
212 |
+
padding_strategy: PaddingStrategy to use for padding.
|
213 |
+
|
214 |
+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
215 |
+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
216 |
+
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
217 |
+
The tokenizer padding sides are defined in self.padding_side:
|
218 |
+
|
219 |
+
- 'left': pads on the left of the sequences
|
220 |
+
- 'right': pads on the right of the sequences
|
221 |
+
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
222 |
+
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
223 |
+
`>= 7.5` (Volta).
|
224 |
+
return_attention_mask:
|
225 |
+
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
226 |
+
"""
|
227 |
+
# Load from model defaults
|
228 |
+
assert self.padding_side == "left"
|
229 |
+
|
230 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
231 |
+
seq_length = len(required_input)
|
232 |
+
|
233 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
234 |
+
max_length = len(required_input)
|
235 |
+
|
236 |
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
237 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
238 |
+
|
239 |
+
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
240 |
+
|
241 |
+
# Initialize attention mask if not present.
|
242 |
+
if "attention_mask" not in encoded_inputs:
|
243 |
+
encoded_inputs["attention_mask"] = [1] * seq_length
|
244 |
+
|
245 |
+
if "position_ids" not in encoded_inputs:
|
246 |
+
encoded_inputs["position_ids"] = list(range(seq_length))
|
247 |
+
|
248 |
+
if needs_to_be_padded:
|
249 |
+
difference = max_length - len(required_input)
|
250 |
+
|
251 |
+
if "attention_mask" in encoded_inputs:
|
252 |
+
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
|
253 |
+
if "position_ids" in encoded_inputs:
|
254 |
+
encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
|
255 |
+
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
256 |
+
|
257 |
+
return encoded_inputs
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7dc4c393423b76e4373e5157ddc34803a0189ba96b21ddbb40269d31468a6f2
|
3 |
+
size 1018370
|
tokenizer_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoTokenizer": [
|
4 |
+
"tokenization_chatglm.ChatGLMTokenizer",
|
5 |
+
null
|
6 |
+
]
|
7 |
+
},
|
8 |
+
"clean_up_tokenization_spaces": false,
|
9 |
+
"do_lower_case": false,
|
10 |
+
"model_max_length": 1000000000000000019884624838656,
|
11 |
+
"padding_side": "left",
|
12 |
+
"remove_space": false,
|
13 |
+
"tokenizer_class": "ChatGLMTokenizer"
|
14 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07980c7613b660d9706b799bb092037ad7c0e82aaff2ca7786bb30b341c704dc
|
3 |
+
size 6776
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _has_callable(obj, fn):
|
252 |
+
attr = getattr(obj, fn, None)
|
253 |
+
return callable(attr)
|
254 |
+
|
255 |
+
|
256 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
257 |
+
param_shapes = zero_model_states[0].param_shapes
|
258 |
+
|
259 |
+
# Reconstruction protocol:
|
260 |
+
#
|
261 |
+
# XXX: document this
|
262 |
+
|
263 |
+
if debug:
|
264 |
+
for i in range(world_size):
|
265 |
+
for j in range(len(fp32_flat_groups[0])):
|
266 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
267 |
+
|
268 |
+
# XXX: memory usage doubles here (zero2)
|
269 |
+
num_param_groups = len(fp32_flat_groups[0])
|
270 |
+
merged_single_partition_of_fp32_groups = []
|
271 |
+
for i in range(num_param_groups):
|
272 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
273 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
274 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
275 |
+
avail_numel = sum(
|
276 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
277 |
+
|
278 |
+
if debug:
|
279 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
280 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
281 |
+
# not asserting if there is a mismatch due to possible padding
|
282 |
+
print(f"Have {avail_numel} numels to process.")
|
283 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
284 |
+
|
285 |
+
# params
|
286 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
287 |
+
# out-of-core computing solution
|
288 |
+
total_numel = 0
|
289 |
+
total_params = 0
|
290 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
291 |
+
offset = 0
|
292 |
+
avail_numel = full_single_fp32_vector.numel()
|
293 |
+
for name, shape in shapes.items():
|
294 |
+
|
295 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
296 |
+
total_numel += unpartitioned_numel
|
297 |
+
total_params += 1
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
301 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
302 |
+
offset += unpartitioned_numel
|
303 |
+
|
304 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
305 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
306 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
307 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
308 |
+
align_to = 2 * world_size
|
309 |
+
|
310 |
+
def zero2_align(x):
|
311 |
+
return align_to * math.ceil(x / align_to)
|
312 |
+
|
313 |
+
if debug:
|
314 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
315 |
+
|
316 |
+
offset = zero2_align(offset)
|
317 |
+
avail_numel = zero2_align(avail_numel)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
# Sanity check
|
323 |
+
if offset != avail_numel:
|
324 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
325 |
+
|
326 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
327 |
+
|
328 |
+
|
329 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
330 |
+
state_dict = OrderedDict()
|
331 |
+
|
332 |
+
# buffers
|
333 |
+
buffers = zero_model_states[0].buffers
|
334 |
+
state_dict.update(buffers)
|
335 |
+
if debug:
|
336 |
+
print(f"added {len(buffers)} buffers")
|
337 |
+
|
338 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
339 |
+
|
340 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
341 |
+
|
342 |
+
# recover shared parameters
|
343 |
+
for pair in zero_model_states[0].shared_params:
|
344 |
+
if pair[1] in state_dict:
|
345 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
346 |
+
|
347 |
+
return state_dict
|
348 |
+
|
349 |
+
|
350 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
351 |
+
remainder = unpartitioned_numel % world_size
|
352 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
353 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
354 |
+
return partitioned_numel, padding_numel
|
355 |
+
|
356 |
+
|
357 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
358 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
359 |
+
return
|
360 |
+
|
361 |
+
if debug:
|
362 |
+
for i in range(world_size):
|
363 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
364 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
365 |
+
|
366 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
367 |
+
wanted_params = len(frozen_param_shapes)
|
368 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
369 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
370 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
371 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
372 |
+
|
373 |
+
total_params = 0
|
374 |
+
total_numel = 0
|
375 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
376 |
+
total_params += 1
|
377 |
+
unpartitioned_numel = shape.numel()
|
378 |
+
total_numel += unpartitioned_numel
|
379 |
+
|
380 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
381 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
382 |
+
|
383 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
384 |
+
|
385 |
+
if debug:
|
386 |
+
print(
|
387 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
388 |
+
)
|
389 |
+
|
390 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
391 |
+
|
392 |
+
|
393 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
394 |
+
param_shapes = zero_model_states[0].param_shapes
|
395 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
396 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
397 |
+
# param, re-consolidating each param, while dealing with padding if any
|
398 |
+
|
399 |
+
# merge list of dicts, preserving order
|
400 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
401 |
+
|
402 |
+
if debug:
|
403 |
+
for i in range(world_size):
|
404 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
405 |
+
|
406 |
+
wanted_params = len(param_shapes)
|
407 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
408 |
+
# not asserting if there is a mismatch due to possible padding
|
409 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
410 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
411 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
412 |
+
|
413 |
+
# params
|
414 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
415 |
+
# out-of-core computing solution
|
416 |
+
offset = 0
|
417 |
+
total_numel = 0
|
418 |
+
total_params = 0
|
419 |
+
for name, shape in param_shapes.items():
|
420 |
+
|
421 |
+
unpartitioned_numel = shape.numel()
|
422 |
+
total_numel += unpartitioned_numel
|
423 |
+
total_params += 1
|
424 |
+
|
425 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
426 |
+
|
427 |
+
if debug:
|
428 |
+
print(
|
429 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
430 |
+
)
|
431 |
+
|
432 |
+
# XXX: memory usage doubles here
|
433 |
+
state_dict[name] = torch.cat(
|
434 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
435 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
436 |
+
offset += partitioned_numel
|
437 |
+
|
438 |
+
offset *= world_size
|
439 |
+
|
440 |
+
# Sanity check
|
441 |
+
if offset != avail_numel:
|
442 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
443 |
+
|
444 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
445 |
+
|
446 |
+
|
447 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
448 |
+
state_dict = OrderedDict()
|
449 |
+
|
450 |
+
# buffers
|
451 |
+
buffers = zero_model_states[0].buffers
|
452 |
+
state_dict.update(buffers)
|
453 |
+
if debug:
|
454 |
+
print(f"added {len(buffers)} buffers")
|
455 |
+
|
456 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
457 |
+
|
458 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
459 |
+
|
460 |
+
# recover shared parameters
|
461 |
+
for pair in zero_model_states[0].shared_params:
|
462 |
+
if pair[1] in state_dict:
|
463 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
464 |
+
|
465 |
+
return state_dict
|
466 |
+
|
467 |
+
|
468 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
469 |
+
"""
|
470 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
471 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
472 |
+
via a model hub.
|
473 |
+
|
474 |
+
Args:
|
475 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
476 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
477 |
+
|
478 |
+
Returns:
|
479 |
+
- pytorch ``state_dict``
|
480 |
+
|
481 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
482 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
483 |
+
the checkpoint.
|
484 |
+
|
485 |
+
A typical usage might be ::
|
486 |
+
|
487 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
488 |
+
# do the training and checkpoint saving
|
489 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
490 |
+
model = model.cpu() # move to cpu
|
491 |
+
model.load_state_dict(state_dict)
|
492 |
+
# submit to model hub or save the model to share with others
|
493 |
+
|
494 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
495 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
496 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
497 |
+
|
498 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
499 |
+
|
500 |
+
"""
|
501 |
+
if tag is None:
|
502 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
503 |
+
if os.path.isfile(latest_path):
|
504 |
+
with open(latest_path, 'r') as fd:
|
505 |
+
tag = fd.read().strip()
|
506 |
+
else:
|
507 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
508 |
+
|
509 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
510 |
+
|
511 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
512 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
513 |
+
|
514 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
515 |
+
|
516 |
+
|
517 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
518 |
+
"""
|
519 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
520 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
521 |
+
|
522 |
+
Args:
|
523 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
524 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
525 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
526 |
+
"""
|
527 |
+
|
528 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
529 |
+
print(f"Saving fp32 state dict to {output_file}")
|
530 |
+
torch.save(state_dict, output_file)
|
531 |
+
|
532 |
+
|
533 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
534 |
+
"""
|
535 |
+
1. Put the provided model to cpu
|
536 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
537 |
+
3. Load it into the provided model
|
538 |
+
|
539 |
+
Args:
|
540 |
+
- ``model``: the model object to update
|
541 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
542 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
543 |
+
|
544 |
+
Returns:
|
545 |
+
- ``model`: modified model
|
546 |
+
|
547 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
548 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
549 |
+
conveniently placed for you in the checkpoint folder.
|
550 |
+
|
551 |
+
A typical usage might be ::
|
552 |
+
|
553 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
554 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
555 |
+
# submit to model hub or save the model to share with others
|
556 |
+
|
557 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
558 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
559 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
560 |
+
|
561 |
+
"""
|
562 |
+
logger.info(f"Extracting fp32 weights")
|
563 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
564 |
+
|
565 |
+
logger.info(f"Overwriting model with fp32 weights")
|
566 |
+
model = model.cpu()
|
567 |
+
model.load_state_dict(state_dict, strict=False)
|
568 |
+
|
569 |
+
return model
|
570 |
+
|
571 |
+
|
572 |
+
if __name__ == "__main__":
|
573 |
+
|
574 |
+
parser = argparse.ArgumentParser()
|
575 |
+
parser.add_argument("checkpoint_dir",
|
576 |
+
type=str,
|
577 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
578 |
+
parser.add_argument(
|
579 |
+
"output_file",
|
580 |
+
type=str,
|
581 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
582 |
+
parser.add_argument("-t",
|
583 |
+
"--tag",
|
584 |
+
type=str,
|
585 |
+
default=None,
|
586 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
587 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
588 |
+
args = parser.parse_args()
|
589 |
+
|
590 |
+
debug = args.debug
|
591 |
+
|
592 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|